

This project has received funding from the European Union´s Horizon 2020 Research and

Innovation Programme under Grand agreement No. 952702.

Deliverable 2.3
Overall Framework Architecture Design (1st Draft)

Technical References

Document version : 1.0

Submission Date : 28/02/2021

Dissemination Level

Contribution to

:

:

Public

WP2

Document Owner : UNI

File Name : Overall Framework Architecture Design (1st Draft)

Revision : 1.1

Project Acronym : BIECO

Project Title : Building Trust in Ecosystem and Ecosystem
Components

Grant Agreement n. : 952702

Call : H2020-SU-ICT-2018-2020

Project Duration : 36 months, from 01/09/2020 to 31/08/2023

Website : https://www.bieco.org

Page 2 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Revision History

REVIS
ION

DATE
INVOLVED
PARTNERS

DESCRIPTION

0.1 07/01/2021 UNI Document structure. Initial contribution to sections 2,
3.1, 3.2, 3.3, 3.4, 3.5. 4.3

0.1 12/01/2021 UMU Initial version of 4.3, contribution on section 3.4 and

comments

0.1 13/01/2021 CNR Initial version of 3.3

0.1 14/01/2021 IESE Review, comment and suggest edits on section 3.3,
edit Table 4

0.1 17/01/2020 IESE Initial version of 3.2.1, added an initial description to
the figure in section 2.

0.1 19/01/2021 UMU Initial version of 4.1

0.2 19/01/2021 IESE
Added content on section 1, added in the table of
Glossary, edit table from section 3.2.3, updated the
picture in section 3.3.3.

0.2 19/01/2021 RES
Modifications in Table 2 (T4.1). Initial version of 3.4
and insertion of a Figure. Modifications and comments
in Table 4

0.2 19/01/2021 UNI
Modifications to section 4.3 and the common vision
diagram. Initial runtime view figure.

0.2 19/01/2021 CNR Review of section 3.3

0.3 20/01/2021 GRAD Contributions to section 3.1

0.3 21/01/2021 UTC Contributions to section 3.1. and 3.2

0.3 26/01/2021 IESE Text to 3.4.1.2

0.3 26/01/2021 RES
Modifications to section 3.4.1.1 and replacement of
Figure in the section 3.4

0.3 26/01/2021 GRAD Contributions to section 4.1 and 4.3

0.4 28/01/2021 UMU
External Review, resolution of comments related with
MUD, figure 6 and modifications to section 4.

1.0 02/02/2021 UNI
Text to Section 4, 4.2 and conclusions. Revision of the
overall document to prepare v1.0.

1.0 05/02/2021 RES Inputs to sections 3.2.4 and 3.4.7 regarding interfaces

1.0 05/02/2021 UNI
Text for Sections 1, 2 and 3, the executive summary,
glossary and acronyms. Revision, formatting and
harmonization of the whole document.

1.0 08/02/2021 7B Inputs to section 3.4.7 regarding ATB’s interface.

1.1 27/02/2021 UNI
Finalization of the document based on the project
coordinator review

Page 3 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

List of Contributors

Deliverable Creator(s): Ricardo Peres (UNI), Emilia Cioroaica (IESE), Sara Matheu
(UMU), Enrico Schiavone (RES), Gabriele Morgante (RES), Rosaria Esposito (RES),
Lorenzo Falai (RES), Eda Marchetti (CNR), Antonello Calabrò (CNR), Lilian Adkinson
(GRAD), Ovidiu Cosma (UTC), Cosmin Sabo (UTC), Radosław Piliszek (7B).

Reviewer: Andrea Ceccarelli (RES), Ricardo Peres (UNI), Felicita Di Giandomenico
(CNR), Sanaz Nikghadam-Hojjati (UNI), Jose Barata (UNI)

Disclaimer: The information in this document is subject to change without notice.

Company or product names mentioned in this document may be trademarks or

registered trademarks of their respective companies.

All rights reserved.

The document is proprietary of the BIECO consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written

agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not

liable for any use that may be made of the information contained herein.

BIECO project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
952702.

Page 4 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Acronyms

Term Definition

API Application Programming Interface

CEP Complex Event Processing

CPE Common Platform Enumeration

CVE Common Vulnerabilities and Exposures

DSL Domain Specific Language

DT Digital Twin

FMI Functional Mock-up Interface

HW Hardware

ICT Information and Communication Technology

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JSON JavaScript Object Notation

MOCC Models for calculation and communication

MUD Manufacturer Usage Description

RAMI Reference Architectural Model for Industrie 4.0

REST Representational State Transfer

SoS System-of-Systems

SW Software

TCP Transmission Control Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

WP Work Package

Page 5 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Glossary

Term Definition

Actor

An Actor represents a non-cyber-physical party of the ecosystem,

such as a specific person, company, or some other legal entity that

interacts with systems and digital assets, such as software

components.

Controlled

environment

This is a controlled setup of software and hardware components (or

alternatively their stubs or mocks), network configurations and

necessary settings useful for the execution of the software/system in

a real or realistic context. It enables the execution of validation and

verification activities and the collection of results/events in a context

in which the system can be stressed in a safety way. To this purpose,

the controlled environment and/or its components (mocks stubs, real

devices and so on) can be equipped with probes.

Design Time

It is the software lifecycle phase in which the product is designed,

developed, implemented, verified and even certified, before its

release to the market. At the end of these processes, the product is

intended to be ready for its usage and validated in terms of

functionality and security.

Digital

Ecosystem

A structural and behavioural construct that forms around digital

products, which dynamically interact. These products can be

software components or cyber physical systems.

Digital Twin This is a simulation model fed with real time or predicted data.

Execution

Time

The time when a system/system component executes within a real

(at runtime) or a virtual environment (at design time).

Framework
Composition of tools that communicate over well specified

interfaces. It enables implementation of methods.

ICT
Information and Communication Technology - it indicates the domain

of telematics, computer science, multimedia and internet.

Middleware

Acts as an integration layer to facilitate the interoperability amongst

the components of BIECO’s ecosystem. In this context, it supports

communications in two key schemes, one being a publish and

subscribe pattern for time critical communications, the other a

service-oriented pattern for remote execution/access. For the latter,

the middleware contemplates two main supporting functionalities,

one being a yellow-pages directory facilitator for service

discovery/registration, the other a service orchestration mechanism

for complex management of service interactions and composition.

Mock This is an object that emulate the behaviour of a real object

Predictive

Simulation

Simulation based on a set of well-defined situations that evaluate DT

behaviour in a virtual environment

Predictive

Virtual

Evaluation

Execution of system/system behaviour in a simulated environment

that takes place before the actual behaviour is executed in the real

world.

Probe
A piece of code injected in the system/component/ able to notify the

occurrence of an event

Page 6 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Risk

assessment
The process of identifying, prioritizing, and estimating risks

Runtime
The time when system or system component executes in the real

world (for example, a car driving on the streets)

Security

Certification

Comprehensive evaluation of an information system component that

establishes the extent to which a particular design and

implementation meets a set of specified security requirements

Security

Testing

The process to determine that an information system protects data

and maintains functionality as intended

Software

Smart Agent

An intelligent software component involved in the automation of

processes within a system, system component or ecosystem.

Stub
 A piece of code simulating a method/object interaction and

response

Validation

A set of activities intended to ensure that a system or system

component meets the operational needs of the user. The user in this

sense can be an actor within the ecosystem, or another system or

system components that receives its services.

Verification
A set of activities that checks whether a system or a system

component meets its specifications.

Vulnerability
A weakness an adversary could take advantage of to compromise

the confidentiality, availability, or integrity of a resource.

Weakness Implementation flaws or security implications due to design choices.

Page 7 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Executive Summary

Modern ICT supply chains are complex, multidimensional and heterogeneous by nature,
encompassing varied technologies, actors and interconnected resources. This makes it
so that cybersecurity has become a major concern for such ecosystems, particularly
given the tremendous velocity cybersecurity threats evolve requiring continuous
monitoring, assessment and improvement of these ecosystems to assure their integrity
and security.

In this regard, BIECO aims to deliver a holistic approach to building and validating
methodologies and technologies tailored to foster security and trust within ICT
ecosystems across their entire lifecycle, from design to runtime phases.

As such, the present deliverable provides the first draft of the overall framework
architecture of BIECO. For this purpose, an initial description of each work package and
their respective tools is provided, along with the expected actors, inputs, outputs,
interactions and respective interfaces. This acts as the foundation for the first draft of the
architecture, which is divided into two main views for different phases of the lifecycle,
namely design time and runtime. This specification corresponds to one of the main
outcomes of BIECO’s first agile cycle. It is expected that this specification will be revised,
extended and then finalized as the project evolves until M18 (using D2.3 as a reference
point). At that time, the final version of the architecture will be documented in D2.4.

Project Summary

Nowadays most of the ICT solutions developed by companies require the integration or

collaboration with other ICT components, which are typically developed by third parties.

Even though this kind of procedures are key in order to maintain productivity and

competitiveness, the fragmentation of the supply chain can pose a high risk regarding

security, as in most of the cases there is no way to verify if these other solutions have

vulnerabilities or if they have been built taking into account the best security practices.

In order to deal with these issues, it is important that companies make a change on their

mindset, assuming an “untrusted by default” position. According to a recent study only

29% of IT business know that their ecosystem partners are compliant and resilient with

regard to security. However, cybersecurity attacks have a high economic impact and it

is not enough to rely only on trust. ICT components need to be able to provide verifiable

guarantees regarding their security and privacy properties. It is also imperative to detect

more accurately vulnerabilities from ICT components and understand how they can

propagate over the supply chain and impact on ICT ecosystems. However, it is well

known that most of the vulnerabilities can remain undetected for years, so it is necessary

to provide advanced tools for guaranteeing resilience and also better mitigation

strategies, as cybersecurity incidents will happen. Finally, it is necessary to expand the

horizons of the current risk assessment and auditing processes, taking into account a

much wider threat landscape. BIECO is a holistic framework that will provide these

mechanisms in order to help companies to understand and manage the cybersecurity

risks and threats they are subject to when they become part of the ICT supply chain. The

framework, composed by a set of tools and methodologies, will address the challenges

related to vulnerability management, resilience, and auditing of complex systems.

Page 8 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Partners

Disclaimer

The publication reflects only the author´s view and the European Commission is

not responsible for any use that may be made of the information it contains.

Page 9 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Table of Contents

Technical References ... 1

Revision History .. 2

List of Contributors .. 3

Acronyms .. 4

Glossary ... 5

Executive Summary .. 7

Project Summary .. 7

Partners .. 8

Disclaimer ... 8

Table of Contents ... 9

List of Figures ... 11

List of Tables .. 12

1. Introduction .. 13

2. BIECO Concept ... 14

3. Components of the BIECO Framework .. 16

3.1. Vulnerability Management (WP3) ... 16

3.1.1. General Description ... 16

3.1.2. Actors .. 17

3.1.3. Interactions .. 17

3.1.4. Planned Interfaces ... 19

3.2. Development of Resilient Systems (WP4) .. 21

3.2.1. General Description ... 21

3.2.2. Actors .. 22

3.2.3. Interactions .. 22

3.2.4. Planned Interfaces ... 23

3.3. Methods and Tools for Auditing ICT Ecosystems (WP5) 24

3.3.1. General Description ... 25

3.3.1.1. Predictive Simulation ... 25

3.3.1.2. Runtime Monitoring.. 26

3.3.1.3. WP5 Communication Manager .. 26

3.3.2. Actors .. 26

3.3.3. Interactions .. 27

3.3.4. Planned Interfaces ... 28

Page 10 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

3.4. Risk Analysis and Mitigation Strategies (WP6) ... 29

3.4.1. General Description ... 29

3.4.1.1. Blockly4SoS .. 29

3.4.1.2. SafeTbox ... 30

3.4.1.3. Blockchain-based Accountability.. 30

3.4.2. Actors .. 31

3.4.3. Interactions .. 31

3.4.4. Planned Interfaces ... 32

4. The BIECO Architecture (1st Draft) ... 34

4.1. Design Time View ... 35

4.2. Runtime View ... 36

4.3. Bridging Design/Runtime .. 37

5. Conclusion ... 40

6. Reference .. 41

Page 11 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

List of Figures

Figure 1 - Overall concept of the BIECO Framework to foster security and trust in ICT

ecosystems. .. 14

Figure 2 – General interaction flow across the phases of the lifecycle 15

Figure 3 - Interrelations among WP3 tools and other BIECO elements. 17

Figure 4– Data Collection Interface ... 19

Figure 5– Vulnerability Detection Interface .. 19

Figure 6– Exploitability Forecasting Interface .. 20

Figure 7– Vulnerability Forecasting Interface .. 20

Figure 8 – Vulnerability propagation Interface ... 20

Figure 9 - Overview of the interaction between WP4 and the remaining WPs 22

Figure 10– Failures Forecasting Tool .. 23

Figure 11– List of Rest Service for the Self- Checking Tool .. 24

Figure 12 – Audit package description .. 25

Figure 13 - Overview of the interactions between WP5 and the remaining WPs. 27

Figure 14- Runtime Monitoring Interfaces (a) .. 28

Figure 15-Runtime Monitoring Interface(b) .. 28

Figure 16 - Overview of the interactions between WP6 and the remaining WPs. 31

Figure 17 - Blockly4SoS Planned Interfaces ... 32

Figure 18 - safeTBox Planned Interfaces .. 33

Figure 19 – Adaptation of RAMI4.0 to the BIECO context ... 34

Figure 20 - BIECO's Design Phase Architecture ... 35

Figure 21 - BIECO's Runtime Architecture .. 36

Figure 22 – Connection between the different ICT lifecycle phases addressed in BIECO.

 ... 38

Figure 23 - Representation of the MUD perspective ... 39

file:///E:/Sanaz/Uninova/PROJECTS/BIECO/deliverables/BIECO_D2.3_28.02.2021_V1.0.docx%23_Toc65440013

Page 12 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

List of Tables

Table 1 – Interaction mapping for WP3 ... 18

Table 2 - Interaction mapping for WP4 .. 22

Table 3 - Interaction mapping for WP5 .. 27

Table 4 - Interaction mapping for WP6 .. 31

Page 13 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

1. Introduction

With progressing digitalization and the trend towards autonomous computing, systems
tend to form digital ecosystems, where each participant (system or actor) implements its
own operational goals. Systems operating within ecosystems can deploy smart agents
in the form of software applications, which would enable cooperative behaviour with other
ecosystem participants, and achievement of common tactical and strategic goals.
Effective collaboration within these emerging digital ecosystems strongly relies on the
assumption that all components of the ecosystem operate as expected, and a level of
trust among them is established based on that. In BIECO we design mechanisms that
ensure the collaboration between ecosystem participants remains trustworthy in case of
failures. By making systems resilient in face of malicious attacks, a trustworthy
behaviour is always displayed to the user (which can be an interacting service or a
human user).

The key difference between digital ecosystems and systems of systems is that digital
ecosystems involve actors with goals, which significantly influences the dynamics within
an ecosystem. In cooperation, the actors might have not only collaborative goals, but
also competitive goals, which may influence the health of the ecosystem. In digital
ecosystems, where hardware and software components of cyber-physical systems are
provided by different actors, malicious behaviour can be introduced along with software
components by actors who join a smart ecosystem based on declared collaborative
goals, but who are actually acting in competition.

Typically, the admission to a digital ecosystem has been based on the actors’
commitment to published roadmaps organized and provided by an ecosystem
orchestrator for the long term. Emerging digital ecosystems, however, are particularly
faced with the challenge of intended malicious behaviour which may be hidden in the
smart agents. As a consequence, besides being functionally correct, a trusted digital
ecosystem also needs to assess the participants’ trustworthiness before granting them
admission. Assessing the trustworthiness of ecosystem participants requires new
platforms that enable behaviour evaluation at runtime, with this being one of the main
goals of BIECO.

Thus, this deliverable aims to provide the initial set of guidelines and specifications
concerning the design and implementation of the BIECO solution for improving the
resilience and trustworthiness of digital ecosystems, building on the requirements
derived in D2.1 and the ongoing work of T2.2 concerning the use case specification.
These will be provided as the first draft of the BIECO overall framework architecture,
which will be later revised, completed and finalized in D2.4, due in M18.

The remainder of this document is structured as follows: Section 2 presents a recap of
the BIECO concept, serving as the conceptual context for this deliverable. Following this,
each of the framework’s components (organized by WP) is detailed in Section 3,
including an initial description of their role and internal architecture, along with its main
interactions and planned interfaces. This acts as the foundation for the first draft of the
BIECO architecture, which is presented in Section 4. This specification encompasses
different phases of the ICT lifecycle, from design to runtime, with each being depicted in
its own view. Finally, Section 5 concludes the document with a brief summary of the main
outcomes and future outlook.

Page 14 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

2. BIECO Concept

The rationale behind BIECO’s concept is to deliver a framework for improving trust and

security within ICT supply chains. These are complex ecosystems comprising several

heterogeneous technologies, processes, actors (e.g., end-users, software or hardware

providers and organizations) and resources, all of which generate or exchange data

forming extremely complex information management systems.

Due to this, cybersecurity and integrity are particularly important aspects to take into

account in this context, which need to be addressed with an integrative approach that

contemplates the entire chain, as opposed to restraining it only to the individual

components.

In this direction, BIECO aims to deliver a holistic approach to building and validating

methodologies and technologies tailored to foster security and trust within ICT

ecosystems. The general concept of BIECO’s framework is depicted in Figure 1.

Figure 1 - Overall concept of the BIECO Framework to foster security and trust in ICT ecosystems.

The goal is to instantiate the framework iteratively in order to enable a continuous

assessment and improvement of ICT supply chain’s security, given the speed at which

the cybersecurity landscape evolves with new threats emerging every day. As shown,

the methodologies and tools developed or adapted in this context will be evaluated in

three use cases from different sectors, namely smart grid / energy, financial and

manufacturing industry sectors.

To better illustrate how BIECO intends to address these challenges along the entire

lifecycle of the ICT supply chain, Figure 2 shows broadly the interaction flow between

the different phases of the lifecycle, as well as the core functionalities involved.

Page 15 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Figure 2 – General interaction flow across the phases of the lifecycle

To realize this vision, BIECO’s architecture will thus contain a set of interoperable tools

and methodologies capable of ultimately ensuring the trustworthy execution of systems

and system components within complex digital ecosystems. From design to runtime,

vulnerabilities and failures are detected, evaluated, and mitigated together with prompt

reactions that ensure the ultimate trustworthy execution of systems and system

components. In order to open the path towards future development and for enabling the

possibility to keep up to agile technological progress supported by runtime updates of

systems (including safety-critical systems), we further on design the BIECO architecture

with expandability in mind. One possibility in this direction will be that based on detected

deviations, runtime updates of systems can be accommodated through a natural

extension of the BIECO framework, including the feedback of information to the design

time for continuous improvement.

Page 16 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

3. Components of the BIECO Framework

This section details each of the core functionalities contemplated in the BIECO

framework, along with their respective tools divided by each of the WPs. The main

purpose is to provide a foundation for the specification of the architecture and later on

serve as a reference point for the development efforts within each WP.

3.1. Vulnerability Management (WP3)

Vulnerability assessment is an essential step of security management that allows to

detect and analyse on an early stage the possible security flaws or bugs of a system.

Even though the vulnerabilities can be addressed at any stage of a system lifecycle, their

early identification helps to reduce the risks in general, minimizing the costs as well as

the probability of a later exploitation by an attacker.

In general terms, vulnerabilities can be associated to software, hardware, policies or

even to the behaviour of users (intended or unintended). In particular, in BIECO the

vulnerability assessment process is focused on the identification of vulnerabilities that

appear in the source code during the design time of a software, and that could end having

an impact on the confidentiality, integrity or availability of the system. This vulnerability

assessment is not only focused on the detection of software vulnerabilities, but it aims

also at analysing the possible long-term impact that the identified vulnerabilities could

have, taking into consideration aspects such as the period of time under which they might

be exploited, or how they could propagate to other components of the software supply

chain. It is important to highlight that the vulnerability assessment performed in WP3 is

focused only on design time, taking into account a static view of the source code, and it

does not analyse other aspects associated to the execution or behaviour of the software

during runtime, which are considered within other BIECO work packages (WP4, WP5,

WP6).

3.1.1. General Description

The tools of WP3 will be developed mainly as REST services and deployed as part of

the BIECO platform. These tools will rely mainly on the use of Machine Learning

techniques and their purpose is to support different aspects of the assessment process

of a software vulnerability, including its identification in a piece of source code, the

evolution of its exploitability over time and its possible impact on other parts of the

software (or even other systems that integrate the software under analysis, as part of a

supply chain).

The tools that will be developed in the work package are:

• Data collection and pre-processing: REST service that collects data directly from

BIECO pilots and from public data sources. The resulting datasets are delivered to

the internal stakeholders using a REST API. The specifications and examples are

delivered using the Postman application.

• Vulnerability detection: a tool that enables the identification of software vulnerabilities

in source code. The tool, based on Machine Learning and data mining techniques,

considers the use of privacy preserving techniques such as Federated Learning, in

order to improve its accuracy and ensure confidentiality for the non-public training

datasets (e.g., the source code from use cases).

• Forecasting: it will follow two different approaches.

Page 17 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

o Exploitability forecasting: the tool allows, taking as an input a vulnerability

detected in a certain piece of source code, to predict the time frame in which

the vulnerability could be exploited.

o Vulnerability forecasting: RESTful web service that, based on the dataset

delivered by the API developed in T3.2, allows to forecast the number of

vulnerabilities that will appear in a time frame.

• Vulnerability propagation: tool developed also as a REST service that provides a

visual representation on how a certain vulnerability can propagate across the source

code of one or more software modules. The tool provides a graph-based

representation, as an intuitive manner of visualizing the different propagation paths

of the vulnerabilities.

As far as possible, the tools will be deployed by means of containers technologies such

as Docker1. This technology allows easily to create, test, deploy and

scale applications. The containers include all the libraries and dependencies that the

tools require in order to be executed, and they avoid issues with specific dependencies

of the versions of operating systems.

3.1.2. Actors

The actors of WP3 tools will be in principle software developers/owners (e.g., the use

cases providers) who are interested in determining if their source code contains any

vulnerabilities and, in case they exist, understand to which extent they could have an

impact on their systems, and even business processes. In order to ease the interaction

with the tools, a GUI (Graphic User Interface) will be provided to the actors.

3.1.3. Interactions

The Figure 3 presents the interactions of the tools provided by WP3 with the rest of tasks

and work packages in BIECO.

Figure 3 - Interrelations among WP3 tools and other BIECO elements.

1 https://www.docker.com

https://www.docker.com/

Page 18 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

The vulnerability assessment process can begin through the instantiation of two

alternative components: i) the vulnerability forecasting tool from T3.3 that allows to

forecast the number of vulnerabilities that will appear in a certain period of time, taking

into account just information from vulnerability datasets; or ii) the vulnerability detection

tool developed also in T3.3, which takes as an input the source code to analyse and

public information from the vulnerabilities (such as its type or the CVE). The

vulnerabilities detected in this step can be further assessed by means of two additional

tools developed within the work package: the exploitability forecasting tool from T3.3 that

allows to determine in which period of time the detected vulnerability might be exploited,

and the vulnerability propagation tool from T3.4 that allows to model how the detected

vulnerability can impact other dependant software modules.

The following table presents a summary of the tools provided by WP3, including their

inputs, outputs, and the expected users.

Table 1 – Interaction mapping for WP3

Tool Functionality Lifecycle Inputs Outputs User

Data
collection
and pre-
processing
[T3.2 UTC]

Data set of
vulnerabilities with
filtering capabilities

Design
time

• Public
datasets

• Internal
datasets

JSON files
User interface

Vulnerability
detection
[T3.3,
GRAD]

Machine learning
and data mining-
based tool that
allows to identify
software
vulnerabilities in
source code

Design
time

• Source code,

• Vulnerabilities
datasets

• List of the
vulnerabilities
identified in the
input source
code

• Use cases.

• Vulnerability
propagation
tool

• Exploitability
forecasting
tool

• WP7

Exploitability
forecasting
[T3.3,
GRAD]

Tool for analysing
the exploitability of
a software
vulnerability in a
future time frame.

Design
time

• Vulnerability
to be
analysed.

• Source code

• Vulnerability
datasets

• Other public
datasets
(e.g., Twitter)

• Time window
(6/12 months)

Probability of a
certain
vulnerability to be
exploited in an
indicated period
of time

• Use cases.

• WP7

Vulnerability
forecasting
[T3.3, UTC]

Forecast for the
number of
vulnerabilities

Design
time

• Data set from
T3.2

• Number of
vulnerabilities
that will occur
in a certain
time interval.

• Use cases.

• WP7

Vulnerability
propagation
[T3.4,
GRAD]

Tool for modelling

how a vulnerability

in a piece of

source code (e.g.,

a library) can

propagate across

one or more

systems.

Design
time

• Source code

• List of the
vulnerabilities
to be
analysed

• A structured
file (e.g.,
JSON)
containing
information of
the
propagation
path of a
certain
vulnerability.

• Use cases.

• T5.2

• WP7

It is important to note that since WP3 requires source code as an input, privacy-

preserving mechanisms will be explored to protect sensitive data and intellectual

Page 19 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

property. This could include the use of federated learning, differential privacy, or secure

multi-party computation schemes.

3.1.4. Planned Interfaces

This section details the planned interfaces for the five tools that will be provided by WP3.

Each of these tools will be developed as a REST service. The concrete details of their

interfaces, request parameters and results are presented below.

Figure 4– Data Collection Interface

The data collection tool will gather information mainly from the National Vulnerability

Dataset2 and from the use case providers. The tool will be implemented as a REST

service and it will provide information through its API. The API will support the following

requests: GET vulnerability data and POST vulnerability data. The POST vulnerability

data request will be used by the use case providers to store data in the tool database.

The details of the vulnerabilities will be provided in JSON format. The GET vulnerability

data request will provide information about the relevant resources gathered from the

dataset (for example the CPE URI, the attack vector, the time interval, and the required

fields) and the service will provide the result in JSON format.

Figure 5– Vulnerability Detection Interface

The vulnerability detection tool will provide a single method through its API,

detect_vulnerabilities. The method will support POST requests including two

parameters: a zip file with the source code to be analysed, and a string value detailing

the type of programming language in which the source code was developed.

The result of the request will be a file in a structured format, such as JSON, providing at
least, for each of the identified vulnerabilities, the name of the file that contains the
vulnerability, its approximated location (i.e., the line number) and its type, as well as other
possible additional parameters.

2 https://nvd.nist.gov

https://nvd.nist.gov/

Page 20 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Figure 6– Exploitability Forecasting Interface

The tool that allows to predict if a certain vulnerability will be exploited within the next

months, will expose a single method through its interface, predict_exploitation. This

method will require as an input four parameters: one of the vulnerabilities objects

returned by the method detect_vulnerabilities, a zip file with the source code in which the

vulnerability appears, a string value indicating the programming language, and the time

window (6 or 12 months) in which the vulnerability exploitability will be taken into

consideration.

The result of calling this method will be a value indicating the probability of the

vulnerability to be exploited within the time period indicated in the input request.

Figure 7– Vulnerability Forecasting Interface

The tool that will forecast the number of vulnerabilities will take input from the T3.2

dataset, which will contain vulnerability information from the National Vulnerability

Database and the use case providers. The API of the tool will support a GET forecast

request. The parameters of the request will be the CPE URI of the investigated

component and the time interval. The result will be the number of vulnerabilities that will

be reported for that component within the specified time frame.

Figure 8 – Vulnerability propagation Interface

The propagation tool will provide a method, view_propagation, that allows to analyse

how a certain vulnerability can affect other dependent software modules. The request

will receive a zip file containing the source code, a string value indicating its programming

language, an object (returned by the method detect_vulnerabilities) containing

information of the concrete vulnerability under analysis, as well as other optional

parameters, in order to configure the propagation graph.

The result of the request will be a structured file, following a format such as JSON, that

will include information of the propagation graph of the vulnerability.

Page 21 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

3.2. Development of Resilient Systems (WP4)

In face of security attacks that exploit runtime residual vulnerabilities, mechanisms for

assuring resilience of systems in case of runtime failures are necessary for two reasons.

Firstly, collaboration within a digital ecosystem is necessary in order to assure an

ultimate trustworthy behaviour of systems and system components. Secondarily, system

resilience in case of failures is necessary for gaining the ultimate user trust and hence,

improve the acceptability rate of systems and services.

3.2.1. General Description

Resilient systems are those systems capable to react and recover very fast from

disturbances. Disturbances during operation are typically generated by undiscovered

faults that make their way from design time to runtime. In terms of security, attackers can

exploit such undiscovered vulnerabilities to attack the system operation at runtime.

Within complex dynamic ecosystems in particular, systems, system components and a

variety of actors interact with each other in new contextual situations that may not be

completely foreseen during design time. This complex dynamism opens the path to a

multitude of vulnerability exploitation with an end effect of reaching untrusted runtime

execution. In particular, the need for speed on which many organizations operate

towards deploying systems may inadvertently allow vulnerabilities exploitable by

attackers to be present in deployed systems. For example, a software component

deployed on a system with the goal of enhancing an existing functionality can contain

intended malicious faults that express in malicious behaviour in key situations when the

target impact is likely to be achieved. In order to assure the ultimate trustworthiness of a

system as well as a trusted interaction with other users, mechanisms for making the

system resilient in face of runtime failures are developed within WP4. In particular:

1) Methods and tools for self-checking of vulnerabilities and failures with the focus

on supporting software in the capabilities to perform self-checks on the target system

on which it is executed. In this way, vulnerabilities that have not been discovered

during design time are discovered during runtime execution through the execution of

scanners. Besides residual vulnerabilities, software failures as well as random

hardware failures are detected by performing periodic checks and on-demand

checks that rely on self-test libraries and software safety mechanisms that perform

tests on the instructions of microcontrollers. Then,

2) Methods and tools development for failure prediction are developed for enabling

the forecast of failures within a system, with a specific focus on software components

which are the ecosystem entities that can contain malicious behaviour. Within digital

ecosystems, systems and system components engage in collaborations according

to a set of demands and guarantees that specify the functional and the non-functional

behaviour that collaborators can expect from each other.

Building on development from the two above mentioned activities,

3) Methods for assuring system resilience are developed in order to bring a system

into a safe-operational state, in case of malicious attacks that make their way through

the runtime. In this regard, strategies for making a system adaptive to predicted

failures are designed accounting for redundancy in operation. For example, for

assuring system’s safety in case of predicted failures caused by security attacks,

Page 22 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

simplex architectures designed around controlling a complex function through a

redundant, simpler channel are explored.

3.2.2. Actors

Actors who interact with the tools developed and extended within WP4 include:

1) engineers involved in the process of system development.

2) The actors of the failures forecasting tool developed in T4.2 are users and

developers.

3) developers of software applications and manufacturers of hardware resources.

Actors who interact with digital assets which are systems under evaluation for the tool.

They will be able to estimate the failure rates of certain components. For easy operation,

a GUI will be provided for the tool.

3.2.3. Interactions

An overview of the interactions between the tools provided by WP4 and the remaining

WPs of BIECO is presented in Figure 9.

Figure 9 - Overview of the interaction between WP4 and the remaining WPs

A detailed description for each of the tools encompassed in WP4, including their inputs,

outputs and intended users is provided in Table 2.

Table 2 - Interaction mapping for WP4

Tool Functionality Lifecycle Inputs Outputs User

Methodologies
(and later
software
solutions) for
periodic self-
checking of
HW/SW
failures

[T4.1, RES]

Periodic
software tests
on HW/SW
components.
Check for
HW failures
(e.g., with
Self-Test
Libraries),
and SW

 Runtime • (for SW
failures) Data
stream to be
monitored,
signature of
the SW
execution.

• (for both HW/SW
failures) Boolean
output (on the
correct functioning
of HW features /
correctness of the
SW control flow)

T4.2

T5.2

Page 23 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Tool Functionality Lifecycle Inputs Outputs User

failures (e.g.,
with control
flow
monitoring)

Co-Simulation
tool [T4.2,
T4.3, IESE]

Behaviour
specification
of systems
and system
components
can be
integrated
into a co-
simulation
framework
that enables
their
execution.

Execution
time

• Sim Results
from WP5

• T4.2, T5.1,
T6.3

• Specifications
from WP5 +
WP6 based
on WP7 –
MUD Files
Behavioural
profile

• Architectural
structure of
the use case

• Interactions
(MUD-
compliant)
between
WP5-WP6
and WP4

• Activation of fail-
over behaviour to
return the system to
operational state
when faults are
predicted.

• Functional mock-up
units for
interconnections
with other
(simulation) tools

• Use
cases
(functional
mock-up
units)

• T5.1

Forecasting
systems
failures [T4.2,
UTC]

Tool for
predictive
virtual
evaluation of
software
components
that enter the
ecosystem

Runtime

• D4.1 Self
checking tool

• D3.2 Dataset

• Forecast for the
failure rates of
components

• Use
cases

• T4.3

• T5.1

3.2.4. Planned Interfaces

1) Active MQ is one of the most popular Java-based multi-protocol communication

protocol, built on top of JMS (Java Messaging Service). In order to enable

communication between components developed in possibly different multiple languages,

ActiveMQ will be used as a communication bridge.

2) The FMI (Functional Mock-up Interface) standard will be used. This interface allows

the construction of complex co-simulation environments on a functional level. Using FMI,

models are coupled by means of numerical solution methods in order to realize a cross-

domain system simulation. This usually includes functional simulation models that

represent the behaviour of components, physics and environment of a system, but not

platform properties. The reason for this lies in the calculation and communication models

(MOCC) used for the simulation. These break down the overall simulation into calculation

steps and control the exchange of data between the simulation models. Only after a

simulation tool has completed a calculation step are data and events exchanged.

Figure 10– Failures Forecasting Tool

Page 24 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

The failures T4.2 forecasting tool will take input from the T4.1 self-checking module and

from the T3.2 dataset. The API of the tool will support a Get forecast request. The

parameter of the request will be the CPE URI of the investigated component. The result

will be the estimated failure rate of the component.

The Self-checking software tool devised in the context of T4.1 will periodically

communicate the results of the application of methodologies for self-checking of HW/SW

failures through REST API. The output in case of self-tests for detecting HW failures will

be a Boolean result (true or false value according to the result of detection) while the

checks for SW failures will take in input the data flow and a signature of SW execution

from the use cases and will produce a JSON with the result which integrates mechanisms

for data acceptance.

A list of REST services for the self-checking tool is given in the Figure 11.

Figure 11– List of Rest Service for the Self- Checking Tool

3.3. Methods and Tools for Auditing ICT Ecosystems (WP5)

The methods and tool developed for auditing the ICT ecosystems focus on the evaluation

of interactions within an ecosystem by means of simulation and runtime monitoring

facilities. The auditing emulates and/or retrieves field usage data and provides useful

feedback about intended behaviour from predictive simulation (T5.1) and real behaviour

from a controlled environment or the real world (WP8). Features of this work package

include:

• Definition of the executable simulation models based on digital twins (DT)

technology according to use case specifications.

• Definition of the predictive simulations environment able to exploit the current

state of systems and system components (with particular focus on software

components) within the ecosystems so as to predict their behaviour in the future

based on digital twin execution. This includes the computation of the parameters

against which the behaviour of the ecosystem participants (systems or system

components) and their interacting entities within an ecosystem will be judged as

being trustworthy or not.

• Set up of the Definition of monitoring methodologies and tools detecting malicious

behaviours of ICT components within the ecosystems and assessing the validity

of the simulation models.

Page 25 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

• Set up of the runtime monitoring tool to identify which simulation parameters can

have a high and critical impact on the security properties of the (simulated)

ecosystem components. In particular the monitoring activity will focus on:

o Detection of suspicious interactions between ecosystem components,

such as hardware/software components of the ecosystems.

o Detection of behavioural changes as a response of changes in the

environmental and operational conditions.

o Identification of suspicious/malicious behaviours.

3.3.1. General Description

The Auditing component includes tree main sub-components as reported in Figure 12.

Figure 12 – Audit package description

A general description of the components is provided in the following subsections.

3.3.1.1. Predictive Simulation

This is in charge of setting up the predictive simulation environment based on digital

twins (DT) technology. The digital twins are abstract models representing the executable

abstractions of the ecosystem components (ICT systems, ICT system components such

as software components and actors) and their interactions. Linked predictive simulations

are used for the evaluation of the DT’ behaviour. In the linked predictive simulation, the

current state of the system is used to predict behaviour in the future.

For enabling detection of malicious behaviour hidden within software components, a

Domain Specific Language (DSL) that enables definition of control functions will be

developed.

The predictive simulation works in collaboration with the Monitoring Engine component.

In particular monitoring data are used for sensitive analysis useful to identify which

Page 26 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

simulation parameters have a high and critical impact on the security properties as well

as comparison between predicted behaviour and actual behaviour.

3.3.1.2. Runtime Monitoring

This is in charge of setting up and managing monitoring component. The Runtime

Monitoring is based on event messages.

In particular it enables the collection of specific events that flows during controlled

environment or real execution among the different entities (i.e., DT, sensors, ecosystem

components and so on) and infers one or more complex events about the runtime

execution (Complex Event Processing - CEP).

Complex events inference is based on a set of derived rules, i.e., "if-then-else" grammar

expressions that define sequences of attended or un-attended events patterns.

Thus, Runtime Monitoring includes a set of generic rules templates (a meta-rules) that

can be instantiated at runtime according to the scenario to be observed.

The events that trigger the execution of a rule are generated by a probe, i.e., a piece of

code injected in the entities to be observed during the runtime execution able to notify

the occurrence of the events to the Monitor Engine.

Specifically, the Runtime Monitoring is based on ActiveMQ messaging protocol3 , but

also exposes a REST interface. In this case REST messages are translated by the

Monitoring Engine into ActiveMQ messages.

3.3.1.3. WP5 Communication Manager

Communication Manager is the entity in charge of orchestrating communication within

the Auditing component. It is able to route the messages to/from the internal Auditing

component. It exposes all the interfaces of the Auditing component to the BIECO

Framework.

3.3.2. Actors

According to the Actor definition reported in this deliverable in WP5 there are no actors

interacting with the WP5 components.

3 https://activemq.apache.org/

https://activemq.apache.org/

Page 27 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

3.3.3. Interactions

An overview of the interactions between the tools provided by WP5 and the remaining

WPs of BIECO is presented in Figure 13.

Figure 13 - Overview of the interactions between WP5 and the remaining WPs.

A detailed description for each of the tools encompassed in WP5, including their inputs,

outputs and intended users is provided in Table 3.

Table 3 - Interaction mapping for WP5

Tool Functionality Lifecycle Inputs Outputs User

Predictive
simulation
[T5.1]

Perform
predictive
simulation
though
execution of
Digital Twins.
expressed in a
DSL

Runtime • Systems and system
components specification
Model of the system or
components.

• Outputs from the tools that
can be simulated to test (e.g.,
data to simulate an attack,
stress, boundary condition)
(Source WP6/WP8)

• Simulation tools from WP4,
WP6

• MUD files as input for
specifying allowed
interactions

• Sequence

of events
T5.2,
WP4,
WP8

Monitoring
Tool
[T5.2,
CNR]

1.Data logging

2) Complex
Event
processing
(CEP)

2.1) Functional
and non-
functional
properties
evaluation

2.2) Rule’s
violation
notification

Runtime:

1. predictive
simulation

2. controlled
environment

• Model of the expected
behaviour (BPMN,PetriNet or
equivalent model): the
sequence of events expected
or possible paths in terms of
sequences of events.
Functional and non- functional
properties to be monitored
 associated to the
expected behavioural path on
which they should be
respected. Can be expressed
using SLA.

• Boundaries/ thresholds for
events

• Monitoring
results

• Possible
link to T
6.4 to
record the
logs to the
Blockchain

WP4,
6

Page 28 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Tool Functionality Lifecycle Inputs Outputs User

• MUD files as input for
specifying allowed
interactions

3.3.4. Planned Interfaces

The Runtime Monitoring will provide REST interfaces for enabling interaction within the

BIECO platform. In the figures below first version of the exposed REST interfaces is

proposed:

Figure 14- Runtime Monitoring Interfaces (a)

Figure 15-Runtime Monitoring Interface(b)

Page 29 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

3.4. Risk Analysis and Mitigation Strategies (WP6)

The methodology and supporting tools devised for analysing the risks in the ICT supply

chain are focused on identifying, assessing, and mitigating threats since the early

prototyping of a system.

The activities of this WP include:

1. Modelling of an ICT system and its architecture, starting from the identification of

its main assets, components, and interfaces.

2. Identification of threats, attack patterns, weaknesses and vulnerabilities that

apply to each asset and interface, including not only cyber threats, but also

physical and cyber-physical ones that could emerge due to the interaction of the

system with its environment.

3. Computation of severity of impact of the threats.

4. Determination of a likelihood of occurrence of the threats.

5. Derivation of a resulting risk for each threat.

6. Determination of attack paths by linking one or more related threats.

7. Simulation of behaviour and interactions between components when attacks are

exploited.

8. Definition of countermeasures and controls to mitigate the identified risks.

9. Design of security, privacy and accountability measures.

3.4.1. General Description

The methods leverage three main tools, which are described in the following

subsections.

3.4.1.1. Blockly4SoS

Blockly4SoS, output of the AMADEOS project (FP7-ICT-610535)[1], is a tool for

modelling, validating and simulating Cyber-Physical System-of-Systems that leverages

Google Blockly library. With the tool, the behaviour of each block can be modelled and

simulated in a python environment, following the interactions described in a sequence

diagram. Blockly4SoS, by integrating a System-of-System (SoS) SysMLprofile is aimed

to provide a simple and intuitive interface to model a SoS with minimal training to the

designer.

In the context of BIECO, and in particular within Task T6.1, the tool is first being

refactored in order to allow the user to create new meta-models, that might better fit on

their interests and on the application domain of a specific ICT system. The meta-models

are abstractions that can be instantiated in multiple models and that are continuously

validated by construction.

The tool will then be extended with new features that will enable threat modelling, risk

assessment, and visual representation of attack paths. In addition, it will be investigated

the possibility to generate with the tool an extended version of the MUD file for

specification of behaviour of components.

Task T6.2 will then apply the extended functionalities of Blockly4SoS to model the use

case systems, and in particular their threats, enabling the analysis of attack paths and

the rating of risks according to a risk assessment process derived from the reference

standards.

Page 30 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

3.4.1.2. SafeTbox

SafeTBox [2] is a tool that supports engineers in the assessment process of a given

system’s safety. During the development of safety-critical systems it is essential to

guarantee the functional safety. In the process of assuring safety, different analyses and

development artifacts must be created according to various standard specifications such

as: IEC 61508, ISO 26262, ISO 13849. As system complexity evolves, important system

properties such as maintainability and traceability need to be guaranteed in order to

avoid problems linked to efficiency and quality, which in the best case only costs money,

but in the worst case can cost human lives and an ultimate loss of trust in the systems

and their provided services.

Through model-based systems and safety engineering techniques, the common

activities necessary in the context of systematic safety engineering, such as hazard

analysis and risk assessment, safety analysis and development of safety concepts

including mitigation strategies and the synthesis of a safety case are integrated with

systems engineering techniques. For this, SafeTbox offers a modelling technique for the

specification of the system architecture that permits assigning failure models directly to

system artifacts, guaranteeing traceability. In addition to linking failure models and

architecture, SafeTbox permits the creation of dynamic links between all development

artifacts. These links make it possible to easily find referenced elements as well as to

navigate to these. The modelling techniques integrated in SafeTbox have been

developed in accordance with the concept of modularization (Component Fault Trees,

system components and system functions) in order to support easy replacement of

components, increase of maintainability, and efficient reuse of systems or system

components in new contexts.

As part of the work provided over the course of BIECO, IESE will enhance safeTbox’s

interface, to support increased interoperability with the other BIECO tools. The

enhancement will be centred around the provision of web-based APIs to other tools,

enabling access to the tool’s models.

3.4.1.3. Blockchain-based Accountability

Blockchain-based Accountability will be the new tool dedicated to achieving non-

reputability of audit logs. Due to the use of blockchain technology, it would be possible

to detect changes in audit logs which happened after the original log had been stored

and secured with blockchain hash. Detailed architecture and used technology will be

prepared within task T6.4. Initially, we assume usage of the Ethereum-based hash

codes. After calculating hash code using SHA-2 or SHA-3 algorithm for a given log file

revision, the hash code will be stored in Ethereum, with the given date and timestamp.

Thanks to that it will be possible to detect any changes in the log file which happened

after generating and storing the hash in the Ethereum ledger. The hash code stored in

the Ethereum ledger should be the same as the one calculated on the actual file.

Differences mean that a log file has been tampered with after storing the hash code in

the Ethereum ledger.

The tool will work according to the flow presented below:

1. The audit file is generated and stored (e.g., on the local file system).

2. The Blockchain-based Accountability calculates the hash code for this file.

3. The hash code is sent to Ethereum network with a given date and timestamp.

Page 31 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Thanks to that, even in the case of an attacker obtaining the super user privileges on the

given server, it would not be possible to modify log files, e.g., by removing some

operations in an unnoticeable way. The change in the log file will change the hash of the

file and cause a difference between the actual hash and the hash stored in the Ethereum

ledger.

3.4.2. Actors

Possible actors are companies and personnel which, adopting the methodologies and

interacting with the software tools object of this WP, may perform risk analysis of their

own system or of a system owned by a third party (i.e., a company providing assessment

services).

3.4.3. Interactions

In Figure 16, a summary of the main interactions between WP6 and the remaining WPs
of BIECO is provided.

Figure 16 - Overview of the interactions between WP6 and the remaining WPs.

A detailed description for each of the tools encompassed in WP6, including their inputs,

outputs and intended users is provided in Table 4.

Table 4 - Interaction mapping for WP6

Tool Functionality Lifecycle Inputs Outputs User

Blockly4SoS
[T6.1, T6.2
RES]

Model-based

threat and

risk analysis

of systems.

Design
time

• WP2 Architecture

of the system within

the use cases

• Original MUD files

• WP5 runtime

monitoring and

simulations outputs

• Model of a system in
a standard format
(e.g., Ecore)

• Prioritized list of
threats (by risk)

• Attack-Tree like
representation

• Extended MUD file

WP5,

WP7,

Use
cases

Page 32 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Tool Functionality Lifecycle Inputs Outputs User

safeTBox
(T6.3, IESE)

Analysis of
the
architecture
of the
systems

Design
time

• WP2 Architecture
of the system within
the use case(s)

• WP5 runtime
monitoring and
simulations outputs

• Reports with
Diagrams of the
systems analysed

• CVS files and other
formats upon
request, diagrams etc

WP4,

WP5

Accountability
through
Blockchain
(ATB)
[T6.4, 7B]

Traceability /
integrity /
trust of
auditing logs

Runtime • Results of the
evaluation from
WP7

• Audit log files

defined from use

case applications.

Non repudiable
blockchain (Ethereum)
based registry with the
hashes of audit entries.

Use
cases,
WP8

3.4.4. Planned Interfaces

3.4.7.1. Blockly4SoS

The Blockly4SoS tool will be able to interact with the BIECO architecture through REST

APIs, providing a well-defined interface to be called by the BIECO middleware or in

general by other tools. In addition, the Blockly4SoS tool will be able to call specific

RESTful Web Services exposed by the BIECO middleware/tools. An initial list of the

planned REST services is given below (Figure 17).

Figure 17 - Blockly4SoS Planned Interfaces

3.4.7.2. safeTBox

The safeTbox tool will provide access to its system, safety, and security analysis models

both during system development, as well as during runtime, via a RESTful API, optionally

accessible via HTTPS. The mentioned API will be developed as part of BIECO work

contributed by IESE. Mitigation strategy models will be available in the form of system

(safety and/or security) requirements during development. At runtime, mitigation

strategies will be available in the form of executable models, referred to as Conditional

Safety Certificates (ConSerts)[3], which enable dynamic reconfiguration of the system,

based on monitoring evidence (collected in part via predictive simulation as described in

Page 33 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

WP5), as well as contract-based service information collected from collaborating

systems. The following options will be initially available as described in Figure 18:

Figure 18 - safeTBox Planned Interfaces

3.4.7.3. Accountability Through Blockchain

The Accountability Through Blockchain (ATB) tool will offer an API available over a

secured HTTP channel. The security of the channel will be implemented using TLS with

mutual authentication (also known as mutual TLS – mTLS). This will ensure that clients

are able to verify that the hashes they store, and retrieve are handled by the expected

server and the server will be able to verify the origin of the requests (especially for

purposes of storing). The ATB functionality will be available via two methods (names and

details are subject to change):

1. RegisterFileHash – which receives the filename and the hash and stores the

tuple, along with the client’s identity, securely in the blockchain.

2. RetrieveFileHash – which receives the filename and desired identity, and returns

the hash stored in the blockchain for that tuple.

The first method will be available for clients identified as hosts maintaining logs, the

second by clients identified as audit sources, possibly being other parts of the BIECO

framework but not limited to them.

Page 34 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

4. The BIECO Architecture (1st Draft)

This section addresses the first draft of the design and specification of the overall BIECO

architecture. To this end, the architecture is logically split into two main phases of the

ICT lifecycle, namely regarding design time and runtime.

This division is largely inspired by the Reference Architectural Model for Industry 4.0

(RAMI 4.0) supported by the European Commission[4].

In this sense, an initial effort to bridge the concepts of BIECO’s architecture to the RAMI

reference model [5] is carried out here, which will be later revised and further detailed in

the final version of the architecture due in M18.

The business layer ensures the integrity of the value stream, including for instance legal

and regulatory conditions or requirements. In BIECO’s case these are driven by the use

cases and security certification bodies. The functional layer embodies the formal

description of functions and horizontal integration platforms, which in this case consist in

each of the tools depicted in the application layer later discussed in the upcoming

subsections, as well as BIECO’s digital integration platform represented as the

interoperability middleware. The information layer further ensures this interoperability,

addressing the common representation of data and its persistence, represented in

BIECO by the Data Management component. Data exchange is accounted for in

communication layer, following the commonly adopted format and protocols. This will be

addressed in BIECO within the middleware in the form of different interaction schemes,

one following a publish/subscribe pattern (e.g., MQTT), the other a service-oriented

approach (e.g., REST) through well-defined interfaces. The integration layer deals with

digitalization and provision of information on the assets, which in this case could be

represented by dashboards and monitoring probes. Finally, the asset layer represents

physical components, documents, code, or even human stakeholders. For BIECO, this

Figure 19 – Adaptation of RAMI4.0 to the BIECO context

Page 35 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

can be regarded as for instance the MUD files, source code to be assessed and other

elements within the controlled environment.

Similarly to RAMI 4.0, BIECO’s architecture contemplates the full ICT software lifecycle

for consistent data management, security assurance and continuous improvement

across the different phases, with each being thoroughly described in Sections 4.1 and

4.2. Following this, Section 4.3 covers the link between these two phases along with their

interdependencies within the context of the BIECO framework.

4.1. Design Time View

Design time is understood in the frame of BIECO project as the software lifecycle phase

in which the product is designed, developed, implemented, verified, and even certified,

before its release to the market. At the end of these processes, the product is intended

to be ready for its usage and validated in terms of functionality and security.

The architecture for the design phase is provided in Figure 20. It encompasses the

application layer, where BIECO’s main services are included, the data management

layer for persistence of historical data, the integration middleware and the controlled

environment being assessed.

Figure 20 - BIECO's Design Phase Architecture

BIECO project will address the validation of the product security adapting well known

standards and approaches such as ARMOUR project[6], ETSI EG 203 25 or ISO 27001,

to the needs identified within the software supply chain. In particular, BIECO will consider

the following processes:

• Context establishment: As a starting point, BIECO will consider the best

practices, regulation, recommendations, and existing vulnerabilities to create a

security profile against which the product should be validated.

• Vulnerability assessment: Taking into account the existing vulnerabilities from the

context establishment, it will aim at identifying known vulnerabilities in the source

code and analysing their possible impact in the own software or other related

modules.

Page 36 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

• Modelling: It serves to model the system, its complex structure, and interfaces,

with the aim of identifying since the early prototyping stage, which are the

weakest components, and of representing the paths and possible interactions

when attacks are exploited.

• Security testing: The security evaluation is meant to be objective, based on

empirical data coming from testing. In this sense, the previous steps of context

establishment and vulnerability assessment will guide the definition of the tests.

For automation purposes, BIECO will follow a Model Based Testing (MBT)

approach from the modelling phase, in which the system and tests are designed

at a high level and simulated to verify the compliance of the system with respect

to the profile.

• Security risk assessment: The outputs of the modelling and testing processes will

be used to measure the overall security level of the product.

• Labelling: The results of the evaluation will be communicated in a visual and

simple way to non-expert consumers, so it can be used to compare the security

of similar products.

• Treatment: As a result of the evaluation, and dealing with the security problems

encountered, BIECO will generate a behavioural profile. This profile will contain

a set of security policies that the product should follow to guarantee a secure

functioning.

In this sense, the behavioural profile and the label represents the link between the design

phase and the runtime phase, in addition to the vulnerability paths encountered during

the vulnerability assessment.

4.2. Runtime View

As the name entails, the runtime phase refers to the stage after launch/deployment of a

product which has been previously validated and certified. Within the context of BIECO

its purpose is to ensure that the product remains secure and within its expected

functional boundaries during usage by leveraging the different runtime tools developed

in WPs 3-6, deployed within BIECO’s digital platform implemented within WP8. An

overview of BIECO’s runtime architecture can be seen in Figure 21.

Figure 21 - BIECO's Runtime Architecture

Page 37 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Firstly, the deployed product is represented as the controlled environment. This can be

either abstracted as a simulation model or the actual real system or component, upon

which probes are injected for monitoring. Hence, this distinction is transparent for the

rest of the ecosystem, with communication happening in a commonly agreed format (i.e.,

standard interface) that instrumentalizes the controlled environment following a publish

and subscribe scheme.

This instrumentalization is achieved partially through the real-time monitoring tool, which

constantly monitors incoming events from this environment and provides reports on any

violations or deviations from the expected behaviour. Collected data can then be made

available to the rest of the BIECO ecosystem through the middleware, represented in

green in Figure 21. This layer acts as the main driver behind the interoperability,

integration and orchestration of BIECO’s components.

In order to support a wide array of use cases with different requirements, the middleware

is designed to support both event-driven messaging (for communications with runtime

constraints) and service-oriented approaches. For the former, appropriate data channels

can be made available to which the different system actors can publish or subscribe to.

For the latter, the middleware will take care of the complex service orchestration, while

providing a yellow-pages directory facilitator in order to make services discoverable

within the ecosystem. This can be useful for instance in case specific tools need to

access historical data or static files persisted in the data management component.

Finally, the application layer encompasses all of the tools that comprise BIECO’s runtime

environment and functionalities, as described in Section 3. These include self-checking

capabilities of SW and HW components, the digital twin, resilience mechanisms and the

adaptation of the controlled environment. Further detail regarding the information flow

and interactions between these components is provided in Section 4.3.

4.3. Bridging Design/Runtime

During the design phase, the software is designed, the functional and security

requirements are analysed, the software is implemented, tested, and it can even be

certified. However, all this valuable information is lost when the product is released into

the market if we do not establish a link between the design phase and the execution

phase. In this sense, BIECO establishes this link through not only the security certificate

(label) that is generated as a result of the security evaluation, but also through a

behavioural profile (see Figure 22).

Page 38 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Figure 22 – Connection between the different ICT lifecycle phases addressed in BIECO.

This behavioural profile contains what the software is expected to do during its normal

operation; with which devices will it be able to talk to or not, what ports it will use, what

protocols, etc. In itself, the behavioural profile is a kind of datasheet of its expected

behaviour.

BIECO will base the definition of the behavioural profile on the recently standardized

Manufacturer Usage Description (MUD). This standard defines a common structured

format (the MUD file) to define such behaviours in form of Access Control Lists (ACLs),

and it gives certain indications on how to manage the obtaining of MUD files when the

device is installed on the network where it will operate. The MUD uses high-level terms

that allow defining several behaviours in a compact way. This way, the MUD abstracts

from all the information that depends on the domain in which the device will be installed,

such as IP addresses. However, the expressiveness of the MUD model is limited to

certain network aspects (ports, Transmission Control Protocol (TCP) or User Datagram

Protocol (UDP) and network access control), and therefore, more fine-grained security

aspects or related to other protocol stack’s layers cannot be described. BIECO will

extend the MUD model to allow the definition of additional behaviours beyond firewall-

like behaviours, providing extra relevant information from the design phase to the

runtime.

The extended MUD profile will be generated from the security evaluation process that

takes part during the design phase, combining the information coming from the original

MUD file with the results of the testing and the risk assessment processes (Figure 23).

As a result, the extended MUD file will be published in the manufacturer’s server, so it

can be requested during the runtime.

Page 39 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

Figure 23 - Representation of the MUD perspective

During runtime, the MUD file can be obtained by the MUD manager from the

manufacturer’s server using the MUD URL provided by the device, as specified in the

MUD standard. BIECO will use the defined behaviours inside the MUD to monitor and

detect suspicious behaviours that can leverage to a hazard situation. If a suspicious

behaviour is detected that will lead to an attack or a malfunction of the system, a

mitigation will be applied, which may be based on the MUD specifications. If there is no

known way to mitigate this situation, the system could stop and require an update.

A possible future extension of this behaviour (beyond the initial scope of BIECO) would

be to link back to the design phase, enabling the system to autonomously request an

update to deal with the unforeseen hazard or vulnerability (represented by the flow in the

dashed line of Figure 22).

Finally, if the applied mitigation is inconsistent with the MUD specifications, it will mean

that the behavioural profile will need to be adapted, which can lead to a possible update

of the MUD by the manufacturer, closing the interaction cycle between the design phase

and runtime phase.

Page 40 of 41

Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

5. Conclusion

This deliverable presented the first draft of the design for the overall framework
architecture of BIECO, being one of the main artefacts of BIECO’s first agile cycle. It
represents the results that culminated from the discussions and work carried out during
the first six months of the project, serving as the guideline and reference point of
alignment for the developments and discussions within and between the various work
packages during this period.

Thus, a recap of the BIECO concept was provided, along with a full initial description of
the main development work packages, namely regarding WP3 through WP6. For this
purpose, a general description was presented for each WP, along with its interactions
within the BIECO ecosystem, main actors and planned interfaces. The remaining WPs,
WP7 and WP8, are not included as only the ecosystem’s tools are considered in this
scope, not methodologies (WP7) or integration/implementation efforts specific to the use
cases (WP8).

Using this as the foundation, the first draft of the architecture was defined, drawing
inspiration and an initial parallel to the RAMI 4.0. Consequently, the architecture was
designed to encompass the full ICT lifecycle from the design to the runtime phases, with
each being depicted with its own architectural view and each element mapped to the
respective work packages.

As future work, it is foreseen that the architecture will mature and be adapted as the
development of the various work packages progresses, which will be later documented
in the final deliverable of the architecture due on M18. Hence, the artefact (architecture
specifications) will be continuously updated and integrated following the agile
methodology. It is expected that the final deliverable will include the full specification of
the concrete interaction patterns for cybersecurity in ICT ecosystems contemplated
within the scope of BIECO, as well as the mapping for the instantiation to the use cases.

Page 41 of 41

 Deliverable 2.3: Overall Framework Architecture Design (1st Draft)

6. Reference

[1] A. Babu, S. Iacob, P. Lollini, and M. Mori, “AMADEOS framework and supporting
tools,” in Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016.

[2] S. Velasco, J. Reich, and M. Tchangou, “Interactive information zoom on
component fault trees,” in Lecture Notes in Informatics (LNI), Proceedings - Series
of the Gesellschaft fur Informatik (GI), 2018.

[3] D. Schneider and M. Trapp, “Conditional safety certificates in open systems,” in
ACM International Conference Proceeding Series, 2010.

[4] K. Schweichhart, “Reference Architectural Model Industrie 4.0 (RAMI 4.0) - An
Introduction,” Plattf. Ind. 4.0, 2016.

[5] Standardization Council Industrie 4.0, “Alignment Report for Reference
Architectural Model for Industrie 4 . 0 / Intelligent Manufacturing System
Architecture,” Fed. Minist. Econ. Aff. Energy Ger., 2018.

[6] G. Baldini, A. Skarmeta, E. Fourneret, R. Neisse, B. Legeard, and F. Le Gall,
“Security certification and labelling in Internet of Things,” in 2016 IEEE 3rd World
Forum on Internet of Things, WF-IoT 2016, 2017.

