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Abstract. Nowadays, companies are facing plenty of IT secure attacks and to 

guarantee safe, untroubled, and continuous functioning of their business, they 

should detect and forecast the volume of IT security vulnerabilities and be pre-

pared for future threats. The aim of this paper is to present a comparative study 

of the most important and promising methods for forecasting the ICT systems 

vulnerabilities.      
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1 Introduction  

Due to the exponential growing trend in ICT system vulnerabilities and cyber threats, 

security became more and more important. Therefore, the companies have become pre-

occupated with the prediction, forecasting and propagation of the vulnerabilities. 

A computer system vulnerability can be defined as a weakness within the system or 

network that might be taken advantage of, to generate damage or to permit attackers to 

exploit the network in some way. The vulnerabilities may appear because of unexpected 

intercommunications between distinct software programs, network components or 

weakness of an individual program. Vulnerabilities exist in every network, and it is 

impossible to find and to focus on all of them due to the highly complex structure of 

modern network architecture.  

Even though there are different approaches to cover the process of software vulner-

ability analysis and discovery, most of them are approximate solutions with lack of 

soundness or completeness, or even both [27]. In this sense the previous research lines 

focus on providing an improvement on some specific aspects of the process, as the 

precision, efficiency, or vulnerability coverage. 

In this paper we will focus on the forecasting the ITC systems vulnerabilities. The 

existing methods from the literature for forecasting ITC systems vulnerabilities can be 

classified in three categories: 

1. Time series analysis-based models: Autoregressive integrating moving aver-

age (ARIMA), Exponential Smoothing, etc. 
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2. Artificial intelligence-based models: Neural Networks, Support Vector Ma-

chine (SVM), Bayesian Network, k-Nearest Neighbor, etc. 

3. Statistical based models: Regression techniques, Linear Regression, Logistic 

Regression, Random Forest, Naïve Bayes, Decision Tree, Least Mean Square, 

Reliability Growth models, Statistical Code analysis, etc. 

 

For a comprehensive survey on forecasting ITC systems vulnerabilities, we refer to 

Yasasin et al. [6], Roumani et al. [12]. 

The aim of our paper is to present a comparative study of the most important and 

promising methods for forecasting ITC systems vulnerabilities. We describe six meth-

ods belonging to the first two categories of models. 

The remaining of our paper is organized as follows: in Section 2 we describe in detail 

the considered methods for forecasting ITC systems vulnerabilities and in Section 3 we 

present our conclusions and as well some future research directions.  

2 Methods of forecasting the ICT systems vulnerabilities  

2.1 Time series forecasting based models 

 

A time series is a series of data points indexed in time order and are usually plotted 

using run charts. Time series have several applications such as: economic forecasting, 

stock market analysis, inventory studies, weather forecasting, earthquake predictions, 

etc.  Time series analysis contains techniques for examining time series data in order to 

obtain relevant statistics and other features from the data. Time series forecasting makes 

use of a model to forecast future values based on previously noticed values. For more 

information on this topic, we refer to Hyndman and Athanosoupulos [13].  

Autoregressive integrating moving average (ARIMA) models   

ARIMA models are advanced statistical models and are considered to be the most gen-

eral models for forecasting time series that can be made stationary. ARIMA models 

give descriptions of the autocorrelations in the data [13] and not description of trend 

and seasonality as exponential smoothing methodologies do.  

A stationary time series is a time series whose statistical properties do not rely on 

the time at which the series is noticed, they remain constant over time. Time series with 

trends or seasonality are not stationary. If nonstationary data is used, the estimators 

don’t have the asymptotic normality and consistency properties, for the time series 

models. When an ARIMA model is constructed, the first step is to decide if the time 

series is stationary. If the series to be studied is not stationary it is transformed in order 

to become stationary. 

The ARIMA models include autoregressive terms (AR), moving average terms 

(MA) and differencing operations (Integrated). Autoregression means regression of the 

variable against itself. In an autoregression model, the value of the variable is forecast 

using a linear combination of its past values. An autoregressive model of order p, 

AR(p), for a time series y, where yt is the value of the variable at moment t, is described 
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as 𝑦𝑡 = 𝑐 +  𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡 , where εt is white noise. The pa-

rameters 𝜑1,  𝜑2, … , 𝜑𝑝  are the autocorrelation coefficients and they define the time 

series patterns. For p=1 the constraint for parameter 𝜑1 is −1 <  𝜑1 < 1 and for p=2 

the constraints for the parameters are 1 < 𝜑2 < 1,  𝜑1 + 𝜑2 < 1, 𝜑2 − 𝜑1 < 1.  
The moving average model MA of order q, MA(q), uses past forecast errors instead 

of using previously observed values of the forecast variable, 𝑦𝑡 = 𝑐 + 𝜀𝑡 +  𝜃1𝜀𝑡−1 +

𝜃2𝜀𝑡−2 + ⋯ +  𝜃𝑞𝜀𝑡−𝑞 .The parameters 𝜃1,  𝜃2, … , 𝜃𝑞  define the time series patterns. 

The constraints for these parameters are  −1 <  𝜃1 < 1 for p=1 and −1 < 𝜃2 <

1,  𝜃1 + 𝜃2 > −1, 𝜃1 − 𝜃2 < 1 for p=2. 

If the time series is non-stationary, differencing is a way to make it stationary. Dif-

ferencing means computing the differences between consecutive observations in the 

non-stationary series and the differenced series terms  𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−1  describe the 

change between two consecutive terms in the original series.  

If the differenced data is not stationary, then we can repeat the differentiation. The 

data can be differenced again to obtain a stationary series: 𝑦𝑡
" = 𝑦′

𝑡
− 𝑦′

𝑡−1
= 𝑦𝑡 −

2𝑡𝑡−1 + 𝑦𝑡−2 . The process of differentiation can be repeated until the series become 

stationary. Usually, first or second differentiation is enough to build good models. 

A general ARIMA (p, d, q) model is obtained combining differencing with auto-

regression and moving average model, and p is the number of autoregressive terms, d 

is the number of differences necessary for stationarity and q is the number of lagged 

forecast errors [13]: 𝑦′𝑡 = 𝑐 +  𝜑1𝑦′𝑡−1 + ⋯ +  𝜑𝑝𝑦′𝑡−𝑝 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ +

 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡. 

Exponential Smoothing  

Exponential smoothing is a popular forecasting method that aims to produce a smooth 

Time Series. The method was proposed by Brown [14], Holt [15] and Winter [16]. Its 

main feature is that it assigns higher weight in forecasting to recent observations than 

to older observations. Unlike the ARIMA models, exponential smoothing model do not 

require the time series to be stationary.  

Single exponential smoothing (SES) is the simplest of the exponential smoothing 

methods and is applied to data series with no trend or seasonality. The equation in this 

case is 𝑦𝑡 =  𝛼𝑦𝑡−1 + (1 − 𝛼)𝑦𝑡 − 2, where 0 ≤ 𝛼 ≤ 1 is the smoothing parameter. 

Double exponential smoothing (DES) proposed by Holt [15] is an extension of SES 

and is used to forecast data series with trend. The smoothing equations in this case are  

𝐿𝑡 =  𝛼𝑦𝑡 + (1 − 𝛼)(𝐿𝑡−1 + 𝑏𝑡−1), 𝑏𝑡 = 𝛾(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛾)𝑏𝑡−1, where α, γ are 

the smoothing parameters for the level and for the trend, 0 ≤ 𝛼, 𝛾 ≤ 1, 𝐿𝑡  is the level 

of the series at time t and 𝑏𝑡 is the trend of the series at time t. The forecast equation is 

𝑦𝑡+1 =   𝐿𝑡 + 𝑏𝑡, meaning that the 1 step ahead forecast is the sum between the esti-

mated level at time t and the trend value at time t. 

To also capture the seasonality, Holt and Winters [1] proposed a model with smooth-

ing equations for level, for trend and for seasonality. We present next the Holt-Winters 

additive exponential smoothing model that was proposed by Roumani et al. [12] for 

vulnerability analysis and forecasting. The equations that describe the Holt-Winters ad-

ditive exponential smoothing model are: 
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𝐿𝑡 =  α(𝑌𝑡 −  𝑆𝑡−𝑠) + (1 −  α)(𝐿𝑡−1 −  𝑏𝑡−1)  (1) 

𝑏𝑡 =  𝛾(𝐿𝑡 −  𝐿𝑡−1) + (1 −  𝛾)𝑏𝑡−1 (2) 

𝑆𝑡 =  𝛿(𝑌𝑡 − 𝐿𝑡) + (1 −  𝛿) 𝑆𝑡−𝑠 (3) 

𝐹𝑡+𝑚 =  𝐿𝑡 + 𝑚𝑏𝑡 + 𝑆𝑡+𝑚−𝑠 (4) 

where α, γ and δ are the smoothing parameters, 𝑌𝑡 represents the number of vulnerabil-

ities at time t calculated in months, m represents the number of future periods to predict 

(12 months), s represents the length of the seasonality (12 months), 𝐿𝑡  represents the 

level of the series at time t, 𝑏𝑡 represents the tendency of the series at time t and 𝑆𝑡 is 

the seasonal component at the time t.  

The first equation (level) describes the relative magnitude of the number of vulner-

abilities, the second one (trend) describes the gradual upward or downward long-term 

movement of the number of vulnerabilities, the third one (seasonality) describes the 

short-term regular variations of the number of vulnerabilities at regular intervals and 

finally the last equation describes the vulnerability for a given period m.  

2.2 Artificial intelligence-based models 

The foundations of artificial neural networks (ANNs) were established in 1943 by War-

ren McCulloch and Walter Pitts. They described in [1] how neurons might work. The 

back propagation algorithm (BP) for multilayer ANNs was proposed by Rummelhart 

et al. in 1986 [2].   

ANNs are inspired by the operation of the human brain. They are made up of a set 

of interconnected components in several layers, called neurons or perceptrons. The in-

puts of each neuron are connected to the outputs of neurons in the previous layer. The 

neurons in the first layer get the inputs of the model, and the outputs of the neurons in 

the final layer provide the result. The structure of a neuron is presented in Fig. 1.a, 

where 𝑥𝑖 , 𝑖 = 1, 𝑛 are the inputs, 𝑤𝑖 , 𝑖 = 1, 𝑛 are the weights associated to the inputs, 𝑏 

is the bias, 𝑓 is the activation function and 𝑦 is the output. The neuron operation is 

defined by relation (5). It calculates a weighted sum of the inputs and bias, and then it 

passes it through the activation function to determine the output. The most widely used 

activation functions are Identity (6), Sigmoid (7), ReLu (8), Tanh (9) and Softplus (10).  

𝑦 = 𝑓(𝑏 + ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 ) (5) 

𝑓1(𝑥) = 𝑥 (6) 

𝑓2(𝑥) =
1

1+𝑒−𝑥 (7) 

𝑓3(𝑥) = max (0, 𝑥) (8) 

𝑓4(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (9) 

𝑓5(𝑥) = ln (1 + 𝑒𝑥)              (10) 
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Multilayer Perceptron Models 

A Multilayer Perceptron (MLP) model with an input layer, a hidden layer, and an output 

layer is shown in Fig. 1.b. The outputs of the model are given by relations (11) and 

(12), where 𝑓  is the activation function of the output layer neurons and 𝑔 is the activa-

tion function of the hidden layer neurons. A more compact representation of this model 

is given in Fig. 2.a, where 𝑥 and 𝑦 represent the input and the output vectors, 𝑊and 𝑉 

are the hidden and the output layers weights matrices, 𝑏ℎand 𝑏𝑜 are the hidden and the 

output layers bias vectors, ℎ is the hidden layer output vector, and 𝑔 and 𝑓 are the 

activation functions of the hidden and the output layers. The output is given by relations 

(13) and (14), that are compact representations of (11) and (12). The model can be 

extended by adding more hidden layers. Training such a model involves adjusting the 

weights and biases in such a way as to provide an output as close as possible to the 

correct value for each input. The most widely used methods of training ANNs are based 

on the Gradient Descent – Back Propagation (GD-BP) algorithms [3] or genetic algo-

rithms. 

 

 

 
a.) b.) 

Fig. 1. a.) Perceptron structure, b.) MLP model with one hidden layer. 

h𝑗 = 𝑔(𝑏𝑗
ℎ + ∑ 𝑊𝑖𝑗𝑥𝑖

𝑛
𝑖=1 ), 𝑗 = 1, … , 𝑚  (11) ℎ = 𝑔(𝑏ℎ + 𝑥𝑊) (13) 

y𝑘 = 𝑓(𝑏𝑘
𝑜 + ∑ 𝑉𝑗𝑘ℎ𝑗

𝑚
𝑗=1 ), 𝑘 = 1, … 𝑝  (12) 𝑦 = 𝑓(𝑏𝑜 + ℎ𝑉) (14) 

Recurrent Neural Networks  

Recurrent Neural Nets RNNs were designed to process sequential data. They can mem-

orize previous states and use them to determine the current state. The structure of a 

RNN is shown in Fig. 2.b. Its state is composed by the hidden layer output vector ℎ. 

The state vector ℎ calculated at step 𝑡 − 1 is processed as an entry at step 𝑡. The total 

number of trainable parameters does not depend on the number of steps, but only on 

the dimensions of the layers. Thus, for the network structure in Fig. 2.b, the total num-

ber of parameters is (𝑛 + 𝑚 + 1)𝑚 + (𝑚 + 1)𝑝, where 𝑛 is the size of the input vector 

𝑥, 𝑚 is the size of the status vector ℎ, and 𝑝 is the size of the output vector 𝑦. The 
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outputs at step 𝑡 are given by relations (15) and (16). They depend not only on the 

entries at step 𝑡, but on their entire evolution, starting from the initial step. 

 

 

a.) b.) 

Fig. 2. a.) Compact representation of the MLP model with one hidden layer, b.) RNN structure. 

ℎ𝑡 = 𝑔(𝑏ℎ + 𝑥𝑡U + ℎ𝑡−1W) (15) 𝑦𝑡 = 𝑓(𝑏𝑜 + ℎ𝑡V) (16) 

Long Short-Term Memory Models 

The main disadvantage of RNNs lies in the fact that they cannot learn long sequences, 

because of the vanishing gradient problem [3]. This problem occurs in deep networks 

with many hidden layers. RNNs do not have long-term memory. The Long Short-Term 

Memory (LSTM) models have been projected to solve this problem. The structure of a 

LSTM cell is presented in Fig. 3, where 𝑓 is the forget gate, 𝑖 is the input gate, 𝑔 is the 

input updater, 𝑂 is the output gate, 𝐶𝑡 is the current cell state and ℎ is the hidden state. 

Its operation is defined by relations (17) – (22). 

 

Fig. 3. LSTM cell structure. 

𝑓 = 𝜎(𝑥𝑡𝑈𝑓 + ℎ𝑡−1𝑊𝑓) (17) 

𝑖 = 𝜎(𝑥𝑡𝑈𝑖 + ℎ𝑡−1𝑊𝑖) (18) 

𝑔 = tanh (𝑥𝑡𝑈𝑔 + ℎ𝑡−1𝑊𝑔) (19) 

𝐶𝑡 = 𝐶𝑡−1 ∘ 𝑓 + 𝑔 ∘ 𝑖 (20) 

𝑂 = 𝜎(𝑥𝑡𝑈𝑜 + ℎ𝑡−1𝑊𝑜) (21) 

ℎ𝑡 = tanh (𝐶𝑡) ∘ 𝑂 (22) 
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Convolutional Neural Networks 

The MLP models contain several intermediate layers that are fully connected with the 

adjacent layers. Convolutional Neural Networks (CNN) are different in this respect. 

After the input layer follow several layers of different types [3]. The first type of layer 

is the convolution layer, that applies convolution operations, using a set of small filters, 

that contain weights trained to capture different features. The output of each filter is an 

activation map. The output of a convolution layer is composed of all the activation maps 

created by its filters. A convolution layer is sparsely connected with the previous layer. 

Another type of layer in a CNN is the pooling layer, also sparsely connected with 

the previous layer. It has the purpose to downsample data, based on different strategies, 

such as: max poling designed to catch the peaks, or average pooling. 

The third type of layer in a CNN is the dense layer, that is fully connected with the 

previous layers. This type of layer is similar with the hidden layers of the MLP model. 

The dense layers are usually placed at the end of the CNN model, before the output 

layer. 

The common way of training a CNN is the GD-BP algorithm. 

2.3 ICT vulnerabilities forecasting 

Roumani et al. [12] used time series analysis to build predictive models for five well-

known browsers: Chrome, Firefox, Internet Explorer, Safari and Opera, on a collection 

of vulnerability datasets from National Vulnerability Database (NVD) and concluded 

that ARIMA is the best fit vulnerability model.  

Yasasin et al. [6] used different methodologies to predict IT vulnerabilities of differ-

ent system and software packages (operating systems, browsers, and office solutions). 

The conclusion is that the ARIMA method achieved low forecasting errors for all types 

of software that have been investigated and therefore it is recommended for forecasting 

software vulnerabilities. 

An ANN-based time series forecasting model uses observations at previous times as 

inputs, and the outputs of the model represent the forecast values. Neural networks have 

multiple advantages over classic models. They can produce quality forecasts, even if 

they work with the original data. There is no need to eliminate trend and seasonality. 

The model can be easily generalized to perform multivariate forecasts, by increasing 

the number of inputs. ANN can implicitly detect complex nonlinear relationships be-

tween dependent and independent variables.  

The main disadvantage of ANN lies in the fact that their training is a complex pro-

cess that requires a lot of processing power, and they can be overfitted.   

Feed Forward-ANNs have been successfully used both to forecast software systems 

vulnerabilities and in other forecasting applications. The experimental data needed to 

train the vulnerability forecasting models are taken from the National Vulnerability Da-

tabase (NVD) [11] or other public sources. 

Most of the proposed models contain a single hidden layer of neurons [4, 5, 6, 7], 

but there are also variants with several intermediate layers [8]. There are several pro-

posals that present optimization strategies to find the best dimension of the input and 

intermediary layers [4, 5].   
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The majority of the proposed models are trained by the Gradient Descent and the 

Back Propagation (GD-BP) algorithms [5, 7, 9], but there are also some proposals of 

evolutionary computation training [8, 9] and hybrid training algorithms that use an 

adaptive differential evolution algorithm [10] or a particle swarm optimization algo-

rithm [9] in combination with GD-BP. These proposals speculate that evolutionary 

computational techniques are making significant progress in the first part of the opti-

mization process and manage better to avoid local minima than GD-BP. When evolu-

tion begins to stagnate, they switch to GD-BP, which reaches the optimal solution 

faster. 

Most of the proposed models use the sigmoid activation function [6, 7] or the tanh 

activation function [5] in the hidden layer, but there are other proposals, such as the 

sinusoidal function [8]. Almost all proposed models use the identity activation function 

in the output layer, but there are also solutions based on the modified sigmoid activation 

function [7]. 

The proposed forecasting models are usually compared with other known techniques 

(Exponential smoothing, Croston's methodology, ARIMA, Support Vector Machines, 

Vulnerability Discovery Models) in terms of forecast accuracy and forecast bias. Most 

of the models trained by GD-BP are outperformed by the models they are compared 

with [4, 6], but there are also exceptions [5]. The models trained with evolutionary 

computation or hybrid algorithms outperform the other models [8, 9, 10]. 

The best forecast models proposed recently have LSTM cells in their composition 

and are trained by BP-GD. A comparative analysis of several types of deep neural net-

works is presented in [23], and it is concluded that the Convolutional Neural Networks 

(CNN), MLP, RNN and LSTM models perform well for one step forecasting and less 

satisfactory for multiple steps forecasting. Another comparative analysis of different 

forecasting models is presented in [25]. The bottom line is that LSTM models give the 

best forecasts, but CNN models are the most robust to changes in configuration param-

eters. Various forecast models are compared with LSTM models in [18, 21 and 22]. In 

general LSTM offers the best performance, except for the [18] work, in which CNN 

and shallow ANN models are found to be better. Different hybrid CNN – LSTM models 

are proposed in [17, 19, 20, 24, 26]. They outperform the other models they are com-

pared with (MLP, CNN, RNN, LSTM, ARIMA) in all works, even though some authors 

report longer training times. 

3 Conclusions 

In this article we have presented some of the forecasting techniques that have been 

proven to be effective in the case of software vulnerabilities. In order to have an over-

view of the latest results in the field, we have not strictly limited our study to software 

vulnerabilities, but we have also considered other applications for forecasting natural 

phenomena. It is difficult to draw a conclusion because the analyzed works used differ-

ent data sets. An objective conclusion could be drawn only if all models were tested 

under the same conditions, on the same data sets. Most authors have implemented sev-

eral different models to compare their effectiveness, or to compare their proposed 
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methods with the existing ones. However, it is known that the performance of a model 

depends on the parameters of the model, how it is optimized, how the experimental data 

is preprocessed, how the training is done, etc. 

Overcoming all these uncertainties, based on the results analyzed we can conclude 

that the latest CNN – LTSM hybrid forecasting models seem to be the most accurate, 

but they require more complex training. However, the performance of this models must 

also be proven in the case of software vulnerabilities forecasting. There are several 

studies that recommend the classic Croston and ARIMA models, as they consistently 

obtain quality predictions. Several studies show that superior performance can be 

achieved by changing the GD-BP with other algorithms, such as evolutionary, hybrid, 

or other types, for training the ANN models. Another conclusion is that CNN, MLP, 

RNN and LSTM models perform well for one step forecasting and less satisfactory for 

multiple steps forecasting.  

Starting from this study, we aim to test the efficiency of hybrid ANN models for 

forecasting software vulnerabilities, and to use other training techniques, different from 

GD – BP, that have proven their effectiveness for the FF-ANN models. 
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