

Deliverable 3.1

Report on the State of the Art of Vulnerability

Management

Technical References

Document Version : 1

Submission Date : 27/02/2021

Dissemination Level

Contribution to

:

:

Public

WP3- Vulnerability Management

Document Owner : GRAD

File Name

Revision

:

:

Report of the State of the Art of Vulnerability

Management

3.0

Project Acronym : BIECO

Project Title : Building Trust in Ecosystem and Ecosystem Components

Grant Agreement n. : 952702

Call : H2020-SU-ICT-2018-2020

Project Duration : 36 months, from 01/09/2020 to 31/08/2023

Website : https://www.bieco.org

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Revision History

REVISION DATE
INVOLVED

PARTNERS
DESCRIPTION

0.0 09/11/2020 GRAD Table of Contents

0.1 08/12/2020 GRAD
Contributions to Vulnerability Detection and

Exploitability Forecasting

0.2 10/12/2020 UMU Introduction

03 20/12/2020 UMU Contributions to Section 2

04 04/01/2021 UMU MUD Contribution

05 06/01/2021 UTC Contributions to Section 2 and 4

06 10/01/2021 7B Contribution to Section 4

07 22/01/2021 GRAD Contributions to Subsection 3.4 and Section 5

08 11/02/2021 GRAD Contributions to Executive Summary and Conclusions

1.0 16/02/2021 GRAD
Review by Internal Reviewer and Work Package leader

Review, Lilian Adkinson

1.1 19.02.2021 GRAD Implementing Reviewers Suggestion and Update

2.0 20.02.2021 IESE Review by External Reviewer, Emilia Cioroaica

2.1 23/02/2021 UNI Review by External Reviewer, Sanaz Nikghadam

2.2 24/02/2021 GRAD Implementing Reviewers Suggestion and Update

2.4 25.02.2021 UNI Review by Coordinator, Jose Barata

3.0 27.02.2021 UNI Final Version (3th)

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

List of Contributors

Deliverable Creator(s):Nora M. Villanueva (GRAD), Eva Sotos (GRAD), Borja Pintos

(GRAD), Javier Yépez (GRAD), Sara Matheu (UMU), Ovidiu Cosma (UTC), Ioana Zelina

(UTC), Mara Macelaru (UTC), Paweł Skrzypek (7B), Radosław Piliszek (7B)

Reviewer: Lilian Adkinson (GRAD), Emilia Cioroaica (IESE), Sanaz Nikghadam-Hojjat(UNI),

José Barata (UNI)

Disclaimer: The information in this document is subject to change without notice.

Company or product names mentioned in this document may be trademarks or registered

trademarks of their respective companies.

All rights reserved.

The document is proprietary of the BIECO consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written agreement

of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not liable for

any use that may be made of the information contained herein.

BIECO project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 952702.

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Acronyms

Acronym Term

ABOD Angle-based Outlier Detection

ACL Access Control List

ACO Ant Colony Optimization

AI Artificial Intelligence

AR Autoregressive

ARCH Autoregressive Conditional Heteroskedasticity

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

AST Abstract Syntax Tree

AVR Attribute Vulnerability Ratio

BFS Breadth First Search

CFG Control Flow Graph

CIA Change Impact Analysis

CIA (triad) Confidentiality, Integrity and Availability

CNN Convolutional Neural Network

CPE Common Platform Enumeration

CSRF Cross-Site Request Forgery

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DBSCAN Density-Based Spatial Clustering of Applications with Noire

EDB Exploit Database Archive

ENISA European Union Cyber Security Agency

EPDG Enhanced Procedure Dependence Graphs

EPSS Exploit Prediction Scoring System

FL Federated Learning

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

GARCH Generalized Autoregressive Conditional Heteroskedasticity

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IVS Input Validation and Scalable attributes

LOF Local Outlier Factor

LSTM Long Short-Term Memory

MA Moving Average

ML Machine Learning

MSPL Medium-level Security Policy Language

MUD Manufacturer Usage Description

N-BEATS Neural basis expansion analysis for interpretable time series forecasting

NIST National Institute of Standards and Technology

NLP Natural Language Processing

NTBD National Business Behaviour Database

NVD National Vulnerability Database

PoC Proof of Concepts

QoS Quality of Service

RCE Remote Code Execution

RNN Recurrent Neural Network

SARIMA Seasonal Autoregressive Integrated Moving Average

SDN Software Defined Networks

SFM State-Frequency Memory

SOD Subspace Outlier Degree

SRAM Security risk analysis model

STAR Smooth Threshold Autoregressive

SVM Support Vector Machine

SUIT Internet of Things Software Update

TAR Threshold Autoregressive

VND Vulnerability Notes Database

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

VPM Vulnerability Prediction Models

XACML eXtensible Access Control Markup Language

XSS cross-site scripting attacks

ZDI Zero Day Initiative

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Executive Summary

One of the main purposes of cybersecurity is to guarantee the properties of the CIA triad

(Confidentiality, Integrity, and Availability) [1], also known as the CIA triangle of data and

services (Figure 1). Confidentiality refers to the prevention of an information disclosure to

unauthorized entities or individuals; integrity implies that data cannot be modified without

detection, ensuring its correctness; and availability seeks to provide uninterrupted access to the

system by legitimate users, whenever it is required. Hence, CIA properties become an important

gear for information security. These properties are the security requirements that a computer

system should accomplish, and they are directly linked to each other, so a balance between them

guarantees high levels of security and trust.

Figure 1 CIA triad standing for Confidentiality, Integrity and Availability.

As a consequence, a failure in any of these three properties can impact the rest of them, affecting

the trust of the user on the system. As an example, the lack of confidentiality can lead to a high

probability of integrity violation, and the modification of the integrity data can provoke

applications to stop working in a proper way, affecting availability. In particular, one of the main

issues we can face when it comes to the fulfilment of such properties is the existence of security

vulnerabilities. This leads their detection and analysis to be crucial for ensuring the security and

trustworthiness of the system.

More in particular, a security vulnerability is a weakness that can be exploited by an attacker in

order to compromise the confidentiality, availability or integrity of a system1. Nowadays, the

number of vulnerabilities disclosed are increasing every year2, and those that are present in

widely-used systems can cause severe economic, reputational and even societal harms. Therefore,

it is essential to identify these vulnerabilities on an early stage of the systems’ development life

cycle, and improve the assessment processes and tools that allow to detect, classify, evaluate and

mitigate vulnerabilities on an accurate manner.

As the first step of the vulnerability assessment process, the identification is critical. In this sense,

substantial research has been devoted to techniques that analyse source code in order to detect

and characterize security vulnerabilities [2], but also to evaluate how a vulnerability could

propagate to other elements of the software supply chain [e.g., 3, 4]. In BIECO project, the

vulnerability identification and characterization process will focus mainly on three topics:

1) Detection: it consists on the accurate identification of software vulnerabilities within a

source code. For this purpose, BIECO will explore the use of Machine Learning and data

mining techniques, such as anomaly detection-based techniques [e.g., 5, 6], vulnerable

code pattern recognition [e.g., 7, 8] and vulnerability prediction models [e.g., 9, 10].

1 https://cve.mitre.org/about/terminology.html
2 https://www.cvedetails.com/browse-by-date.php

about:blank
about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

2) Forecasting: it allows to make predictions of future data on time series domain, i.e.,

where data are collected at regular intervals over time (e.g., hourly, daily, monthly,

annually). In the context of BIECO, the idea is two-fold: i) forecasting the number of

vulnerabilities [e.g., 11, 12, 13] and ii) forecasting the period of time in which these

vulnerabilities could be exploited (e.g., within the next 12 months) [e.g., 14, 15].

3) Propagation: it offers an estimation of how a localized vulnerability can affect the rest

of the code. For this purpose, studies based on graph theory will be analysed [e.g., 16,

17], as well as optimization path algorithms such as Ant Colony Optimization (ACO) [18,

19]. Moreover, the applicability of the recent standard Manufacturer Usage Description

(MUD)3 will be also assessed.

In particular, this document provides a review on the current state of the art about vulnerabilities

assessment related to the three topics mentioned before (detection, forecasting and propagation).

The deliverable starts with an introduction to the concept of security vulnerabilities and continues

with a summary of the most representative standards in the field, as well as a compilation of

vulnerability datasets, including the NVD (National Vulnerability Database)4. The document

presents then a review of several state-of-the-art techniques for the assessment of software

vulnerabilities, including their identification, forecasting and propagation. Finally, some

conclusions are provided in order to summarize the most important reviewed topics.

Project Summary

Nowadays most of the ICT solutions developed by companies require the integration or

collaboration with other ICT components, which are typically developed by third parties. Even

though this kind of procedures are key in order to maintain productivity and competitiveness, the

fragmentation of the supply chain can pose a high risk regarding security, as in most of the cases

there is no way to verify if these other solutions have vulnerabilities or if they have been built

taking into account the best security practices.

In order to deal with these issues, it is important that companies make a change on their mindset,

assuming an “untrusted by default” position. According to a recent study only 29% of IT business

know that their ecosystem partners are compliant and resilient with regard to security. However,

cybersecurity attacks have a high economic impact and it is not enough to rely only on trust. ICT

components need to be able to provide verifiable guarantees regarding their security and privacy

properties. It is also imperative to detect more accurately vulnerabilities from ICT components

and understand how they can propagate over the supply chain and impact on ICT ecosystems.

However, it is well known that most of the vulnerabilities can remain undetected for years, so it

is necessary to provide advanced tools for guaranteeing resilience and also better mitigation

strategies, as cybersecurity incidents will happen. Finally, it is necessary to expand the horizons

of the current risk assessment and auditing processes, taking into account a much wider threat

landscape. BIECO is a holistic framework that will provide these mechanisms in order to help

companies to understand and manage the cybersecurity risks and threats they are subject to when

they become part of the ICT supply chain. The framework, composed by a set of tools and

methodologies, will address the challenges related to vulnerability management, resilience, and

auditing of complex systems.

3 https://tools.ietf.org/html/rfc8520
4 https://nvd.nist.gov

about:blank
about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Partners

Disclaimer

The publication reflects only the author´s view and the European Commission is not

responsible for any use that may be made of the information it contains.

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Table of Contents

Technical References .. 1

Revision History .. 2

List of Contributors ... 3

Acronyms .. 4

Executive Summary .. 7

Project Summary ... 8

Partners .. 9

Disclaimer ... 9

Table of Contents .. 10

List of Figures ... 12

List of Tables ... 13

1. Introduction ... 14

1.1. Motivation ... 14

1.2. Background ... 14

2. Analysis of Vulnerability Public Information ... 16

2.1. Vulnerability Standards ... 16

2.1.1. Common Vulnerabilities and Exposures (CVE) ... 16

2.1.2. Common Weakness Enumeration (CWE) ... 17

2.1.3. Common Platform Enumeration (CPE) .. 17

2.1.4. Common Vulnerability Scoring System (CVSS) .. 17

2.2. Vulnerability Databases .. 23

2.2.1. National Vulnerability Database (NVD) ... 23

2.2.2. Other Vulnerability Ddatabases and Platforms ... 25

2.3. Open Web Application Security Project ... 28

3. Vulnerability Detection Techniques .. 31

3.1. Anomaly Detection-Based Techniques ... 32

3.2. Vulnerable Code Pattern Recognition ... 33

3.3. Vulnerability Prediction Models ... 36

3.4. Privacy-Preserving Strategies ... 37

3.4.1. Federated Learning (FL) ... 39

4. Vulnerability Forecasting Techniques... 41

4.1. Forecasting Techniques Regarding the Exploitability of a Vulnerability 42

4.2. Other Vulnerability Forecasting Techniques .. 43

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

5. Vulnerability Propagation Techniques .. 45

5.1. Review on Vulnerability Propagation Methods .. 45

5.2. Review on the Application of MUD Files for vulnerability assessment based on

Security Policies .. 46

6. Conclusions ... 49

7. References ... 51

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

List of Figures

Figure 1 CIA triad standing for Confidentiality, Integrity and Availability. 7

Figure 2 The CVSS scoring process. .. 22

Figure 3 Number of vulnerabilities by year (from 2002 to 2019). .. 23

Figure 4 Number of vulnerabilities by type. ... 24

Figure 5 Number of vulnerabilities by CVSS scores. ... 24

Figure 6 Vulnerability detection techniques classification ... 31

Figure 7 Overview of the relationship between data, algorithms, actors, and techniques in the field

of secure and private AI. ... 38

Figure 8 Federated Learning process flow. ... 40

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

List of Tables

Table 1 Other vulnerability platforms and datasets. .. 25

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

1. Introduction

 Motivation

In recent years, an alarming increase in cybersecurity attacks has been detected5. Especially with

the COVID pandemic, where teleworking is the new lifestyle, attackers have at their disposal a

huge and often insufficiently protected attack surface. One of the best-known examples is the

WannaCry ransomware, which affected more than 230,000 computers in 150 countries. The most

affected countries were Russia; Ukraine; India; Great Britain, where the National Health Service

was compromised; Spain, for the attack on Telefónica and Germany, where the German railway

company Deutsche Bahn AG was the main target. Cyber attackers collected more than 140,000

dollars in bitcoins.

This is causing companies huge economic losses, service interruptions and great social concern.

These attacks damage the company's reputation, causing customers to be lost. In addition to the

security of information systems, such as firewall mechanisms to prevent DDoS attacks,

organizations must focus on the development of their software applications. According to the

IBM security summit in 2016, 60% of cyberattacks benefits from inside6, benefiting from bugs.

Bugs are nothing more than programming errors, and most of them are completely harmless

beyond affecting the performance of the product. However, some bugs can be exploited by

malicious external entities, in order to obtain certain benefits (private data, access to the system,

interruption of the service, etc.). In this case we are no longer talking about bugs, but about

vulnerabilities and weaknesses.

Taking into account the impact that a simple vulnerability can have, it is essential to further

research and improve the existent vulnerability assessment mechanisms. This document

presents a review on state-of-the-art techniques for vulnerability assessment, as well as a

compilation of relevant vulnerability related standards and databases. The results of this

review will be used as an input for the design and development of the vulnerability assessment

tools that will be produced by the WP3 of the BIECO project.

 Background

A security vulnerability is defined by the European Union Agency for Cybersecurity (ENISA)7

as a weakness an adversary could take advantage of to compromise the confidentiality,

availability, or integrity of a resource. At the same time, a weakness refers to implementation

flaws or security implications due to design choices. For example, a lack of control over the length

of the data entered could lead to a buffer overflow vulnerability, allowing attackers to steal or

corrupt private information, or even run malicious code.

An added problem is the propagation of vulnerabilities either within the same component or

between different components. Although a certain functionality can be designed in a secure way,

the reality is that its interaction with a vulnerable functionality or component can make the entire

product insecure. An example is the one that we can find within the Maven project8 , where the

POM file in org.wso2.carbon.security.policy9 has a dependency with components from

org.apache.derby10. This dependency provokes that vulnerabilities existing in org.apache.derby,

5 https://www.cpomagazine.com/cyber-security/new-security-report-breaks-down-increase-in-cyber-attacks-due-to-

remote-work-lack-of-training-overwhelmed-it-departments-are-the-main-issues/
6 https://www.ituser.es/seguridad/2016/09/el-ibm-security-summit-2016-pone-foco-en-la-seguridad-cognitiva
7 https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/vulnerabilities-and-exploits
8 http://maven.apache.org/
9 https://mvnrepository.com/artifact/org.wso2.carbon/org.wso2.carbon.security.policy
10 https://mvnrepository.com/artifact/org.apache.derby/derby/10.11.1.1

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

such as CVE-2015-183211, can cause potential vulnerability threats in the Maven project.

Therefore, it is not only necessary to detect and correct the vulnerabilities of our component in an

isolated way, but also to analyse the possible consequences derived from the propagation of

vulnerabilities coming from another component.

Vulnerability management arises as a way to identify, classify, evaluate and mitigate

vulnerabilities. Following the definition from ENISA, vulnerability management comprises

several steps:

• Preparation: defining the scope of the vulnerability management process.

• Vulnerability scanning: vulnerability scanners are automated tools that scan a system

for known security vulnerabilities providing a report with all the identified vulnerabilities

sorted based on their severity.

• Identification, classification and evaluation of the vulnerabilities: the vulnerability

scanner provides a report of the identified vulnerabilities.

• Remediating actions: the asset owner determines which of the vulnerabilities will be

mitigated.

• Rescan: once the remediating actions are completed, a rescan is performed to verify their

effectiveness.

This document presents an overview of the state of the art regarding vulnerability assessment and,

in particular, it focuses on the review of vulnerability scanning methods based mainly on Artificial

Intelligence techniques. Section 2 introduces the main standards that can be used to structure

vulnerabilities information, as well as a summary of the main databases that contain information

for their characterization. Section 3 reviews the main techniques for vulnerability detection (i.e.,

scanning), paying special attention to the techniques based on anomaly detection, patterns and

prediction models. After that, Section 4 reviews the main techniques for forecasting, which aim

to give an estimation on the number of vulnerabilities that could arise and the probability of their

exploitation in a certain period of time, whereas Section 5 focuses on the vulnerability propagation

analysis techniques, as well as the applicability of the recent standard Manufacturer Usage

Description (MUD) for vulnerability assessment. Finally, the document ends with a summary of

the conclusions.

11 https://nvd.nist.gov/vuln/detail/CVE-2015-1832

about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

2. Analysis of Vulnerability Public Information

This section presents different types of information that are essential in order to characterize

adequately a security vulnerability and, therefore, that should be taken into account during the

design and development of BIECO’s vulnerability assessment tools. The section includes a

selection of relevant vulnerability standards, a compilation of vulnerability datasets, as well as

other vulnerability compilation projects.

A vulnerability assessment process can be significantly difficult without a common baseline.

Therefore, when dealing with vulnerabilities, it is important to take into account the most common

standards in the fields (subsection 2.1). Having a structured information about vulnerabilities

simplifies their assessment process, providing a common understanding of the context of which

the different vulnerabilities are discovered.

As the standardization in the vulnerability field has become more mature, several vulnerability

databases have emerged. These databases are just data repositories, typically public, that compile

software and hardware vulnerabilities information. To date, there have been published several

databases that can be used as a support for the assessment of vulnerabilities, and that provide

users with different types of information. Subsection 2.2 will review the most relevant

vulnerability databases, paying special attention to National Vulnerability Database (NVD)12.

Finally, subsection 2.3 introduces OWASP, a reference project that compiles some of the most

relevant vulnerabilities.

 Vulnerability Standards

In this subsection we present a selection of vulnerability related standards, such as Common

Vulnerabilities and Exposures (CVE)13, Common Weakness Enumeration (CWE)14, Common

Platform Enumeration (CPE)15 and Common Vulnerability Scoring System (CVSS)16. All of them

are well-known and widespread standards: from identifying vulnerabilities (CVE), to describing

common weaknesses in software (CWE), to providing consistent names for referring to operating

systems, hardware and applications (CPE), up to the rating of the severity of vulnerabilities

(CVSS).

2.1.1. Common Vulnerabilities and Exposures (CVE)

Common Vulnerabilities and Exposures (CVE) is a list of records of public known information

about security vulnerabilities, widely used by multiple IT vendors. Its identifiers (CVE-YYYY-

XXXX) enable a common understanding about vulnerabilities and help with the evaluation of the

coverage of vulnerability tools and services.

CVE is the industry standard for vulnerability and exposure identifiers whose records provide

reference points for data exchange so that cybersecurity products and services can speak with

each other. Products and services compatible with CVE provide easier interoperability, and

enhanced security.

12 https://nvd.nist.gov
13 https://cve.mitre.org/
14 https://cwe.mitre.org/about/index.html
15 https://nvd.nist.gov/products/cpe
16 https://www.first.org/cvss/v3-1/

about:blank
about:blank
about:blank
about:blank
about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

The CVE List feeds the NVD or National Vulnerability Database (see section 2.2.1), which then

builds upon the information included in CVE Records to provide enhanced information for each

record such as fix information, severity scores, and impact ratings.

2.1.2. Common Weakness Enumeration (CWE)

Common Weakness Enumeration (CWE) is a dictionary of unique identifiers of common software

weaknesses (also hardware weaknesses from 2020). This project is supported by the U.S.

Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency

(CISA), the Homeland Security Systems Engineering and the Development Institute (HSSEDI),

which is operated by The MITRE Corporation.

It offers a wealth of options that can describe common weaknesses such as detection methods,

consequences, affected resources and likelihood. Even though CWE seems to be related to CVE,

CWE does not deal with specific software vulnerabilities. For example, CWE would describe a

buffer overflow in multiple software types, but a CVE ID would be assigned to one specific buffer

overflow vulnerability in Cisco IOS version X.

Nonetheless, CWE is useful for:

• Describing and discussing software and hardware weaknesses in a common language.

• Checking for weaknesses in existing software and hardware products.

• Leveraging a common baseline standard for weakness identification, mitigation, and

prevention efforts.

• Preventing software and hardware vulnerabilities prior to deployment.

2.1.3. Common Platform Enumeration (CPE)

Common Platform Enumeration (CPE) is a structured naming scheme for information technology

systems, software and packages. Based upon the generic syntax for Uniform Resource Identifiers

(URI), CPE includes a formal name format, a method for checking names against a system and a

description format for binding text and tests to a name.

The CPE dictionary contains the official list of CPE names. The dictionary is provided in XML

format, which follows the CPE XML schema17. In particular a typical CPE name would follow

the structure cpe:/{part}:{vendor}:{product}:{version}:{update}:{edition}:{language}18.

In the context of vulnerability assessment, the CPE allows to identify unequivocally within a CVE

the software and version that is affected by the vulnerability.

2.1.4. Common Vulnerability Scoring System (CVSS)

Common Vulnerability Scoring System (CVSS) is a free and open industry standard for assessing

the severity of a security vulnerability. The standard provides a way to capture and understand

the principal characteristics of a vulnerability by means of assigning severity scores. These scores,

which can take a value on the range from 0 to 10 (being 10 the most severe), are calculated based

on a multi-formula process that depends on several metrics.

17 https://csrc.nist.gov/schema/cpe/2.3/cpe-dictionary_2.3.xsd
18 For example, cpe:/a:microsoft:internet_explorer:8.0.6001:beta

about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Historically, vendors have used their own methods for scoring software vulnerabilities, usually

without detailing their criteria or processes. This creates a major problem for users, particularly

those who manage disparate IT systems and applications. In this sense, the goal for CVSS is to

facilitate the generation of consistent scores that accurately represent the impact of vulnerabilities,

as it provides full details regarding the parameters used to generate each score. The first version

of CVSS was released in 2005, version 2 was released in 2007 and version 3 in 2015. The current

version is 3.1. It was released in 2019.

The CVSS is calculated from three metrics groups, i.e., Base, Temporal, and Environmental.

Each of these metrics are calculated taking into account a set of sub scores obtained from several

features. This process is explained in subsection 2.1.4.4 and the metrics groups are detailed below.

 Basic Metrics

These set of metrics reflect the severity of vulnerabilities according to their characteristics and

assumes the worst-case impact across different environments. Base metrics do not change over

time and are common to all environments. For a better understanding of the vulnerability, base

metric is divided in three subtypes, Exploitability metrics, Scope metric and Impact metrics,

which, in turn, are made up of a set of metrics.

The Exploitability metrics represent the characteristics of a vulnerable component, and reflect

the technical means by which the vulnerability can be exploited. This metric is composed of four

features:

1. Attack Vector reflects the context by which vulnerability exploitation is possible. Its

value is greater the more distant an attacker can be to exploit the vulnerable component.

The possible values (and sub scores) of Attack Vector are:

• Network (0.85) if the vulnerable component is bound to the network stack and

the set of possible attackers extends up to the entire Internet.

• Adjacent (0.62) if the attack is limited at the protocol level to a logically adjacent

topology. An attack must be launched from the same physical or logical network.

• Local (0.55) if the vulnerable component is not bound to the network stack. The

attacker must access the target system locally or remotely (e.g., Telnet, SSH), or

interact with another person to perform the required actions, using social

engineering techniques.

• Physical (0.2) if the attack requires the physical touch or manipulation of the

vulnerable component.

2. Attack Complexity represents the conditions beyond the attacker’s control that must

exist in order to exploit the vulnerability. The possible values (and sub scores) are:

• Low (0.77) if specialized access conditions or extenuating circumstances do not

exist. Repeatable success can be expected.

• High (0.44) if successful attack requires certain preparation operations performed

against the vulnerable component.

3. Privileges Required describes the level of privileges an attacker must possess before

successfully exploiting the vulnerability. The possible values (and sub scores) are:

• None (0.85) if no access to settings or files of the vulnerable component is

required to carry out an attack.

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

• Low (0.62 if the Scope metric value is Unchanged, or 0.68 if it is Changed) if an

attack requires privileges that provide basic user capabilities that affect only

settings and files owned by a user.

• High (0.27 if the Scope metric value is Unchanged, or 0.5 if it is Changed) if an

attack requires privileges that provide significant (e.g., administrative) control

over the vulnerable component, allowing access to component-wide settings and

files.

4. User Interaction captures the requirement for a human user, other than the attacker, to

participate in the successful compromise of the vulnerable component. The possible

values (and sub scores) are:

• None (0.85) if no interaction from any user is required to exploit the vulnerability.

• Required (0.62) if user action is required for vulnerability exploitation.

The Scope metric indicates whether a vulnerability in one vulnerable component impacts

resources in components beyond its security scope. The security scope of a component

encompasses other components that provide functionality solely to that component, even if these

other components have their own security authority. The possible values are:

• Unchanged if an exploited vulnerability can only affect resources managed by the same

security authority.

• Changed if an exploited vulnerability can affect resources beyond the security scope

managed by the security authority of the vulnerable component.

The Impact metric reflects the consequence of a successful exploit over the impacted component,

which could be a software application, a hardware device or a network resource. The metric is

composed of three groups:

1. Confidentiality measures the impact to the confidentiality of the information resources

managed by a software component, due to a successfully exploited vulnerability. The

possible values (and sub scores) are:

• High (0.56) if there is a serious loss of confidentiality, resulting in all or some of

the resources within the impacted component being divulged to the attacker.

• Low (0.22) if there is some loss of confidentiality, but the attacker does not have

control over what information is obtained and the attack does not cause a direct,

serious loss to the impacted component.

• None (0) if there is no loss of confidentiality within the impacted component.

2. Integrity measures the impact of a successfully exploited vulnerability to the

trustworthiness and veracity of information. The possible values (and sub scores) are:

• High (0.56) if there is a serious loss of integrity, or a complete loss of protection.

A successful attack can modify protected files, resulting a serious consequence

to the impacted component.

• Low (0.22) if modification of data is possible, but there is no control over the

consequences, or the amount of modification is limited. The modifications have

a partial effect on the impacted component.

• None (0) if there is no loss of integrity within the impacted component.

3. Availability measures the impact to the availability of the impacted component resulting

from a successfully exploited vulnerability. The possible values (and sub scores) are:

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

• High (0.56) if a successful attack can fully or partially deny access to resources,

presenting a serious consequence to the impacted component. The loss can be

either sustained (during the attack) or persistent if the condition persists after the

attack has completed.

• Low (0.22) if a successful attack can reduce performance or cause interruptions

in resource availability but overall, there is no serious consequence to the

impacted component, there is no complete denial of service to legitimate users.

• None (0) if there is no impact to availability within the impacted component.

 Temporal Metrics

These metrics measure the current state of exploit techniques or code availability, the existence

of any patches or workarounds, or the confidence in the description of a vulnerability. These

metrics adjust the Base severity of a vulnerability based on factors that change over time, but not

across environments. The availability of a simple-to-use exploit kit would increase the CVSS

score, while the release of a patch would decrease it.

Temporal Metrics are composed of three groups:

1. Exploit Code Maturity measures the probability of the vulnerability being exploited. It

is based on the current state of exploit techniques, exploit code availability or active

exploitation. The possible values (and sub scores) are:

• Not Defined (1) if there is insufficient information to choose one of the other

values. It has the same effect on scoring as the next variant (High).

• High (1) if exploit development has reached the level of reliable, widely

available, easy-to-use automated tools. Exploit code works in every situation or

is actively being delivered via an autonomous agent (such as a worm or virus).

Network-connected systems are likely to encounter scanning or exploitation

attempts.

• Functional (0.97) if functional exploit code is available, that works in most

situations.

• Proof-of-Concept (0.94) if proof-of-concept exploit code or technique is

available. The code or technique is not functional in all situations and may require

substantial modification by a skilled attacker.

• Unproven (0.91) if no exploit code is available, the exploit is theoretical.

2. Remediation Level reflects the level of vulnerability mitigation techniques. The possible

values (and sub scores) are:

• Not Defined (1) if there is insufficient information to choose one of the other

values. It has the same effect on scoring as assigning Unavailable.

• Unavailable (1) if there is no available solution, or it is impossible to be applied.

• Workaround (0.97) if there is an unofficial, non-vendor solution available.

• Temporary Fix (0.96) if there is available an official temporary fix or

workaround.

• Official Fix (0.95) if an official solution is available such as a patch or an upgrade.

3. Report Confidence measures the degree of confidence in the existence of the

vulnerability and the credibility of the known technical details. The possible values (and

sub scores) are:

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

• Not Defined (1) if there is insufficient information to choose one of the other

values. It has the same effect on scoring as assigning Confirmed.

• Confirmed (1) if detailed reports or functional exploits exist, or the vulnerability

is confirmed by the author or vendor of the affected code.

• Reasonable (0.96) if significant details are available, but the finds are not fully

confirmed. Reasonable confidence exists that the vulnerability is real and at least

one impact can be verified.

• Unknown (0.92) if there are reports of impacts that indicate a vulnerability is

present, but the true nature of the vulnerability is uncertain.

 Environmental Metrics

The Environmental Metrics adjust the Base severities to a specific computing environment. They

consider factors such as the presence of mitigations in that environment. These set of metrics

enable the customization of the CVSS score depending on the importance of the affected IT asset

to an organization and they are the modified equivalents of Base Metrics. They are composed of

two groups, Security Requirements and Modified Base Metrics, which are useful to understand

impact of the vulnerability:

1. Security Requirements enable the customization of the Impact Metrics (Confidentiality,

Integrity and Availability). The full effect on the environmental score is determined by

the corresponding Modified Base Impact metrics. The possible values (and sub scores)

are:

• Not Defined (1) if there is insufficient information to choose one of the other

values. It has no impact on the overall Environmental Score. It has the same effect

as Medium.

• High (1.5) if the customized metric has a great importance for the organization.

• Medium (1) if the metric does not need customization.

• Low (0.5) if the customized metric is of little importance for the organization.

2. Modified Base Metrics allow the Base Metrics to be overridden, based on the specific

characteristics of the environment. Thus Exploitability, Scope, or Impact can be reflected

via an appropriately modified Environmental Score. These metrics modify the

Environmental Score by overriding Base Metric values, prior to applying the

Environmental Security Requirements. Each Modified Environmental metric has the

same values as its corresponding Base metric, plus a value of Not Defined, that is that is

equivalent with the associated Base metric.

 CVSS Scoring

The CVSS scoring process is depicted in Figure 2. The tree sets of metrics mentioned above

(Base, Temporal and Environmental) are those that are going to define the CVSS score. They

have the following qualitative ratings: None (0), Low (0.1 – 3.9), Medium (4.0 – 6.9), High (7.0

– 8.9) and Critical (9.0 – 10).

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Figure 2 The CVSS scoring process19.

The Impact and Exploitability metrics are used first, to determine Impact and Exploitability sub

scores. Then the Base score is determined based on these sub scores, together with the Scope

metric. The Base Score can then be refined by scoring the Temporal and Environmental metrics,

in order to more accurately reflect the relative severity posed by a vulnerability to a user’s

environment at a specific point in time. Scoring the Temporal and Environmental metrics is not

required but is recommended for more precise scores.

The Base and Temporal metrics are specified by vulnerability bulletin analysts, security product

vendors, or application vendors because they typically possess the most accurate information

about the characteristics of a vulnerability. The Environmental metrics are specified by end-user

organizations because they are best able to assess the potential impact of a vulnerability within

their own computing environment.

CVSS score is an important feature and standard in the field of vulnerabilities. This scoring

provides a numerical score about vulnerability behaviour and the possible severity of its attack.

19 https://www.first.org/cvss/specification-document#CVSS-v3-1-Equations

about:blank#CVSS-v3-1-Equations

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Thus, the use of CVSS score could be beneficial in the development of vulnerability assessment

tools, although its applicability at BIECO framework is still under study.

 Vulnerability Databases

2.2.1. National Vulnerability Database (NVD)

The National Vulnerability Database (NVD) is one of the reference vulnerability databases of

interest of our study. It is maintained by the National Institute of Standards and Technology

(NIST) Computer Security Division, Information Technology Laboratory and is sponsored by the

Cybersecurity & infrastructure Security Agency. It is the U.S. government repository of

standards-based vulnerability management data represented using the Security Content

Automation Protocol (SCAP). This data enables automation of vulnerability management,

security measurement, and compliance. Although other vulnerability databases exist, the NVD

still remains widely used and the most exhaustive resource in security vulnerability data. Based

on this, it would help our study providing a list of vulnerabilities and exposure data for training

machine learning models.

Figure 3 Number of vulnerabilities by year (from 2002 to 2019)20.

NVD includes databases of security checklist references, security-related software flaws,

misconfigurations, product names and impact metrics, and it records CVEs since 2002. The

information in NVD is updated permanently, as new information becomes available, and it is fully

synchronized with the CVE List so that any updates to CVE appear immediately in NVD. As it

can be seen in Figure 3, in recent years the number of registered vulnerabilities has increasing

trend, with a maximum value reached in 2018 when 16,556 vulnerabilities were registered.

In particular, the distribution of the main types of vulnerabilities registered in NVD is shown in

Figure 4. According to the number of vulnerabilities, the first three places are taken in order by

Execute Code, Denial of Service and Overflow.

20 Taken from https://www.cvedetails.com/browse-by-date.php

about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Figure 4 Number of vulnerabilities by type.21

The NVD data feeds are available at in JSON format22, which follows the NVD JSON schema23.

The most important fields that are registered for each vulnerability are the following:

• ID: the unique identifier of the CVE.

• problemtype: a list of CWEs that are related to the CVE.

• reference: links to external sources of information.

• description: description of the CVE in text format.

• configurations: a list of CPEs affected by the vulnerability.

• impact: CVSS v3.1 Base metrics, Base score, Exploitability and Impact subscores, vector

string, and Base severity. There are also available CVSS v2 metrics and score.

• publishedDate: date of publication in NVD.

• lastModifiedDate: date of the last modification.

Finally, Figure 5 shows the distribution of the CVSS scores of the vulnerabilities registered in

NVD. In the figure it is possible to observe that the number of vulnerabilities with CVSS scores

less or equal to 3-4 is lower than those ones with CVSS scores equal or greater than 4-5, with one

exception, vulnerabilities with CVSS scores between 8 and 9 are almost non-existent.

Figure 5 Number of vulnerabilities by CVSS scores.24

21 Taken from: https://www.cvedetails.com/vulnerabilities-by-types.php
22 https://nvd.nist.gov/vuln/data-feeds
23 https://csrc.nist.gov/schema/nvd/feed/1.1/nvd_cve_feed_json_1.1.schema
24 Taken from https://www.cvedetails.com/

about:blank
about:blank
about:blank
about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

2.2.2. Other Vulnerability Databases and Platforms

This section includes a compilation of other vulnerabilities datasets and platforms that are also

relevant and that could be considered as an input for the vulnerability assessment process within

BIECO.

Table 1 includes the name of each of these databases, a short description and its type of access

(“public”, “private”, or “both” if the dataset has a public and private version), as some of these

datasets are not completely public and require a payment.

Table 1 Other vulnerability platforms and datasets.

Name Description Access

0 Day Today25 A database of exploits and vulnerabilities written for

educational purposes. The information is collected from

submittals and various mailing lists.

Both

Awesome Threat

Detection and Hunting26

A curated list of threat detection and hunting resources. Public

CERIAS Vulnerability

Database27

A vulnerability database maintained by Purdue University. Private

CERT-EU28 The platform of the Computer Emergency Response Team for

the EU institutions. It maintains a list of security advisories and

information on product vulnerabilities, threats and incidents and

hacking techniques.

Public

China National

Vulnerability Database

(CNVD)29

NVD similar database maintained by the Chinese national

computer emergency response team (CERT). It often presents

vulnerabilities unavailable in other sources

Public

Chinese national CERT’s

ICS branch30

The website contains a list of ICS and IoT vulnerabilities. These

vulnerabilities are found in either CNVD or CNNVD.

Public

Chinese National

Vulnerability Database

of Information Security

(CNNVD)31

Second database from China. It usually follows data found in

NVD.

Public

CVE Details32 It provides an easy-to-use web interface to CVE vulnerability

data. Information about vendors, products, versions and statistics

about vendors, products and versions of products are available.

Public

DISA STIG Compliance

Requirements List33

A STIGs “are the configuration standards for DOD [information

assurance, or IA] and IA-enabled devices/systems…The STIGs

contain technical guidance to ‘lock down’ information

systems/software that might otherwise be vulnerable to a

malicious computer attack.”

Public

25 https://0day.today/
26 https://github.com/0x4D31/awesome-threat-detection
27 https://www.cerias.purdue.edu/site/about/history/coast/projects/vdb.php
28 https://cert.europa.eu/cert/newsletter/en/latest_SecurityBulletins_.html
29 https://www.cnvd.org.cn/
30 https://www.cert.org.cn/publish/english/indix.html
31 http://www.cnnvd.org.cn/
32 https://www.cvedetails.com/
33 https://www.stigviewer.com/stigs

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Draper VDISC Dataset34 A dataset that containing the source code of 1.27 million

functions mined from open-source software, labelled by static

analysis for potential vulnerabilities.

Public

Exploit Database35 A CVE compliant archive of public exploits and corresponding

vulnerable software, developed for use by penetration testers and

vulnerability researchers. It contains a comprehensive collection

of exploits gathered through direct submissions, mailing lists, as

well as other public sources. The Exploit Database is a repository

for exploits and proof-of-concepts rather than advisories, making

it a valuable resource for research.

Public

IBM X-Force

Exchange36

Cloud-based threat platform that enables the research on the latest

global security threats, consulting, and collaboration with peers.

It contains both human and machine-generated information.

Public

ICS Vulnerability

Database

From a Chinese ICS security company Winicssec37. Contains

data from other sources (NVD, CNVD and CNNVD).

Public

ICS-CERT38 The Industrial Control Systems Cyber Emergency Response

Team platform. It shares vulnerability information and threat

analysis through information products and alerts. It provides

vulnerability and malware analysis, onsite support for incident

response and forensic analysis.

Public

MISP39 It is used to store, share, collaborate on cyber security indicators,

malware analysis, and to detect and prevent attacks, against ICT

infrastructures. It is used to store, share, collaborate on cyber

security indicators, malware analysis, and to detect and prevent

attacks, against ICT infrastructures.

Public

National Cyber Security

Centre40

Located in Finland, it develops and monitors the operational

reliability and security of communications networks and services.

It provides situational awareness of cyber security.

Public

Netsparker41 A fully automatic vulnerability assessment tool that crawls and

scans web applications. Vulnerabilities are automatically

assigned a severity level to highlight the potential damage and

the urgency with which they must be fixed.

Private

NIST Software

Assurance Reference

Dataset Project42

It provides a set of known security flaws in order to allow users

to evaluate tools and to test their methods. The dataset includes

"wild" (production), "synthetic" (written to test or generated), and

"academic" (from students) test cases. The dataset intends to

encompass a wide variety of possible vulnerabilities, languages,

platforms, and compilers.

Public

Packet Storm43 An information security website offering current and historical

computer security tools, exploits, and security advisories.

Public

34 https://osf.io/d45bw/
35 https://www.exploit-db.com/
36 https://exchange.xforce.ibmcloud.com/
37 http://ivd.winicssec.com/
38 https://www.us-cert.gov/ics/advisories
39 https://www.misp-project.org/features.html
40 https://www.kyberturvallisuuskeskus.fi/en/homepage
41 https://www.netsparker.com/web-vulnerability-scanner/vulnerabilities/
42 https://samate.nist.gov/SARD/index.php
43 https://packetstormsecurity.com/

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

SecuriTeam44 A security portal containing security information from mailing

lists, information channels and tools.

Public

Security Focus45 Focuses on a few key areas that are of greatest importance to

security: a mailing list for discussion and announcements related

to computer security and a vulnerability database.

Public

Snyk Intel Vulnerability

Database46

An open-source vulnerability database, that also includes

additional non-CVE vulnerabilities derived from numerous

sources. Numerous vulnerabilities are exposed before they are

added to public databases.

Both

Talos47 A regular intelligence update from Cisco Talos, highlighting the

biggest threats each week and other security news.

Public

The Global Platform

MUD File Service48

It provides a MUD files database, helping device manufacturers

to publish, in a unique location, the MUD file library associated

with their products. Publication in the MUD File Service

simplifies the access and consumption of MUD files from

networks hosting these devices.

Private

The Vulnerability Notes

Database (VND)49

It provides information about software vulnerabilities.

Vulnerability notes include summaries, technical details,

remediation information, and lists of affected vendors. Most

vulnerability notes are the result of private coordination and

disclosure efforts. The CERT/CC Vulnerability Notes Database

is run by the CERT Division, which is part of the Software

Engineering Institute, a federally funded research and

development centre operated by Carnegie Mellon University.

Public

Veracode50 An agent-based scan software composition analysis for securing

web, mobile and third-party enterprise applications. Veracode

provides multiple security analysis technologies on a cloud-based

platform, including static analysis, dynamic analysis, mobile

application behavioural analysis and software composition

analysis.

Private

Vulnerabilities in open-

source systems51

A project representing a dataset of vulnerabilities in open-source

projects, as published in Mining Software Repositories 2018

(MSR) conference.

Public

Vulnerability

Assessment Platform52

A platform aggregating vulnerability and exploit data from over

130 sources.

Both

Vulnerability Database

Catalogue53

A catalogue initially of vulnerability databases, underlining

differences in identifiers, coverage and scope, size, abstraction

and other characteristics. Vulnerability databases are loosely

defined as sites that provide vulnerability information, such as

advisories, with identifiers.

Both

44 https://securiteam.com/
45 https://www.securityfocus.com/vulnerabilities
46 https://snyk.io/features/vulnerability-database/
47 https://www.talosintelligence.com/
48 https://globalplatform.org/iotopia/mud-file-service/
49 https://www.kb.cert.org/vuls/
50 https://help.veracode.com/reader/hHHR3gv0wYc2WbCclECf_A/lQYKhC8AvpIbz5_ULOCYMw
51 https://github.com/AUEB-BALab/VulinOSS
52 https://vulners.com/
53 https://www.first.org/global/sigs/vrdx/vdb-catalog

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

VulnDB54 A commercial vulnerability intelligence mechanism developed

by Risk-Based Security that provides actionable information

about the latest in security vulnerabilities via a SaaS Portal, or a

RESTful API. The tool tracks over 2,000 software libraries

looking for security issues and it has a direct mapping with CVE

and NVD. The client can configure email alerts to receive a

notification when a new vulnerability is released and he can ask

for guidance on how to mitigate the vulnerability and for product

and vendor evaluations.

Private

Vulnerability Database55 A database with more than 166000 entries available. The

information is updated daily since 1970. Besides technical

details, there are additional threat intelligence information like

current risk levels and exploit price forecasts provided.

Both

WordPress Vulnerability

Database56

A database of WordPress vulnerabilities, plugin vulnerabilities

and theme vulnerabilities.

Both

Zero Day Initiative57 Platform for reporting of 0-day vulnerabilities privately to the

affected vendors by the researchers. There is available a list of

publicly disclosed vulnerabilities discovered by Zero Day

Initiative researchers.

Both

 Open Web Application Security Project

The Open Web Application Security Project (OWASP)58, which is focused on the compilation of

software vulnerabilities, developed the OWASP TOP 10 list, a standard awareness document for

developers and web application security, similar to the list provided by MITRE59. Both lists share

some common vulnerabilities considered as critical, which should be considered when developing

software.

Listing the most critical vulnerabilities will allow us to know their relevance in terms of security,

and to prioritize them for their subsequent analysis. In particular, the main risks considered by the

OWASP Top 10 list are the following:

1. Injection: Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when

untrusted data is sent to an interpreter as part of a command or query. The attacker’s

hostile data can trick the interpreter into executing unintended commands or accessing

data without proper authorization.

• CWE-78 Improper Neutralization of Special Elements Used in an OS Command

(‘OS Command Injection’).

• CWE-89 SQL Injection.

• CWE-94 Improper Control of Generation of Code ('Code Injection').

• CWE-434 Unrestricted Upload of File with Dangerous Type.

2. Broken Authentication: Application functions related to authentication and session

management are often implemented incorrectly, allowing attackers to compromise

54 https://vulndb.cyberriskanalytics.com/
55 https://vuldb.com/
56 https://wpvulndb.com
57 https://www.zerodayinitiative.com/advisories/published/
58 https://owasp.org/www-project-top-ten/
59 https://www.mitre.org

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

passwords, keys or session tokens, or to exploit other implementation flaws to assume

other users’ identities temporarily or permanently.

• CWE-862 Missing Authentication for Critical Function.

• CWE-287 Improper Authentication.

• CWE-798 Use of Hard-coded Credentials.

3. Sensitive Data Exposure: Many web applications and APIs do not properly protect

sensitive data, such as financial, healthcare, and PII. Attackers may steal or modify such

weakly protected data to conduct credit card fraud, identity theft, or other crimes.

Sensitive data may be compromised without extra protection, such as encryption at rest

or in transit, and requires special precautions when exchanged with the browser.

• CWE-200 Exposure of Sensitive Information to an Unauthorized Actor.

4. XML External Entities: Many older or poorly configured XML processors evaluate

external entity references within XML documents. External entities can be used to

disclose internal files using the file URI handler, internal file shares, internal port

scanning, remote code execution, and denial of service attacks.

5. Broken Access Control: Restrictions on what authenticated users are allowed to do are

often not properly enforced. Attackers can exploit these flaws to access unauthorized

functionality and/or data, such as access other users’ accounts, view sensitive files,

modify other users’ data, change access rights, etc.

• CWE-862 Missing Authorization.

• CWE-269 Improper Privilege Management.

• CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path

Traversal').

6. Security Misconfiguration: Security misconfiguration is the most commonly seen issue.

This is commonly a result of insecure default configurations, incomplete or ad hoc

configurations, open cloud storage, misconfigured HTTP headers, and verbose error

messages containing sensitive information. Not only must all operating systems,

frameworks, libraries, and applications be securely configured, but they must be

patched/upgraded in a timely fashion.

• CWE-522 Insufficiently Protected Credentials.

• CWE-732 Incorrect Permission Assignment for Critical Resource.

7. Cross-Site Scripting (XSS): XSS flaws occur whenever an application includes

untrusted data in a new web page without proper validation or escaping, or updates an

existing web page with user-supplied data using a browser API that can create HTML or

JavaScript. XSS allows attackers to execute scripts in the victim’s browser which can

hijack user sessions, deface web sites, or redirect the user to malicious sites.

• CWE-79 Improper Neutralization of Input During Web Page Generation (‘Cross-

Site Scripting’).

• CWE-352 Cross-Site Request Forgery (CSRF).

• CWE-611 Improper Restriction of XML External Entity Reference.

8. Insecure Deserialization: Insecure deserialization often leads to remote code execution.

Even if deserialization flaws do not result in remote code execution, they can be used to

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

perform attacks, including replay attacks, injection attacks, and privilege escalation

attacks.

• CWE-502 Deserialization of Untrusted Data.

9. Using Components with Known Vulnerabilities: Components, such as libraries,

frameworks, and other software modules, run with the same privileges as the application.

If a vulnerable component is exploited, such an attack can facilitate serious data loss or

server takeover. Applications and APIs using components with known vulnerabilities

may undermine application defences and enable various attacks and impacts.

• CWE-416 Use After Free.

• CWE-787 Out-of-bounds Write.

• CWE-20 Improper Input validation.

• CWE-125 Out-of-bounds Read.

• CWE-119 Improper Restriction of Operations within the Bounds of a Memory

Buffer.

• CWE-190 Integer Overflow or Wraparound.

• CWE-476 NULL Pointer Dereference.

• CWE-400 Uncontrolled Resource Consumption.

10. Insufficient Logging and Monitoring: Insufficient logging and monitoring, coupled

with missing or ineffective integration with incident response, allows attackers to further

attack systems, maintain persistence, pivot to more systems, and tamper, extract, or

destroy data. Most breach studies show time to detect a breach is over 200 days, typically

detected by external parties rather than internal processes or monitoring.

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

3. Vulnerability Detection Techniques

In general, vulnerabilities require a different identification process than software defects, and can

be considered as a subset of faults which occur (and are discovered) much less frequently. They

are often not realized by developers during the normal operation of the system, while defects are

more easily noticed. For example, some authors report that 21% of files in Mozilla Firefox have

defects, while only a 3% have vulnerabilities [20].

To date, several tools and techniques can be used for detecting vulnerabilities in software

applications. There are two traditional approaches: static code analysis and dynamic analysis

through symbolic execution. In the former, the code is examined for weaknesses without

executing it. Besides, it can be considered as a defensive and preventive technique, as it attempts

to identify weaknesses in the program source code before its actual use. By contrast, in dynamic

analysis the code is executed to check how software will perform in a runtime environment. There

are several static and dynamic analysis tools which can be obtained from the market and also

some of them are open-source products [21]-[23].

The selection of a proper and efficient technique to detect vulnerabilities is one of the main goals

for BIECO. The effectiveness of the tool and in consequence the security of the system will

depend on the chosen technique. Therefore, this section presents some contributions published

in the literature that are related to the detection of software vulnerabilities and, in particular, that

rely on the use of Machine Learning (ML) and artificial intelligence (AI) techniques. The

contributions reviewed here can be considered as a subset of the static analysis methods, as they

aim at analysing the contents of a source code prior its execution.

Being this a broad field, and to acquire a better overview of the different approaches, they will be

divided regarding their detection methodology to be able to create a comparative of them.

Particularly, we will focus on three main topics: anomaly detection-based techniques, code pattern

recognition, and vulnerability prediction models. For anomaly detection-based techniques and

code pattern recognition we have included studies that analyse program syntax and semantics,

unlike vulnerability prediction model approaches in which the majority of works do not analyse

program syntax and semantics (Figure 6).

Figure 6 Vulnerability detection techniques classification

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

 Anomaly Detection-Based Techniques

Anomaly detection addresses the problem of finding unusual events that differ significantly from

the majority of the data applying Machine Learning algorithms (mostly unsupervised). These

events are often referred to as anomalies, exceptions or outliers [24]. Some of the well-known

techniques that can be used to perform anomaly detection in a general-purpose scenario are the

density-based such as Local Outlier Factor (LOF) [25] or Density-Based Spatial Clustering of

Applications with Noire (DBSCAN) [26], K-Nearest Neighbour [27] or Isolation Forest [28].

Some other examples consider deviation from association rules and frequent itemset [29] or they

are more focused on high dimensional spaces such as subspace-based such as Subspace Outlier

Degree (SOD) [30] or the Angle-based Outlier Detection (ABOD) [31], among others.

In the context of software security, vulnerabilities can be considered as an “anomaly”, as they are

undesired events that can appear during the development of a software, and which occurrence

should be minimized as far as possible. Under this context, the aforementioned anomaly detection

techniques could be used. Here, we pay special focus on association rules and frequent itemset

mining techniques, included in data mining field. In the particular, Engler at el. [32] were among

the first authors to point out the need for extracting rules that could be used in bug-finding tools.

In their approach, they demonstrated a static analysis technique based on simple function-pair

based programming rules that allowed to automatically extract rules from the source code without

a priori knowledge of the system, decreasing as well the amount of manual labour required to

analyse other systems.

Years later, Li and Zhou [5] presented a general technique called PR-Miner to extract implicit

undocumented programming rules and detect violations on large software code written in C, with

little effort from their developers. The tool used frequent itemset mining to find sets of functions,

variables and data types that tend to appear together. Hence, a later study [33] extended this work

taking also ordering into account, which allowed to identify additional defects that remain

undetected by PR-Miner. In this new approach, Wasylkowski et al. stated the fact that interacting

with objects often requires following a protocol which is not always documented, and its violation

can lead to defects. To automatically extract valid sequences of method calls, the authors proposed

to use frequent itemset mining on closed patterns taking code examples which are then used to

detect anomalies. Furthermore, they introduce a defect indicator, implemented by the tool JADET

(Java Anomaly Detector), which ranks the identified anomalies based on several factors.

Working on the anomaly detection mechanism of JADET, Gruska et al. [6] improved the

technique adding cross-project anomaly detection. In this approach authors introduced a method

based on functions calls and program structure, which allowed to analyse only selected parts of a

source code. With this, a lightweight parser is achieved which is effective enough to mine usage

rules from large bodies of almost arbitrary source code. Furthermore, this language-independent

parser is applicable for analysing programs written in several languages that follow a similar

syntax, like C, C++, Java or PHP. Compared with JADET, this new approach based on association

rules offered a set of frequent temporal properties more expressive, and an improvement on the

ranking system.

The mentioned previous works [5]-[6] used frequent itemset mining approach to mine frequent

API patterns, these methods have some limitations especially when multiple APIs are involved

across different procedures. For that reason, Acharya et al. [34] presented an approach to

automatically extract frequent partial-orders from API client code. They employ inter procedural

analysis to discover rules across function boundaries. However, their approach is limited to

mining function call ordering rules. In contrast, Chang et al. [35] created an approach general

enough to discover function call ordering rules, as well as their preconditions and postconditions

ordering rules. Chang et al. emphasize the importance of neglected conditions as a difficult-to-

find class software defect. In this approach, the authors integrate static program analysis and

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

advanced data mining techniques to reveal implicit conditional rules as well as rule violations that

indicate neglected conditions. Thus, the user indicates just a few restrictions on the context of the

rules that have to be searched, rather than specific rule templates. To do so, rules are modelled as

graph minors of Enhanced Procedure Dependence Graphs (EPDGs).

An approach related to the one developed by Chang et al., is Alattin [36]. This novel approach

tried to reduce false positives produced by the frequent sub-graph mining approaches developed

in previous works. To this end, they introduced a new mining algorithm and technique, ImMiner,

which extracts alternative patterns and classifies them into two categories: balanced, where all

patterns are frequent, and imbalanced, where some of them are infrequent. In both ([35], [36]),

there are targeted neglected conditions, but Chang et al.’s approach cannot mine infrequent

alternatives and it is heavily limited by its underlying graph mining algorithm which is known to

suffer from scalability issues. In this context, ImMiner is much more scalable due to its imbalance

frequent itemset mining algorithm.

Another form of analysis that can be complementary to Chang et al.’s approach is DynaMine [37].

This tool presented by Livshits and Zimmermann proposes an automatic way to extract likely

error patterns combining revision history information with dynamic analysis. For that purpose,

the tool analyses source code check-ins to find highly correlated method calls and common bugs

fixes. DynaMine evaluates incremental changes, obtaining more precise results. However, this

approach requires extensive history of software revisions in repositories to be effective and, as

with PR-Miner, it may suffer from issues of a high number of false positives since rule elements

are not necessarily associated with program dependencies.

The aforementioned studies are just some examples of anomaly detection techniques carried on

in the last years applied to the context of software vulnerabilities. Even though some of the results

exposed reveal good results in terms of detection, there are still high false positive rates since they

do not take into account rare events. In addition, these types of techniques are focused only on

the detection process, and they do not provide the type of the vulnerability or even its location.

 Vulnerable Code Pattern Recognition

Vulnerable code pattern recognition methods use Machine Learning algorithms (mostly

supervised) to identify in an automatic way patterns of vulnerable code segments. As with the

anomaly detection approach, this category of works requires the analysis and extraction of

different features from the source code, but with the difference that it is focused on defining

models and patterns of vulnerable code segments, instead of obtaining a model of the normal

behaviour of the software.

In order to extract the required software features, different techniques can be used such as

conventional code parsers, static data and control flow analysis, dynamic analysis or text mining,

among others. Taking the resulting features as an input, different approaches have been proposed

to statistically detect vulnerable code patterns and, in particular, concepts from the area of

software verification have been successfully adapted for tracking vulnerabilities. However, the

biggest challenge with these approaches is to avoid as much as possible burdensome manual

audits which require considerable time and experience.

Yamaguchi et al. [38] addressed particularly this issue and proposed a method to assist a security

analyst during source code audit. The purpose of this approach was to make a manual audit more

effective by guiding the search for vulnerabilities rather than looking for an automated solution.

To this end, they based their study on the concept of "vulnerability extrapolation" [39], which

focuses on the possibility of discovering vulnerabilities by looking for functions that share the

same code structure, since they are usually linked to the same faulty programming patterns. The

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

method suggested by Yamaguchi et al. extracts an Abstract Syntax Tree (AST) from the source

code and determines its structural patterns, in such a way that each function in the code can be

described as a mixture of the obtained patterns. These patterns contain subtrees in which each

node corresponds to types, functions and syntactic constructions of the codebase. Thanks to this

representation, it is possible to break down a known vulnerability and suggest code with similar

properties to the analyst.

The main limitation of the previous approach was that even though the AST can be useful when

it comes to transform simple code and identify code with similar semantics, it is not suited for

more advanced analysis. For this reason, and continuing this direction of research, Yamaguchi et

al. [40] presented a method to effectively mine large amounts of source code and find

vulnerabilities. In this approach, authors combined classic concepts of program analysis with

recent developments in the field of graph mining. They introduced a new graph representation

named code property graph that combined in the same data structure properties of ASTs, Control

Flow Graphs (CFGs)60 and Program Dependence Graphs (PDGs)61. With this approach, they were

able to create templates for vulnerabilities using graph traversal representations in such a way that

could identify buffer overflows, integer overflows, format string vulnerabilities and memory

disclosures, among others. Code property graphs and graph traversals are suitable to find common

types of vulnerabilities but more importantly, they can be well adapted to identify vulnerabilities

specific to a code base.

Using the code property graph representation, in a latter work Yamaguchi et al. [41] presented a

method for automatically deducing search patterns for taint-style vulnerabilities from C source

code. This definition of vulnerabilities has its origin in taint analysis, a technique for tracing the

propagation of data though a program. The method proposed automatically identifies source sink

systems in a code base given, analyses their data flow and generates search patterns in the form

of graph transversals that enable uncovering vulnerabilities in the data flow to the sink. In order

to generate search patterns, the approach combines techniques from unsupervised machine

learning (i.e., clustering techniques) and static program analysis, using an extension of the

platform Joern62 for the generation of graph transversals. It should be noted that although this

automatic search significantly speeds up the analysis in large code bases, the approach still

requires a considerable amount of manual auditing and analysis work.

A more general approach is the one given by Scandariato et al. [7] using text analysis and machine

learning techniques, such us Naïve Bayes and Random Forest, in order to predict vulnerable

software components. The approach is based on text mining the source code mainly with bag-of-

words techniques, in which a software component (source code file) is seen as a series of terms

with associated frequencies. These terms are the features that are used to predict whether each

component is likely to contain vulnerabilities. Hence, the set of features used for modelling is not

fixed but rather depends on the vocabulary used by the developers.

A related approach was proposed by Pang et al. [42] who investigated the possibility of predicting

vulnerable software components employing a hybrid technique combining N-gram text mining

and feature selection techniques. The N-gram text mining technique is an advanced version of

bag-of-words, handling not only single tokens but also sequences of tokens. However, dealing

with high dimensionality -curse of dimensionality [43]- can affect the performance and

effectiveness of training datasets and therefore classification models. In order to solve this

challenge, they proposed to select the most relevant and important attributes from a dataset,

reducing the space of features.

60 CFG are graphical representations of the control flow of a software during its execution.
61 Program representation that includes the data and control dependences for each possible operation.
62 Joern, Open-Source Code Querying Engine: https://joern.io/

about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Most of the reviewed approaches are focused on locating vulnerable code only at software

component or file levels. However, from a web developers' point of view, input validation and

input sanitization are also essential secure coding techniques that can be used to protect programs

from common vulnerabilities. Under this premise, Shar and Tan [44] proposed a set of input

sanitization code attributes that can be statically collected and based on Control Flow Graphs

(CFG), and which can be used to predict if a certain program statement could be vulnerable to

SQL-injection (SQLI) or cross-site scripting (XSS) attacks. These static code attributes are used

to characterize input sanitization code patterns, which are then analysed in order to check if the

associated program statements are vulnerable to SQLI or XSS. As a result, they developed an

automated data collection tool called PhpMinerI63 to extract the data of the proposed input

sanitization code attributes from PHP programs, in order to build vulnerability prediction models

based on supervised learning algorithms by means of manually tag the data with vulnerable labels.

This new tool was evaluated and compared on some open-source web applications, i.e., a static

analysis tool named Pixy [45]. On average, Pixy discovered more vulnerabilities, but also

produced much more false positives than PhpMinerI. As expected, even though the proposed

static attributes are a good predictor, their predictive capability is limited as it depends on the

classification of the input validation and sanitization code patterns.

Being aware of this limitation, Shar et al. [46] presented a more extensive empirical study

proposing a hybrid analysis. Their idea was to use static analysis for the classification of nodes

that have unambiguous security related purpose, and avoid the lack of precision that it provides

by the use of dynamic analysis. In order to predict vulnerabilities, they proposed the use of both

supervised machine learning models such as Logistic Regression and Multi-Layer Perceptron,

and unsupervised machine learning models, such as the k-means algorithm (for the presence or

absence of labelled training data, respectively).

In a latter work, the study was extended [47] adding new contributions and changes. The authors

proposed to use static slicing64 and dynamic execution techniques that mine data dependency and

control dependency information. Moreover, they used a semi-unsupervised approach, unexplored

in this domain till the date, along the supervised approach, to predict vulnerabilities from a new

set of code attributes. These attributes are called Input Validation and Sanitization (IVS) attributes

from which vulnerability-built predictions are fine-grained, accurate and scalable. The authors

also extended the support to predict vulnerabilities to SQLi and XSS by adding the detection of

Remote Code Execution (RCE) and File Inclusion (FI) web vulnerabilities, implementing a

modification of their previous tool.

The aforementioned works, with the exception of Shar et al. [46], [47], are based on static analysis

techniques for the detection of vulnerabilities. In addition, these techniques focus on the analysis

of the source code. Grieco et al. [8] presented the first large scale study on vulnerability discovery

for binary code. The objective of this work was to create a scalable Machine Learning approach

that used lightweight hybrid features of static and dynamic analysis techniques to predict if a

binary program is likely to contain an easily exploitable memory corruption vulnerability. They

also developed and implemented VDiscover, a tool based on Machine Learning techniques such

as logistic regression, stochastic gradient descent or random forest, to predict vulnerabilities in

test cases. This study increases the possibility to find a greater number of vulnerabilities at

operating system scale.

In the last years, deep learning-based techniques have had a big success in many domains, which

has led their application study to a new trend in the field of software vulnerability detection. The

first systematic framework for using deep learning to detect vulnerabilities was the one presented

63 http://aharlwinkhin.com/phpminer.html
64 Technique that allows to represent a simplified version of source code, ensuring that the effects of the software on a

certain variable is preserved.

about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

by Zhen Li et al. [48]. The framework, called SySeVR, was focused on extracting program

representations that can accommodate syntax and semantic information that are relevant for the

vulnerabilities such us function call and pointer usage. Zhen Li et al. [49] also propose the use of

deep learning to detect vulnerabilities at the slice level65. Since then, deep learning was used to

detect vulnerabilities at a coarser granularity such as in a function level. In this approach, authors

focus on multiple lines of code that are semantically related to each other in terms of data or

control dependency. To this end, they design and implement a deep learning-based vulnerability

detection system called VulDeePecker.

Each of the approaches previously introduced present a different perspective and tools for the

detection of vulnerabilities. In this case, the goal is not detecting anomalies in the source code,

but rather to define vulnerability patterns for their detection. Although vulnerable code pattern

recognition is a promising approach for the detection of vulnerabilities, especially in comparison

with the previous one, it still has some limitations. As with anomaly detection approaches, the

studies presented do not identify the type of the vulnerability and, while it is possible to detect the

location of a the vulnerability within the source code, it is still not fine-grained.

 Vulnerability Prediction Models

Prediction techniques rely on Machine Learning models (mostly supervised) and Artificial

Intelligence techniques in order to determine the location of the vulnerabilities within a source

code. In other words, these techniques determine which software components are most likely to

contain a certain vulnerability. These particular models are commonly referred as Vulnerability

Prediction Models (VPM) [50]. Yet, there are many other prediction models that can be used to

forecast different aspects of the nature of a vulnerability, which will be presented in detail in

Section 4.

As we mentioned at the beginning of Section 3, vulnerabilities occur less frequently than defects,

and in consequence, VPMs have to deal typically with highly unbalanced datasets. There are still

a number of open issues in the construction of effective VPM: i) choice of granularity: model

granularity, the selection of a unit to collect data and make predictions for binary, source file,

class, and function/method; ii) statistical learner choice: it can be considered the most important

step. For a good introduction of all the techniques see e.g. [51], or for more advanced details see

[52]; iii) classification performance: in this sense, [20] and others [53] have suggested specific

precision and recall values and they can be considered as a good starting point.

The first work related to VPM was published in 2007 by Neuhaus et al [54]. The authors proposed

to fit a ML model by means of incorporating the imports and the function call contained in a file

as independent variables. This approach is based on the intuition that vulnerable files are likely

to share similar sets of imports and function calls which could be used to identify them. The idea

is in accordance with the work performed by Schroter et al. [55], which aims at predicting defects.

The authors begin this study by performing a correlation analysis of import/function calls and

vulnerabilities on a dataset of Mozilla Firefox vulnerabilities to validate the intuition. In their

evaluation, the authors perform random splitting and experiment two approaches, one using the

includes of the file as features while the other use its function calls. To build the models, the

authors opt for the Support Vector Machine (SVM) algorithm.

There is extensive literature for VPMs approaches that use software engineering metrics

computed from the source code to build their models. The starting point of all studies that use

complexity metrics is the study carried out by Shin et al. [56]. Some years later, in addition to

65 i.e., Multiple lines of code that are semantically related to each other in terms of e.g., data dependency or control

dependency.

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

complexity metrics, code churn and develop activity metrics are evaluated as indicators of

software vulnerabilities [57]. Other studies use code complexity, code churn, and other static

alerts to predict attack-prone or vulnerable components, [58] and [57] among others.

Additionally, Morrison et al. [59] replicate the study of Zimmermann et al. [9] who studied typical

code metrics as well as dependency metrics and evaluated their correlation with post-release

vulnerabilities in Windows Vista binaries. Besides, Morrison et al. [59] investigated the

performance of the models using the same metrics on finer levels of granularity (source file level).

They used a total of 29 metrics classified as follows: churn metrics, complexity metrics,

dependency metrics and legacy metrics and size metrics.

In a more recent study carried out by Younis et al. [60] was described the attributes of code that

contain vulnerabilities that are more likely to be exploitable. To this end the authors gather 183

vulnerabilities from the Linux kernel and Apache HTTPD web server projects, which includes 82

exploitable vulnerabilities.

Recently, Bilgin et al. [10] examined how to predict software vulnerabilities from source code by

employing ML techniques prior to their release. To this end, they developed a source code

representation that enables us to perform intelligent analysis on the Abstract Syntax Tree (AST)

form of source code and then investigate whether ML can distinguish vulnerable and non-

vulnerable code fragments.

After reviewing several works for detecting security vulnerabilities, and among the different

approaches described, VPMs seem to be a good starting point for the development of a

vulnerability detection tool in BIECO. To this end, and according to various experiments provided

by the researchers, the goal is to build a VPM based on advanced software metrics, determining

which ones allow to obtain more accurate results on the vulnerability detection process.

 Privacy-Preserving Strategies

Source code is considered in general a sensitive asset, as it is part of the intellectual property of

the companies that develop software and, in consequence, it should be protected adequately in

order to avoid leakages that could derive in an economical and reputational impact.

The tools that will be developed in BIECO for the vulnerability assessment will deal directly with

the analysis of source code. Due to its sensitiveness, the project will explore the feasibility of

using of privacy preserving mechanisms as means of protecting the confidentiality of the source

code during the vulnerability assessment process.

As a result, in this section a review of existing privacy-preserving mechanisms to protect sensitive

data and intellectual property is provided. These mechanisms could include differential privacy,

secure multi-party computation and Federated Learning, between others, although we will pay

special attention to Federated Learning technique as an interesting mechanism to further explore

its usage within BIECO.

Current and emerging techniques for privacy and preservation can be found in [61]. They show a

general visual overview of the privacy-preserving field in Figure 7.

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Figure 7 Overview of the relationship between data, algorithms, actors, and techniques in the field of secure

and private AI.66

On the one hand, secure AI includes methods concerned with safeguarding algorithms and, on the

other hand, private AI includes methods for systems allowing data processing without revealing

the data itself. A summary of the terms presented in the previous figure is shown below:

• Differential privacy: modification of a dataset to obfuscate individual information as a

means of ensuring that the risk incurred by participating in a dataset is only marginally

greater than the risk of not included in it. It can also be applied to algorithms.

• Anonymization: removal or transformation of personally identifiable information from

a dataset in such a way that the observable data cannot be used to breach user's privacy.

It is an irreversible technique.

• Pseudonymization: replacement of sensitive data with realistic synthetic data that cannot

be attributed to a specific individual without additional information which, according to

GDPR, is to be “kept separately and subject to technical and organization measures to

ensure non-attribution to an identified or identifiable person”. It is an optional reversible

technique.

• Secure multiparty computation: collection of techniques and protocols enabling two or

more parties to split up data among them to perform joint computations in a way that

prevents any single party from gaining knowledge of the data but preserving the

computational result.

• Homomorphic encryption: cryptographic technique that preserves the ability to perform

mathematical operations on data as if it was unencrypted (in plain text).

66 Taken from [62]

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

• Federated learning: Machine Learning system relying on distributing the algorithm to

where the data is instead of gathering the data where the algorithm is.

Next, we will focus on federated learning technique, which belongs to a class of

decentralized/distributed systems.

3.4.1. Federated Learning (FL)

It is well known that Machine Learning techniques require centralizing the training data on one

machine or datacentre for building accurate and robust models. However, these techniques have

a disadvantage from the security and privacy perspective, that is, the coupling of the training

model with the need for direct access to the raw training data. Because of the increasing concern

in data privacy (e.g., General Data Protection Regulation, GDPR), restrict access to the data is

still a major challenge.

Recently, a new paradigm was proposed by McMahan et al. [62]. They investigate a learning

technique that lets users collectively take the benefits of shared models trained from data, without

the need to centrally store it. They coined the term Federated Learning (FL) since the learning

task is solved by a loose federation of participating devices (clients) which are coordinated by a

central server. Briefly, the idea is that each client (e.g., mobile devices) has a local training dataset

which never is transferred to the server or other clients. Instead, each client computes an update

to the current global model maintained by the server, and only this update is communicated. This

is an example of application of the principle of focused collection [63].

Federated Learning is considered as an iterative process wherein each iteration the central

Machine Learning model is improved. FL implementations can be generalized into the following

three steps: (1) The central pre-trained ML model (i.e., global model) and its initial parameters

are initiated and then the global ML model is shared with all the clients in the FL environment.

(2) After sharing the initial ML model and parameters with all clients, the initial ML model at the

client level (called local ML models) is trained with individuals training data. (3) Local models

are trained at the client level and updates are sent to the central server in order to aggregate and

train the global ML model. The global model is updated and the improved model is shared among

the individual clients for the next iteration. Federated Learning is in a continuous iterative learning

process that repeats the training steps of 2 and 3 above to keep the global Machine Learning model

updated across all the clients. A scheme of the architecture and the training approach can be seen

in Figure 8 (taken from [64]).

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Figure 8 Federated Learning process flow.67

Federated Learning is a recent technique which is still under development and uses different

approaches in order to apply it in practice. Some of the most current and common approaches are,

for example, included in data partition category with Horizontal Federated Learning, Vertical

Federated Learning and Transfer Federated Learning. In the aggregation/optimization algorithms

classification it should be highlighted the Federated Averaging which is Google´s implementation

of FL, or FedMA (Federated Learning with Matched Averaging) which is useful for constructing

a shared model for convolutional neural networks (CNNs) and LSTM based in FL environments,

between others.

67 Taken from [65]

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

4. Vulnerability Forecasting Techniques

As it has been explained in Section 3.3, prediction is a more general term than the topic related to

this section. In particular, the term forecasting refers to the process of making predictions of the

future as accurately as possible, based on past and present data available or even knowledge of

any future events that might impact the forecasts.

In the early stages of a forecasting analysis, decisions need to be made about what should be

forecasted, taking into account that some things can be easier to forecast than others. In particular,

the predictability of an event or quantity depends on: i) how well understand the factors that affect

the event, ii) how much data are available, and iii) whether the forecast can affect the thing we

are trying to forecast. Depending on the study field, one could be interested in short-term,

medium-term or long-term forecasts. Thus, it is also relevant to consider forecasting horizon, as

a different type of technique must be applied depending on how the forecasting horizon is set.

Moreover, in forecasting it is important to be able to capture the relationships that exist in the

historical data, but do not replicate past events that will not occur again; in other words, to

distinguish between random fluctuations in the past data that should be not taken into account,

and a genuine pattern that should be modelled and extrapolated. To this end, a variety of methods

can be used: from the simplest ones, such as the usage of the most recent observation as a forecast

(named as naïve method) or more complex ones, such as neural networks.

There are many forecasting techniques that have been described in the literature, often developed

within specific fields for specific goals. Each technique has its own accuracies, properties and

assumptions that are relevant for selecting the method to be used [65].

Forecasting future data can be addressed based on time series domain, where data are collected at

regular intervals over time (e.g., hourly, daily, monthly, annually). Time series analysis try to find

a model that describes the pattern of data with natural temporal ordering and they include models

such as moving average (MA), autoregressive models (AR), the more general Autoregressive

Moving Average (ARMA) [66]-[68], Autoregressive Integrated Moving Average models

(ARIMA) [69]-[72] and Seasonal Autoregressive Integrated Moving Average (SARIMA) [75],

all of them based on autoregressive moving averages. Focusing on a family models based on

autoregressive conditional heteroskedasticity, Autoregressive Conditional Heteroskedasticity

(ARCH) or Generalized Autoregressive Conditional Heteroskedasticity (GARCH) [73] can be

used. Another option could be models such as Threshold Autoregressive (TAR) or Smooth

Threshold Autoregressive (STAR) [74], nonlinear models of mean and non-linear variances, as

well as others such as the Hamilton mode switch [75] and the Theta method [76].

Other of the most well-known techniques for forecasting analysis are the exponential smoothing

models such as single exponential smoothing, Holt´s linear method, or Holt´s winter method [77]-

[80].

In order to estimate how the sequence of observations will continue into the future, it can also be

addressed by predictor variables based on an explanatory model [81][82]. This type of model

incorporates information about other variables instead of only historical values of the variable to

be forecast. There is also another type of models, called mixed models, which combines the

features of explanatory models and time series models. They are known as dynamic regression

models, longitudinal models, panel data models, etc. [78][83].

The appropriate selection of the forecasting method depend on what resources and data are

available, the accuracy of the competing models and the way in which the forecasting model is to

be used.

about:blank
about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

 Forecasting Techniques Regarding the Exploitability of a Vulnerability

Vulnerability forecasting refers to the estimation of certain information such as the number, type

or time of occurrence of an event (i.e., software vulnerabilities) in the future. As mentioned

earlier, the number of software vulnerabilities disclosed every year is staging and, consequently,

the risks for system security officers are also increasing. To date, substantial research has been

dedicated to techniques that analyse source code and detect security vulnerabilities. However,

only limited research has focused on forecasting security vulnerabilities that are detected and

reported after the release of a software.

One interesting and widely studied approach is estimating the probability that a vulnerability will

be exploited. Some contributions have been described in the literature such as Jacob et al. [14]

and Bhatt et al. [84]. Unlike these research works which study if a Common Vulnerability and

Exposure (CVE) is used in an exploit, an important question growing between researchers is

forecasting when an exploit might appear. This issue is especially important for system

administrators, because of their need to devote scarce resources to take corrective actions when a

new vulnerability appears [15]. When vulnerability information is disclosed, there is an attacker´s

tendency to exploit vulnerabilities, and consequently, vendors' tendency to release patches.

Because patching is expensive, many vulnerabilities go unpatched because of the limited

resources to tackle with large patching tasks [85]. So, it is crucial to prioritize patching based on

the results of prediction models about when a vulnerability will be exploited.

It should be highlighted that there are two types of exploits: i) Proof of concepts (PoC) exploits

that are one where someone generates a sample exploit code to demonstrate vulnerability in a

controlled environment and ii) real world exploits that were used in real world attacks. In

particular, [86], [87] and [88] focus on predicting PoC exploits (published exploits) rather than

real world exploits. Sabottke et al. [89] developed methods to predict both PoC and real-world

exploits. They were the first to demonstrate that prediction accuracy could be improved by using

(one year of) Twitter data.

Recently, much more efforts have been made in order to studied real world exploits [90] where,

in addition to National Vulnerability Database (NVD) and Exploit Database Archive (EDB), data

from the Zero Day Initiative (ZDI)68 and dark web and deep web posts are used.

On the other hand, even though Common Vulnerability Scoring System (CVSS) has become an

industry standard for assessing fundamental characteristics of vulnerabilities, some limitations

have been identified, such as the absence of an authoritative entity to update the metric values and

lack of data to inform the score. Following this idea, Haipeng et al. [15] described a method to

predict when a vulnerability will be exploited based on CVE ID and Twitter discussion data,

without the need for Common Vulnerability Scoring System (CVSS) scores. In addition, Jacob et

al. [14] proposed a first open, data-driven threat scoring system, called Exploit Prediction Scoring

System (EPSS), for predicting the probability that a vulnerability will be exploited within the 12

months following public disclosure.

Taking into account the increasing number of vulnerabilities and their consequently need for

prioritizing them, the goal in BIECO is to develop a tool that allows to predict when a certain

vulnerability will be exploited. Following the ideas proposed by Sabottke et al. [89], Haipeng et

al. [15], Jacob et al. [14], among others, different features or variables will be tested as input for

training the Machine Learning model and, also, a period time window will be established and

adjusted in order to provide accurate forecasting results.

68 http://www.zerodayinitiative.com/

about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

 Other Vulnerability Forecasting Techniques

 Between all of the challenges that are still open or not completely studied in forecasting

vulnerabilities, predictions of the numbers of vulnerabilities in the next period of time are an

important input for several managerial decisions [91], [11], [92]. Some well-known approaches

are described in order to achieve this goal.

From a time series perspective, Roumani et al. [11] implemented Autoregressive Integrated

Moving Average (ARIMA) and exponential smoothing models for predicting the number of

vulnerabilities, but also, other authors applied regression techniques [56] [12] or reliability growth

models [93].

However, none of the research takes into account the rareness of the vulnerability occurrence and

high volatility, non-stationarity and seasonality. To solve this gap in the literature, recently,

Yasasin et al. [94] concentrate on forecasting the number of vulnerabilities implementing a

multiple forecasting approach, in which they compare several methodologies and evaluate their

performance in terms of forecasting accuracy. On the one hand, they applied exponential

smoothing model and Box-Jenkins models (such as ARIMA). On the other hand, they apply zero-

inflated time series which is especially suitable in this context because there are multiple periods

of zero values [13], particularly, Croston´s methodology [95] and Neural Network based approach

[96], [97]. The conclusion is that the Croston’s method and ARIMA are recommended for

forecasting IT vulnerabilities since they achieved low forecasting errors for the considered

software, for both metrics. Exponential smoothing methods are not recommended because of their

susceptibility to the time series’ nature of IT vulnerabilities. The feed forward neural network

with a single hidden layer used achieved also poorer prediction accuracy.

To achieve better forecasting results, it could be interesting to explore in depth some properties

of security vulnerabilities: vulnerabilities are rare events so it is common that no vulnerabilities

are reported, but also, there are some periods in which high numbers of vulnerabilities are

reported. In this regard, vulnerabilities found by software engineering, and closed without

publicly announced could be taken into account, as well as the relationship between monetary

incentives such as third-party bug bounty platforms [98] and the number of vulnerabilities

reported could be studied harder, leading to a decrease in zero values.

Forecasting zero-day vulnerabilities is also an important issue in software security. David Last

described in [92] three vulnerability discovery forecast model suites: i) Composite Regression

Models that use linear and quadratic regression to fit trendlines of the training period, ii) ML over

Cumulative Vulnerabilities Models in which cumulative data for vulnerabilities to the beginning

of the forecast period are used for training and iii) Machine Learning over Monthly Vulnerabilities

Models, in which the number of vulnerabilities discovered each month in the training period is

used for training instead the cumulative vulnerabilities. Because it is impossible to say which of

these forecast models will be the most accurate, a consensus model influenced by all the

components model is created.

One of the latest achievements in the time series prediction, presented in M4 Competition69 [99]

show that in the last few years a significant advancement in accuracy of predicting time series has

been observed, mostly due to the use of ML [100]. To our best knowledge they have not been

used for the vulnerabilities forecasting but, based on their accuracy, it might be very promising

to use them in this field.

One of the methods that presents significant progress in state of the art of time series forecasting

is hybrid ES-RNN method by Slawek Smyl (from Uber Technologies; the winner of M4

69 The M Competitions (also known as Makridakis Competitions) are led by prof. Spyros Makridakis from the

University of Nicosia and are the most comprehensive studies of time series forecasting methods.

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Competition), which is a hybrid statistical (Exponential Smoothing) and Machine Learning

(Recurrent Neural Networks) method [101]. In the M4 competition, it outperforms the benchmark

method for almost 10% of accuracy on 100 000 of time series, which is a really significant

improvement to the previous state of the art. The second method, the one provided by Montero-

Manso et al. [102] from the University of A Coruña and Monash University, uses a novel

combination (ensemble) of one machine learning model and several statistical ones.

One approach which introduces novel concepts of Machine Learning for time series forecasting

and has already outperformed the aforementioned methods, was the one presented as N-BEATS

(Neural basis expansion analysis for interpretable time series forecasting) [103]. Another

interesting venue are the methods based on recurrent embedding kernels which predict based on

similarities between time series [104]. This kind of methods might give promising results for

vulnerabilities predictions as they are based on complex pattern learning. The similarity in this

case is learned by the neural network during the training as opposed to relying on clustering

methods with fixed metrics. Some other interesting methods include those based on Echo State

Networks with deep reservoir [105] and SFM (State-Frequency Memory) which combines LSTM

networks with wavelet time series analysis [106].

Finally, there are two very successful ML methods not originally targeted at time series analysis:

Differentiable Neural Computer [107] and Tsetlin Machine [108]. According to our knowledge,

they have not been used yet for time series forecasting and vulnerabilities forecasting, but we

expect them to achieve good performance after some improvements. It should be noted that these

methods are generally far more effective than any others previously used for time series

forecasting, including vulnerabilities forecasting. Another key approach that can be undertaken is

focused on the novel architectures of the neural network's models, like the Transformer

architecture [109] and Capsule Networks [110]. These architectures exhibited remarkable results

in NLP and image recognition tasks, outperforming previous models by a solid margin. The usage

of these architectures for vulnerabilities prediction is not researched fully yet, but nonetheless we

consider it a very promising approach.

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

5. Vulnerability Propagation Techniques

A software system can be composed by several entities or components that are related to each

other. A change in one of them, such as adding new features or a patch, can affect their related

entities, creating unexpected effects and causing inconsistencies with other parts of the original

software.

This interdependency can also impact the software security, as a vulnerability located in a specific

area of a source code could be propagated and escalated through the supply chain via multiple

paths, making a fragment of the code with no vulnerability being part of vulnerable path, and

leading to a different system security risk.

In order to deal with these issues, in BIECO we want to create a tool with which it is possible to

detect the propagation of vulnerabilities across interconnected ICT systems and modules. As a

first step, in this task we will focus on vulnerability propagation through the code, doing a review

of the state-of-art of different techniques to be able to evaluate the most prone one. As a

complement of vulnerability code propagation, MUD standard is introduced, where the expected

behaviour of an ITC component is defined, helping to avoid or mitigate future potential security

attacks.

The next section presents a review of several approaches published in the literature to evaluate

how a vulnerability can be propagated across the software supply chain.

 Review on Vulnerability Propagation Methods

Program dependency relations, such as functions and variables, have been the goal of many

researchers in order to evaluate how a change in one source code entity propagates to other entities

[111]. In the last decades, there have been many investigations for identifying the effects of those

changes using Change Impact Analysis (CIA) [112]. CIA is a technique that can be employed to

predict the impact on a change in software, as well as estimating what needs to be modified to

accomplish a certain change and their cost. Depending on the level of abstraction between

elements, CIA methods can be divided into those that are based on the traceability examination

(traceability-based CIA) and those that are on dependence relationships (dependence-based CIA).

In the former, the analysis tries to trace the existing dependencies between elements from different

levels of abstraction, while the latter analyses the dependencies between program entities from

the same level.

These dependencies above mentioned can lead to the introduction of known (or unknown)

security vulnerabilities in software systems by third-party components, as for example in the case

of integrating open source libraries with vulnerable code. Several tools have been developed in

order to detect if a third-party component with known security vulnerability has been used. This

is the case of Cadariu et al. [3], who develop a tool-based process to track known vulnerabilities

in software systems named Vulnerability Alert Service (VAS). In this approach, inputs (software

project and vulnerability disclosures) are destined for the vulnerability checker (OWASP

Dependency Check) which extracts dependency data, recognizes them and matches them with

known vulnerabilities. Another perspective is the one introduced by Plate et al. [113]. This

approach presents a dynamic analysis technique to automatically determine if the changes made

by a security patch in a library are propagated to their source code, in such a way that they can

identify where they may have a vulnerability when using the library from third parties. To identify

changes, they consider headers and function constructors that change from the original library

source code relative to the security patch, subsequently identifying their use in their source code.

Another interesting approach to take under consideration is the impact of using unvalidated input,

also known as taint data. Taintedness is propagated in the obvious way, as strings derived from

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

tainted string are also considered tainted. Perl’s taint mode [114] prevents the use of taint data as

arguments for sensitive functions that can affect the local system creating files, sending data over

the network or running local commands among others. Inspired by this idea, Haldar et al. [115]

introduce a technique for tagging, tracking and detecting the taintedness of untrusted input

throughout the lifetime of the application. To this end, both data originating from the client as

tainted and data derived from tainted data are marked. In this approach, they track taintedness

from sources to methods that should not use taint data, and prevent tainted data from being passed

into them, which could lead to an improper use in a security-sensitive context.

Moreover, many researchers have proposed the use of graph methods, such as Bayesian Networks

and attack graphs among others, for providing an estimation of risk factors and being able to

analyse the complexity and uncertainty of the propagation of a vulnerability. To make these

methods more effective, it is important to use vulnerability propagation analysis tools that are

capable of proactively assessing propagation. This can be obtained by using graph optimization

methods.

One of these methods is the known Ant Colony Optimization [19]. Ant Colony Optimization is a

metaheuristic method that is inspired by the behaviour of real ants. This algorithm is used to solve

computational problems that can be solved by finding a good path through a graph. The

combination of this method together with the use of Bayesian Networks [16] built a security risk

analysis model (SRAM) to which determine the propagation paths with the highest probability

and the largest estimated risk value.

Other authors like Hu et al. [116] propose a search algorithm based on lazy strategy, in terms of

the macro component level, and on propagation difficulty when it comes to the microcode class

level. With it, it is possible to reduce the search space complexity from exponential to polynomial.

Furthermore, the algorithm can effectively identify software vulnerabilities that may affect a

specific project.

Although numerous works have already been done in attack graph analysis, most of the works

have focused on vulnerability prioritization instead of attack path prioritization. Many algorithms

have been developed to prioritize individual vulnerability, but these do not work well in multi-

step attack situations. Thus, it is essential to propose an overall security rate to indicate the risk

level of the complete attack path and not just the single vulnerability. Agrawal and Khan [17]

used the idea of Breadth First Search (BFS) algorithm (a graph and tree search algorithm) to

propose an algorithm for computing vulnerability propagation of an attribute. To do so, they

introduce a measure called Attribute Vulnerability Ratio (AVR). More recently, Garg et al. [4]

developed a hybrid methodology to estimate attack path score by first calculating the risk score

of individual vulnerabilities using CVSS score metrics (base, temporal and environmental

metrics) to prioritize them, and using Page rank model and Markov model to calculate the attack

path risk score, thus being able to be prioritized. Hence, it will be easy to decide which

vulnerability needs to be patched first to avoid a complete attack path.

 Review on the Application of MUD Files for vulnerability assessment

based on Security Policies

The specification of the intended behaviour of IoT devices could help to avoid or mitigate

potential security attacks. In this direction, policy-based approaches have been traditionally

considered to define the set of allowed and denied actions for a particular system. One of the most

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

prominent examples is the eXtensible Access Control Markup Language (XACML)70, which is

considered the de facto standard for the definition and enforcement of access control policies.

One of the main advantages of XACML is the interoperability it provides between different

vendor access control implementations. Also related to access control, token-based methods have

been widely used to perform authorization. It provides a simple method where the token contains

the permissions of a specific entity.

In addition to the access control aspect, other recommendations are also defined to express other

restrictions on system behaviour. Specifically, authors in [117] propose a layered architecture in

which an access control policy model is used for security and privacy. The method is based on

the model-based security toolkit Seckit, which provides different meta-models to represent the

security requirements of the system behaviour.

Regarding network-layer security aspects, authors of [118] and [119] believe that the network

behaviour of a device is predictable and therefore easily restricted. Indeed, they propose a network

security policy enforcement architecture based on this idea by restricting the network behaviour

of the devices.

Network aspects are also the focus of the recently created (in 2019) Internet Engineering Task

Force (IETF) Manufacturer Usage Description (MUD)71 standard, which is intended to represent

the intended network behaviour of IoT devices. The MUD standard defines the architecture and

data model necessary to restrict the communication from and to a device. This file is intended to

be generated by the manufacturer, as a way to describe the intended network behaviour of their

devices, which can be used later to detect unwanted behaviours that could derive on vulnerabilities

and attacks.

MUD files define the type of communications and access of a certain device in the form of policies

or ACLs. In this sense, the MUD standard is capable of specify policies of the following types:

“allow the communication between devices of the same manufacturer”, “allow the access to the

controller”, or “deny the communications coming from a specific port”. MUD is based on

YANG72 standard to model such restrictions, and JSON73 for serialization purposes. It also

provides mechanisms to extend the MUD model, so manufacturers can express other conditions

not contemplated in the standardized MUD data model (e.g., Quality of Service (QoS) proposed

in [120]).

Hamza et al. [121], as well as authors in [122] and [123] used the MUD rules as input for an

Intrusion Detection System (IDS). They also discussed the limitation of the MUD in protecting

the device from local attacks, as local endpoints are not defined in the MUD file. Authors in [124]

focus on the battery life extension within the 802.11ax devices, optimizing the wake time. In

[125], the authors focus on flooding attacks, using Software Defined Networks (SDNs) and MUD

rules. Also, the project proposed in [126] reduces the vulnerabilities and increase the resilience

of devices in the smart home domain, combining the MUD with threat signalling and updates.

However, this documents only gives some recommendations and it does not enter into details.

The guidelines of the document are completed in the NIST Cybersecurity Practice Guide74 (SP

1800-15), which explains how MUD protocols and tools can reduce the vulnerability of IoT

devices to botnets and other network-based threats as well as reduce the potential for harm from

exploited IoT devices.

70 http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
71 https://tools.ietf.org/html/rfc8520
72 https://tools.ietf.org/html/rfc6020
73 https://datatracker.ietf.org/doc/rfc8259/
74 https://csrc.nist.gov/publications/detail/sp/1800-15/draft

about:blank
about:blank
about:blank
about:blank
about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

Regarding validation, the thesis developed in [127] pre certifies the security of a device based on

its MUD file, validating that the behaviour is the one described in the file. Furthermore, the thesis

considers existing vulnerabilities (e.g., for a specific version of a protocol) and all is performed

in an automated way.

However, MUD files have not been applied only to simple IoT devices. Authors in [128]

combines the MUD file with machine learning techniques within the 5G environment for

predicting the resources the user will need. Also, MUD files have been applied to more complex

devices such as smartphones [129] with the objective to mitigate the threat of malicious apps and

IoT devices in smart home networks. Even so, the MUD model, as described in the standard is

limited to certain network layer aspects. In this sense, and coping with this, current research has

addressed this limitation by extending the model to integrate more fine-grained information that

could be useful to detect more types of vulnerabilities. Authors in [130] extend the MUD model

to consider dynamic aspects in the context of smart homes, whereas in [131], authors propose a

new behavioural profile based on the MUD with the aim of creating a feature vector. Moreover,

authors in [132] define an augmented MUD profile to include security properties such as key sizes

or cryptographic algorithms and to limit the maximum number of simultaneous connections. The

same authors in [133] extend the MUD model to integrate the Medium-level Security Policy

Language (MSPL), which provides flexibility to define other policies (privacy, data protection,

channel protection, authorization, etc.).

MUD files have been widely used in current research to validate the configuration of the device,

detecting misalignments from the recommended behaviour. Although in the majority of the cases,

these detections come hand by hand with an IDS, MUD files can be also used during design phase

as a way to validate the conformity of the manufacturer recommendations with the system, before

it is released into the market, adjusting it in case it is necessary. Moreover, although the provided

semantics does not allow the specification of more fine-grained security aspects to be defined,

some of the analysed works provide extensions to integrate more information in the MUD model

that can be also analysed during the design phase (e.g., key lengths or cryptographic algorithms

used). Due to the significant growth of IoT devices, the use of a standardized approach such as

MUD will be crucial to face existing and new security threats, as well as the heterogeneity of

existing devices and technologies. Furthermore, although the original MUD file was oriented to

IoT devices, the research has proved that the potential of the MUD goes beyond, providing

behavioural profiles to more complex systems such as mobile phones or 5G environments, and

providing extensions to reflect more types of security policies.

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

6. Conclusions

In this document a review of the main vulnerability datasets and standards was provided, as well

as a review of the state of the art on vulnerability detection, forecasting and propagation.

Based on the idea that vulnerability identification is one of the first steps in software security

lifecycle, the techniques for this purpose have been reviewed and categorized in the following

three topics: anomaly detection, vulnerable pattern recognition and vulnerability prediction

models.

Anomaly detection approaches can be used to find vulnerabilities caused by the use of improper

APIs as well as missing checks or neglected conditions. However, the assumption that missing

checks or the use of improper APIs are rare events makes deviations that cannot be easily detected,

leading to high false-positive rates. On the other hand, vulnerable pattern recognition is focused

on discovering vulnerabilities by defining patterns of vulnerable code segments. Even though the

results provided from the aforementioned works were acceptable, they suffer from some

important shortcomings since they employ approaches based on very limited or shallow

information about the software. An effective modelling and discovery of vulnerabilities requires

information about different aspects of software like syntactic, control-flow and data-flow. A

different perspective for trying to predict the presence of software vulnerabilities is by means of

VPM based on software metrics.

It should be noted that, although detection is a crucial step and can be obtained by means of the

aforementioned techniques, identifying which ones are more likely to be exploitable could be

even more important in order to prioritize the vulnerability management. Being aware of this, in

the VPM context based on metrics, some studies were performed focused on this goal, unlike the

other two approaches.

To the best of our knowledge, anomaly detection, vulnerable pattern recognition and vulnerability

prediction models are focused on the detection of vulnerabilities in a general way. Although

detection is the first step to reduce the risk in software security, it is also interesting to determine

the type of vulnerability, in order to prioritize which ones could be exploited sooner. Taking this

into account, BIECO will focus on the research of mechanisms that allow not only to detect

but also to try to identify the type of vulnerability, as well as to provide their fine-graine

location. Furthermore, the application of Federated Learning techniques will be explored more

in depth for the training of the Machine Learning models used in the vulnerability detection

process. The application of Federated Learning, besides not being used in the field of

vulnerability detection until the date, could allow to solve confidentiality issues (avoiding the

sharing of sensitive source code).

Related to the forecasting topic, there are two Machine Learning methods, Differentiable

Neural Computer and Tsetlin Machine, that have not been used yet in vulnerabilities

forecasting, but we expect them to achieve good performance after some improvements. It should

be noted that these methods are generally far more effective than any other methods previously

used for time series forecasting, including vulnerabilities forecasting. Another key approach that

could be undertaken is focused on the novel architectures of the neural network's models, like

the Transformer architecture and Capsule Networks. These architectures exhibited remarkable

results in NLP (Natural Language Processing) and image recognition tasks, outperforming

previous models by a solid margin. The usage of these architectures for vulnerabilities prediction

is not researched fully yet, but we consider it a very promising approach nonetheless.

Additionally, based on the reviewed literature of the subsection 4.1 for predicting when a

vulnerability will be exploited within a period of time, our idea is to provide a methodology

applied to the BIECO´s use cases considering a closest period of time (e.g., 6 months), or at

least, the same period (within the next 12 months).

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

In terms of propagation, and after the reviewed studies, graph algorithms will be explored to

model the path that a vulnerability can follow across a source code. Furthermore, since a

vulnerability can be propagated through different paths, several optimization graphs algorithms

are going to be tested in order to obtain the most prone one. In addition, the use of severity rating

methods will be assessed as a complement to the path optimization.

Finally, policy-based approaches, and specially the recently approved MUD standard, appears

as a promising tool that could allow not only to mitigate suspicious behaviours during the runtime

phase, but also to detect misalignment with the manufacturer's security specifications during

the design phase, applying the corrections that are necessary before its market release.

The review of the different approaches and the works mentioned in this document provides us

with a good starting point for the design of the different tools that will be developed in order to

perform the vulnerability assessment process of BIECO. These approaches will be further

researched within the tasks “T3.3 Vulnerability detection and forecasting” and “T3.4

Vulnerability propagation”, and the preliminary results documented in deliverables “D3.3 Report

of the tools for vulnerability detection and forecasting” and “D3.4 Report of the tools for

vulnerabilities propagation”.

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

7. References

[1] S. Samonas and D. Coss, "The CIA strikes back: redefining Confidentiality, Integrity and

Availability in security," Journal of Information System Security, vol.10, no. 3, pp. 21–45,

Jul. 2014

[2] R. Amankah, P. K. Kudjo, S. Y. Antwi “Evaluation of software Vulnerability Detection

Methods and Tools: A review,” International Journal of Computer Applications, vol 69,

no. 8, pp. 22—27, 2017

[3] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen, “Tracking known security

vulnerabilities in proprietary software systems,” IEEE 22nd International Conference on

Software Analysis, Evolution, and Reengineering (SANER), pp. 516–519, Mar. 2015

[4] U. Garg, G. Sikka, and L. K. Awasthi, “Empirical analysis of attack graphs for mitigating

critical paths and vulnerabilities,” Comput. Secur., vol. 77, pp. 349–359, Aug. 2018.

[5] Z. Li and Y. Zhou, “PR-Miner: automatically extracting implicit programming rules and

detecting violations in large software code,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5,

pp. 306–315, Sep. 2005.

[6] N. Gruska, A. Wasylkowski, and A. Zeller, “Learning from 6,000 projects: lightweight

cross-project anomaly detection,” Proceedings of the 19th international symposium on

Software testing and analysis, pp.119-130, Jul. 2010.

[7] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting Vulnerable Software

Components via Text Mining,” IEEE Trans. Software Eng., vol. 40, no. 10, pp. 993–1006,

Oct. 2014.

[8] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier, “Toward Large-

Scale Vulnerability Discovery using Machine Learning,” Proceedings of the Sixth ACM

Conference on Data and Application Security and Privacy, pp. 85-96, Mar. 2016.

[9] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a Needle in a Haystack:

Predicting Security Vulnerabilities for Windows Vista,” Third International Conference

on Software Testing, Verification and Validation, pp.421-428, Apr. 2010.

[10] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak, and L. Karaçay, “Vulnerability

prediction from source code using Machine Learning,” IEEE Access, vol. 8, pp. 150672–

150684, 2020.

[11] Y. Roumani, J. K. Nwankpa, and Y. F. Roumani, “Time series modelling of

vulnerabilities,” Comput. Secur., vol. 51, pp. 32–40, Jun. 2015.

[12] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and cohesion metrics as

early indicators of vulnerabilities,” Int. J. High Perform. Syst. Archit., vol. 57, no. 3, pp.

294–313, Mar. 2011.

[13] G. O. Kaya and O. F. Demirel, “Parameter optimization of intermittent demand forecasting

by using spreadsheet,” Kybernetes, vol. 44, no. 4. pp. 576–587, 2015.

[14] J. Jacobs, S. Romanosky, B. Edwards, M. Roytman, and I. Adjerid, “Exploit Prediction

Scoring System (EPSS),” arXiv [cs.CR], Aug. 13, 2019.

[15] H. Chen, R. Liu, N. Park, and V. S. Subrahmanian, “Using Twitter to Predict When

Vulnerabilities will be Exploited,” Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 2019.

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

[16] N. Feng, H. J. Wang, and M. Li, “A security risk analysis model for information systems:

Causal relationships of risk factors and vulnerability propagation analysis,” Inf. Sci., vol.

256, pp. 57–73, Jan. 2014.

[17] A. Agrawal and R. A. Khan, “Impact of inheritance on vulnerability propagation at design

phase,” SIGSOFT Softw. Eng. Notes, vol. 34, no. 4, pp. 1–5, Jul. 2009

[18] M. Dorigo and L.M. Gambardella, “Ant Colony System: a cooperative learning approach

to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation, vol.

1, no. 1, pp. 53–66. 1997.

[19] M. Abadi and S. Jalili, “An ant colony optimization algorithm for network vulnerability

analysis” Iranian Journal of Electrical and Electronic Engineering, vol. 2, no. 3 & 4, July

2006.

 [20] Y. Shin and L. Williams, “Can traditional fault prediction models be used for vulnerability

prediction?,” Empirical Software Engineering, vol. 18, no. 1, pp. 25–59, 2013.

[21] N. Dor, M. Rodeh, and M. Sagiv, “CSSV: towards a realistic tool for statically detecting

all buffer overflows in C,” Proceedings of the ACM SIGPLAN 2003 conference on

Programming language design and implementation, pp. 155–167, May 2003.

[22] D. Larochelle and D. Evans, “Statically detecting likely buffer overflow vulnerabilities,”

10th USENIX Security Symposium, 2001.

[23] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “ITS4: a static vulnerability scanner for

C and C++ code,” Proceedings 16th Annual Computer Security Applications Conference

(ACSAC’00), pp. 257-267, Dec. 2000.

[24] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput.

Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009.

[25] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying density-based

local outliers,” Proceedings of the 2000 ACM SIGMOD international conference on

Management of data, pp. 93–104, May 2000.

[26] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, and Others, “A density-based algorithm for

discovering clusters in large spatial databases with noise,” Kdd, vol. 96, pp. 226–231, 1996.

[27] P. Cunningham and S.J. Delany, “k-Nearest neighbour classifiers,” Multiple Class. Syst.,

vol 34, pp. 1-17, 2007.

[28] F. T. Liu, K. M. Ting and Z. Zhou, "Isolation Forest," Eighth IEEE International

Conference on Data Mining, pp. 413-422, 2008.

[29] R. Agrawal, T. Imieliński, A. Swami, "Mining association rules between sets of items in

large databases," Proceedings of the 1993 ACM SIGMOD international conference on

Management of data, p. 207, 1993.

[30] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Outlier Detection in Axis-Parallel

Subspaces of High Dimensional Data,” in Advances in Knowledge Discovery and Data

Mining, 2009, pp. 831–838.

[31] H.P. Kriegel, M. Schubert, and A. Zimek, “Angle-based outlier detection in high-

dimensional data,” Proceedings of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 444–452, Aug. 2008.

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

[32] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as deviant behaviour: A

general approach to inferring errors in systems code”, Proc. 18th SOSP, pp. 57-72, 2001.

[33] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage anomalies,”

Proceedings of the the 6th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of software engineering, pp. 35–

44, Sep. 2007.

[34] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as partial orders from source

code: from usage scenarios to specifications,” Proceedings of the 6th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, pp. 25–34, Sep. 2007.

[35] R. Chang, A. Podgurski, and J. Yang, “Discovering Neglected Conditions in Software by

Mining Dependence Graphs,” IEEE Trans. Software Eng., vol. 34, no. 5, pp. 579–596, Sep.

2008.

[36] S. Thummalapenta and T. Xie, “Alattin: Mining Alternative Patterns for Detecting

Neglected Conditions,” 2009 IEEE/ACM International Conference on Automated Software

Engineering, pp. 283–294, Nov. 2009.

[37] B. Livshits and T. Zimmermann, “DynaMine: finding common error patterns by mining

software revision histories,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp. 296–305, Sep.

2005.

[38] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability extrapolation using

abstract syntax trees,” Proceedings of the 28th Annual Computer Security Applications

Conference, pp. 359–368, Dec. 2012.

[39] F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability extrapolation: assisted discovery

of vulnerabilities using machine learning,” Proceedings of the 5th USENIX conference on

Offensive technologies, p. 13, Aug. 2011.

[40] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modelling and Discovering

Vulnerabilities with Code Property Graphs,” 2014 IEEE Symposium on Security and

Privacy, pp. 590–604, May 2014.

[41] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck, “Automatic Inference of Search

Patterns for Taint-Style Vulnerabilities,” 2015 IEEE Symposium on Security and Privacy,

pp. 797–812., May 2015.

[42] Y. Pang, X. Xue, and A. S. Namin, “Predicting Vulnerable Software Components through

N-Gram Analysis and Statistical Feature Selection,” 2015 IEEE 14th International

Conference on Machine Learning and Applications (ICMLA). 2015.

[43] R.E. Bellman, “Adaptive Control Processes: a guided tour,” Princeton University Press,

NJ, 1961.

[44] L. K. Shar and H. B. K. Tan, “Predicting SQL injection and cross site scripting

vulnerabilities through mining input sanitization patterns,” Information and Software

Technology, vol. 55, no. 10, pp. 1767–1780, Oct. 2013.

[45] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for detecting Web

application vulnerabilities,” 2006 IEEE Symposium on Security and Privacy (S P’06), p. 6

pp.–263, May 2006.

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

[46] L. K. Shar, H. Beng Kuan Tan, and L. C. Briand, “Mining SQL injection and cross site

scripting vulnerabilities using hybrid program analysis,” 2013 35th International

Conference on Software Engineering (ICSE), pp. 642–651, May 2013.

[47] L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web Application Vulnerability Prediction

Using Hybrid Program Analysis and Machine Learning,” IEEE Trans. Dependable Secure

Comput., vol. 12, no. 6, pp. 688–707, Nov. 2015.

[48] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A framework for using deep

learning to detect software vulnerabilities,” arXiv, 2018.

[49] Z. Li et al., “Vuldeepecker: A deep learning-based system for vulnerability detection,”

arXiv, 2018

[50] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vulnerable

 software components,” Proceedings of the 14th ACM conference on

 Computer and communications security, pp. 529–540, Oct. 2007.

[51] G. James, D. Witten, T. Hastie, and R. Tibshirani, "An Introduction to Statistical Learning:

with Applications in R," Springer, 2013.

[52] T. Hastie, R. Tibshirani, and J. Friedman, "The Elements of Statistical Learning: Data

Mining, Inference, and Prediction,” Second Edition. Springer Science & Business Media,

2009.

[53] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction approaches: a

benchmark and an extensive comparison,” Empirical Software Engineering, vol. 17, no. 4–

5, pp. 531–577, 2012.

[54] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vulnerable software

components,” Proceedings of the 14th ACM conference on Computer and communications

security, pp. 529–540, Oct. 2007.

[55] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting component failures at design

time,” Proceedings of the 2006 ACM/IEEE international symposium on Empirical software

engineering, pp. 18–27, Sep. 2006.

[56] Y. Shin and L. Williams, “An empirical model to predict security vulnerabilities using code

complexity metrics,” Proceedings of the Second ACM-IEEE international symposium on

Empirical software engineering and measurement, pp. 315–317, Oct 2008.

[57] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating Complexity, Code

Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities,” IEEE

Trans. Software Eng., vol. 37, no. 6, pp. 772–787, Nov. 2011.

[58] M. Gegick, L. Williams, J. Osborne, and M. Vouk, “Prioritizing software security

fortification throughcode-level metrics,” Proceedings of the 4th ACM workshop on Quality

of protection, pp. 31–38, Oct 2008.

[59] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges with applying

vulnerability prediction models,” Proceedings of the 2015 Symposium and Bootcamp on

the Science of Security, pp. 1–9, Apr. 2015.

[60] A. Younis, Y. Malaiya, C. Anderson, I. Ray “To fear or not to fear that is the question:

Code characteristics of a vulnerable function with an existing exploit,” Proceedings of the

Sixth ACM Conference on Data and Application Security and Privacy, 2016

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

[61] G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure, privacy-preserving

and federated machine learning in medical imaging,” Nature Machine Intelligence, vol. 2,

no. 6, pp. 305–311, Jun. 2020.

[62] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

Efficient Learning of Deep Networks from Decentralized Data,” Proceedings of the 20th

International Conference on Artificial Intelligence and Statistics, vol. 54, pp. 1273–1282,

2017.

[63] “Consumer data privacy in a networked world: A framework for protecting privacy and

promoting innovation in the global digital economy,” White House, Washington, DC, pp.

1–62, 2012.

[64] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, and G. Srivastava,

“A survey on security and privacy of federated learning,” Future Gener. Comput. Syst.,

vol. 115, pp. 619–640, Feb. 2021.

[65] R. J. Hyndman and G. Athanasopoulos, "Forecasting: principles and practice,” OTexts,

2018.

[66] E. Bee Dagum and S. Bianconcini, “Seasonal Adjustment Methods and Real Time Trend-

Cycle Estimation," Springer, Cham, 2016.

[67] R. B. Cleveland and Others, “STL: A seasonal-trend decomposition procedure based on

loess,” 1990.

[68] M. Theodosiou, “Forecasting monthly and quarterly time series using STL decomposition,”

Int. J. Forecast., vol. 27, no. 4, pp. 1178–1195, Oct. 2011.

[69] R. G. Brown, "Statistical Forecasting for Inventory Control,” McGraw-Hill, 1959.

[70] C. C. Holt, "Forecasting seasonals and trends by exponentially weighted moving

averages,” Defense Technical Information Center, 1957.

[71] P. R. Winters, “Forecasting Sales by Exponentially Weighted Moving Averages,” Manage.

Sci., vol. 6, no. 3, pp. 324–342, Apr. 1960.

[72] R. Hyndman, A. B. Koehler, J. Keith Ord, and R. D. Snyder, “Forecasting with Exponential

Smoothing: The State Space Approach,” Springer Science & Business Media, 2008.

[73] B. Abraham and J. Ledolter, “Statistical methods for forecasting,” John Wiley & Sons, vol.

234, 2009

[74] Z. Cai, L. Chen, and Y. Fang, “A new forecasting model for usd/cny exchange rate,”

Studies in Nonlinear Dynamics & Econometrics, vol. 16, no. 3, 2012.

[75] C.-J. Kim, “Dynamic linear models with markov-switching,” Journal of Econometrics, vol.

60, no. 1-2, pp. 1–22, 1994.

[76] V. Assimakopoulos and K. Nikolopoulos, “The theta model: a decomposition approach to

forecasting,” International journal of forecasting, vol. 16, no. 4, pp. 521–530, 2000.

[77] R. J. Hyndman, Y. Khandakar, and Others, "Automatic time series for forecasting: the

forecast package for R," Monash University, Department of Econometrics and Business

Statistics, 2007.

[78] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, "Time Series Analysis:

Forecasting and Control," John Wiley & Sons, 2015.

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

[79] P. J. Brockwell and R. A. Davis, "Introduction to Time Series and Forecasting,” Springer,

Cham, 2016.

[80] D. Peña, G. C. Tiao, and R. S. Tsay, "A Course in Time Series Analysis,” John Wiley &

Sons, 2011.

[81] K. Ord and R. Fildes, "Principles of business forecasting,” Nelson Education, 2012.

[82] F. E. Harrell and Jr., "Regression Modelling Strategies: With Applications to Linear

Models, Logistic and Ordinal Regression, and Survival Analysis,” Springer, 2015.

[83] A. Pankratz, "Forecasting with Dynamic Regression Models,” John Wiley & Sons, 2012.

[84] N. Bhatt, A. Anand, and V.S.S. Yadavalli, “Exploitability prediction of software

vulnerabilities,” Quality and Reliability Engineering International, 2020.

[85] K. A. Farris, A. Shah, G. Cybenko, R. Ganesan, and S. Jajodia, “VULCON,” ACM

Transactions on Privacy and Security, vol. 21, no. 4. pp. 1–28, 2018.

[86] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker. “Beyond heuristics: learning to

classify vulnerabilities and predict exploits,” Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 105-113, 2010.

[87] M. Edkrantz and A. Said. “Predicting cyber vulnerability exploits with machine learning,”

Thirteenth Scandinavian Conference on Artificial Intelligence, pp. 48-57, 2015.

[88] M. Almukaynizi, E. Nunes, K. Dharaiya, M. Senguttuvan, J. Shakarian and P. Shakarian,

“Proactive identification of exploits in the wild through vulnerability mentions online,”

2017 International Conference on Cyber Conflict (CyCon U.S.), 2017.

[89] C. Sabottke, O. Suciu, and T. Dumitraș, “Vulnerability disclosure in the age of social

media: Exploiting twitter for predicting real-world exploits,” 24th USENIX Security

Symposium, pp. 1041–1056, 2015.

[90] M. Almukaynizi, E. Nunes, K. Dharaiya, M. Senguttuvan, J. Shakarian, and P. Shakarian,

“Proactive identification of exploits in the wild through vulnerability mentions online,”

2017 International Conference on Cyber Conflict (CyCon U.S.). 2017

[91] H. S. Venter and J. H. P. Eloff, “Vulnerability forecasting—a conceptual model,” Comput.

Secur., vol. 23, no. 6, pp. 489–497, Sep. 2004.

[92] D. Last, “Forecasting Zero-Day Vulnerabilities,” Proceedings of the 11th Annual Cyber

and Information Security Research Conference, pp. 1–4, Apr. 2016.

[93] A. Ozment, S. E. Schechter, and R. Dhamija, “Web sites should not need to rely on users

to secure communications,” 2006.

[94] E. Yasasin, J. Prester, G. Wagner, and G. Schryen, “Forecasting IT security vulnerabilities

– An empirical analysis,” Computers & Security, vol. 88. p. 101610, 2020.

[95] J. D. Croston, “Forecasting and Stock Control for Intermittent Demands,” J. Oper. Res.

Soc., vol. 23, no. 3, pp. 289–303, Sep. 1972.

[96] M. R. Amin-Naseri and B. R. Tabar, “Neural network approach to lumpy demand

forecasting for spare parts in process industries,” 2008 International Conference on

Computer and Communication Engineering, pp. 1378–1382, May 2008.

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

[97] N. Kourentzes, “Intermittent demand forecasts with neural networks,” Int. J. Prod. Econ.,

vol. 143, no. 1, pp. 198–206, May 2013.

[98] M. Zhao, J. Grossklags, and P. Liu, “An Empirical Study of Web Vulnerability Discovery

Ecosystems,” Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pp. 1105–1117, Oc. 2015.

[99] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The m4 competition: results,

findings, conclusion and way forward,” International Journal of Forecasting, vol. 34, no.

4, pp. 802–808, 2018.

[100] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The m4 competition: 100,000 time

series and 61 forecasting methods,” International Journal of Forecasting, 2019.

[101] S. Smyl, “A hybrid method of exponential smoothing and recurrent neural networks for

time series forecasting,” International Journal of Forecasting, vol. 36, no. 1, pp. 75–85,

2020.

[102] P. Montero-Manso, G. Athanasopoulos, R.J. Hyndman, and T.S. Tala- gala, “FFORMA:

feature-based forecast model averaging,” International Journal of Forecasting, vol. 36,

no. 1, pp. 86–92, 2020.

[103] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-beats: neural basis expansion

analysis for interpretable time series forecasting,” arXiv, 2019.

[104] L. Le and Y. Xie, “Deep embedding kernel,” Neurocomputing, vol. 339, pp. 292–302,

2019.

[105] L. Shen, J. Chen, Z. Zeng, J. Yang, and J. Jin, “A novel echo state network for multivariate

and nonlinear time series prediction,” Applied Soft Computing, vol. 62, pp. 524–535, 2018.

[106] Hu, Hao, and Guo-Jun Qi. "State-frequency memory recurrent neural networks."

International Conference on Machine Learning. 2017.

[107] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G.

Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al., “Hybrid computing using a

neural network with dynamic external memory,” Nature, vol. 538, no. 7626, p. 471, 2016.

[108] O.-C. Granmo, S. Glimsdal, L. Jiao, M. Goodwin, C. W. Omlin, and G. T. Berge, “The

convolutional tsetlin machine,” arXiv, 2019.

[109] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I.

Polosukhin, “Attention is all you need,” Advances in neural information processing

systems, pp. 5998–6008, 2017.

[110] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” Advances in

neural information processing systems, pp. 3856–3866, 2017.

[111] A. E. Hassan and R. C. Holt, “Predicting change propagation in software systems,” 20th

IEEE International Conference on Software Maintenance, 2004. Proceedings., pp. 284–

293, Sep. 2004.

[112] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based change impact analysis

techniques: A SURVEY OF CODE-BASED CIA TECHNIQUES,” Softw. Test. Verif.

Reliab., vol. 23, no. 8, pp. 613–646, Dec. 2013.

about:blank
about:blank
about:blank
about:blank
about:blank

Page 20 of 58

Deliverable 3.1: Report on the State of the Art of Vulnerability Management

[113] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnerabilities in open-source

software libraries,” 2015 IEEE International Conference on Software Maintenance and

Evolution (ICSME), pp. 411–420, Sep. 2015.

[114] L. Wall and T. Christiansen, with J. Orwant, “Programming Perl,” O’Reilly, 3rd edition,

2000.

[115] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for Java,” 21st Annual

Computer Security Applications Conference (ACSAC’05), p. 9 pp.–311, Dec 2005.

[116] W. Hu, Y. Wang, X. Liu, J. Sun, Q. Gao, and Y. Huang, “Open Source Software

vulnerability propagation analysis algorithm based on Knowledge Graph,” 2019 IEEE

International Conference on Smart Cloud (SmartCloud), pp. 121–127, Dec. 2019.

[117] C. Sarkar, A. U. Nambi S. N., R. V. Prasad, A. Rahim, R. Neisse, and G. Baldini, “DIAT:

A scalable distributed architecture for IoT,'' IEEE Internet Things J., vol. 2, no. 3, pp. 230-

239, Jun. 2015.

[118] D. Barrera, I. Molloy, and H. Huang, “Standardizing IoT network security policy

enforcement,'' Proc. Workshop Decentralized IoT Secur. Standards, pp. 1-6, 2018.

[119] D. Barrera, I. Molloy, and H. Huang, “IDIoT: Securing the Internet of Things like it's

1994,'' arXiv, Dec. 2017.

[120] E. Lear, J. Henry, and R. Barton, “Determining nominal quality of service needs of a

device,”

[121] A. Hamza, H.H. Gharakheili, and V. Sivaraman, “Combining MUDPolicies with SDN for

IoT Intrusion Detection,” Proceedings of the 2018 Workshop on IoT Security and Privacy,

pp. 1–7, ACM,2018.

[122] H. J. Hadi, S. M. Sajjad, and K. un Nisa, “BoDMitM: Botnet Detection and Mitigation

System for Home Router Base on MUD,” International Conference on Frontiers of

Information Technology (FIT), pp. 139–1394, 2019.

[123] Y. Afek, A. Bremler-Barr, D. Hay, L. Shafir, and I. Zhaika, “Demo: NFV-based IoT

Security at the ISP Level,” p.2.

[124] V. Lade, A. Mohan, and S. Patil, “802.11AX for the Internet of Things- Machine Learning

assisted optimized power save techniques for IoT devices using 802.11AX target wake

time”

[125] L. Chang, “A Proactive Approach to Detect IoT Based Flooding Attacks by Using Software

Defined Networks and Manufacturer Usage Descriptions.”

[126] T. Polk, M. Souppaya, and W. C. Barker, “Mitigating IoT-Based Automated Distributed

Threats,” 2017.

[127] C. Gangurde, “Automation of IoT pre-certification security testing environment based on

the Manufacturing Usage Description.”

[128] M. Hanes, C. Byers, J. Clarke, and G. Salgueiro, “Human usage description for 5G

networks endpoints”

[129] I. Berenice, M. Serror, and K. Wehrle, “Extending MUD to Smartphones,” presented at the

45th IEEE Conference on Local Computer Networks (LCN), 2020.

Page 19 of 58

 Deliverable 3.1: Report on the State of the Art of Vulnerability Management

[130] Z. Jin, Y. M. Lee, C. H. Copass, and Y. Park, “Building system with dynamic manufacturer

usage description (MUD) files based on building model queries,” Apr. 30 2020.

[131] A. Singh, S. Murali, L. Rieger, R. Li, S. Hommes, R. State, G. Ormazabal, and H.

Schulzrinne, “Hanzo: Collaborative network defence for connected things,” 2018

Principles, Systems and Applications of IP Telecommunications (IPTComm), pp. 1–8,

IEEE, 2018.

[132] S. N. Matheu, J. L. Hernandez-Ramos, S. Perez, and A. F. Skarmeta, “Extending MUD

profiles through an Automated IoT Security Testing Methodology,” IEEE Access, pp. 1–

20, 2019.

[133] S. N. Matheu, A. Robles Enciso, A. Molina Zarca, D. Garcia-Carrillo, J. L. Hernández-

Ramos, J. Bernal Bernabe, and A. F. Skarmeta, “Security architecture for defining and

enforcing security profiles in dlt/sdnbased iot systems,” Sensors, vol. 20, no. 7, p. 1882,

2020.

