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Executive Summary 

One of the main purposes of cybersecurity is to guarantee the properties of the CIA triad 

(Confidentiality, Integrity, and Availability) [1], also known as the CIA triangle of data and 

services (Figure 1). Confidentiality refers to the prevention of an information disclosure to 

unauthorized entities or individuals; integrity implies that data cannot be modified without 

detection, ensuring its correctness; and availability seeks to provide uninterrupted access to the 

system by legitimate users, whenever it is required. Hence, CIA properties become an important 

gear for information security. These properties are the security requirements that a computer 

system should accomplish, and they are directly linked to each other, so a balance between them 

guarantees high levels of security and trust.  

 

Figure 1 CIA triad standing for Confidentiality, Integrity and Availability. 

As a consequence, a failure in any of these three properties can impact the rest of them, affecting 

the trust of the user on the system. As an example, the lack of confidentiality can lead to a high 

probability of integrity violation, and the modification of the integrity data can provoke 

applications to stop working in a proper way, affecting availability. In particular, one of the main 

issues we can face when it comes to the fulfilment of such properties is the existence of security 

vulnerabilities. This leads their detection and analysis to be crucial for ensuring the security and 

trustworthiness of the system.  

More in particular, a security vulnerability is a weakness that can be exploited by an attacker in 

order to compromise the confidentiality, availability or integrity of a system1. Nowadays, the 

number of vulnerabilities disclosed are increasing every year2, and those that are present in 

widely-used systems can cause severe economic, reputational and even societal harms. Therefore, 

it is essential to identify these vulnerabilities on an early stage of the systems’ development life 

cycle, and improve the assessment processes and tools that allow to detect, classify, evaluate and 

mitigate vulnerabilities on an accurate manner.  

As the first step of the vulnerability assessment process, the identification is critical. In this sense, 

substantial research has been devoted to techniques that analyse source code in order to detect 

and characterize security vulnerabilities [2], but also to evaluate how a vulnerability could 

propagate to other elements of the software supply chain [e.g., 3, 4]. In BIECO project, the 

vulnerability identification and characterization process will focus mainly on three topics: 

1) Detection: it consists on the accurate identification of software vulnerabilities within a 

source code. For this purpose, BIECO will explore the use of Machine Learning and data 

mining techniques, such as anomaly detection-based techniques [e.g., 5, 6], vulnerable 

code pattern recognition [e.g., 7, 8] and vulnerability prediction models [e.g., 9, 10].  

 
1 https://cve.mitre.org/about/terminology.html   
2 https://www.cvedetails.com/browse-by-date.php   

about:blank
about:blank


 

Page 20 of 58 

Deliverable 3.1: Report on the State of the Art of Vulnerability Management 

2) Forecasting: it allows to make predictions of future data on time series domain, i.e., 

where data are collected at regular intervals over time (e.g., hourly, daily, monthly, 

annually). In the context of BIECO, the idea is two-fold: i) forecasting the number of 

vulnerabilities [e.g., 11, 12, 13] and ii) forecasting the period of time in which these 

vulnerabilities could be exploited (e.g., within the next 12 months) [e.g., 14, 15]. 

3) Propagation: it offers an estimation of how a localized vulnerability can affect the rest 

of the code. For this purpose, studies based on graph theory will be analysed [e.g., 16, 

17], as well as optimization path algorithms such as Ant Colony Optimization (ACO) [18, 

19]. Moreover, the applicability of the recent standard Manufacturer Usage Description 

(MUD)3 will be also assessed. 

In particular, this document provides a review on the current state of the art about vulnerabilities 

assessment related to the three topics mentioned before (detection, forecasting and propagation). 

The deliverable starts with an introduction to the concept of security vulnerabilities and continues 

with a summary of the most representative standards in the field, as well as a compilation of 

vulnerability datasets, including the NVD (National Vulnerability Database)4. The document 

presents then a review of several state-of-the-art techniques for the assessment of software 

vulnerabilities, including their identification, forecasting and propagation. Finally, some 

conclusions are provided in order to summarize the most important reviewed topics. 

 

Project Summary 

Nowadays most of the ICT solutions developed by companies require the integration or 

collaboration with other ICT components, which are typically developed by third parties. Even 

though this kind of procedures are key in order to maintain productivity and competitiveness, the 

fragmentation of the supply chain can pose a high risk regarding security, as in most of the cases 

there is no way to verify if these other solutions have vulnerabilities or if they have been built 

taking into account the best security practices. 

In order to deal with these issues, it is important that companies make a change on their mindset, 

assuming an “untrusted by default” position. According to a recent study only 29% of IT business 

know that their ecosystem partners are compliant and resilient with regard to security. However, 

cybersecurity attacks have a high economic impact and it is not enough to rely only on trust. ICT 

components need to be able to provide verifiable guarantees regarding their security and privacy 

properties. It is also imperative to detect more accurately vulnerabilities from ICT components 

and understand how they can propagate over the supply chain and impact on ICT ecosystems. 

However, it is well known that most of the vulnerabilities can remain undetected for years, so it 

is necessary to provide advanced tools for guaranteeing resilience and also better mitigation 

strategies, as cybersecurity incidents will happen. Finally, it is necessary to expand the horizons 

of the current risk assessment and auditing processes, taking into account a much wider threat 

landscape. BIECO is a holistic framework that will provide these mechanisms in order to help 

companies to understand and manage the cybersecurity risks and threats they are subject to when 

they become part of the ICT supply chain. The framework, composed by a set of tools and 

methodologies, will address the challenges related to vulnerability management, resilience, and 

auditing of complex systems.  

 
3 https://tools.ietf.org/html/rfc8520  
4 https://nvd.nist.gov  
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1. Introduction 

 Motivation 

In recent years, an alarming increase in cybersecurity attacks has been detected5. Especially with 

the COVID pandemic, where teleworking is the new lifestyle, attackers have at their disposal a 

huge and often insufficiently protected attack surface. One of the best-known examples is the 

WannaCry ransomware, which affected more than 230,000 computers in 150 countries. The most 

affected countries were Russia; Ukraine; India; Great Britain, where the National Health Service 

was compromised; Spain, for the attack on Telefónica and Germany, where the German railway 

company Deutsche Bahn AG was the main target. Cyber attackers collected more than 140,000 

dollars in bitcoins. 

This is causing companies huge economic losses, service interruptions and great social concern. 

These attacks damage the company's reputation, causing customers to be lost. In addition to the 

security of information systems, such as firewall mechanisms to prevent DDoS attacks, 

organizations must focus on the development of their software applications. According to the 

IBM security summit in 2016, 60% of cyberattacks benefits from inside6, benefiting from bugs. 

Bugs are nothing more than programming errors, and most of them are completely harmless 

beyond affecting the performance of the product. However, some bugs can be exploited by 

malicious external entities, in order to obtain certain benefits (private data, access to the system, 

interruption of the service, etc.). In this case we are no longer talking about bugs, but about 

vulnerabilities and weaknesses.  

Taking into account the impact that a simple vulnerability can have, it is essential to further 

research and improve the existent vulnerability assessment mechanisms. This document 

presents a review on state-of-the-art techniques for vulnerability assessment, as well as a 

compilation of relevant vulnerability related standards and databases. The results of this 

review will be used as an input for the design and development of the vulnerability assessment 

tools that will be produced by the WP3 of the BIECO project.  

 

 Background 

A security vulnerability is defined by the European Union Agency for Cybersecurity (ENISA)7 

as a weakness an adversary could take advantage of to compromise the confidentiality, 

availability, or integrity of a resource. At the same time, a weakness refers to implementation 

flaws or security implications due to design choices. For example, a lack of control over the length 

of the data entered could lead to a buffer overflow vulnerability, allowing attackers to steal or 

corrupt private information, or even run malicious code.  

An added problem is the propagation of vulnerabilities either within the same component or 

between different components. Although a certain functionality can be designed in a secure way, 

the reality is that its interaction with a vulnerable functionality or component can make the entire 

product insecure. An example is the one that we can find within the Maven project8 , where the 

POM file in org.wso2.carbon.security.policy9 has a dependency with components from 

org.apache.derby10. This dependency provokes that vulnerabilities existing in org.apache.derby, 

 
5 https://www.cpomagazine.com/cyber-security/new-security-report-breaks-down-increase-in-cyber-attacks-due-to-

remote-work-lack-of-training-overwhelmed-it-departments-are-the-main-issues/  
6 https://www.ituser.es/seguridad/2016/09/el-ibm-security-summit-2016-pone-foco-en-la-seguridad-cognitiva  
7 https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/vulnerabilities-and-exploits  
8 http://maven.apache.org/  
9 https://mvnrepository.com/artifact/org.wso2.carbon/org.wso2.carbon.security.policy  
10 https://mvnrepository.com/artifact/org.apache.derby/derby/10.11.1.1  
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such as CVE-2015-183211, can cause potential vulnerability threats in the Maven project. 

Therefore, it is not only necessary to detect and correct the vulnerabilities of our component in an 

isolated way, but also to analyse the possible consequences derived from the propagation of 

vulnerabilities coming from another component.  

Vulnerability management arises as a way to identify, classify, evaluate and mitigate 

vulnerabilities. Following the definition from ENISA, vulnerability management comprises 

several steps: 

• Preparation: defining the scope of the vulnerability management process. 

• Vulnerability scanning: vulnerability scanners are automated tools that scan a system 

for known security vulnerabilities providing a report with all the identified vulnerabilities 

sorted based on their severity.  

• Identification, classification and evaluation of the vulnerabilities: the vulnerability 

scanner provides a report of the identified vulnerabilities. 

• Remediating actions: the asset owner determines which of the vulnerabilities will be 

mitigated. 

• Rescan: once the remediating actions are completed, a rescan is performed to verify their 

effectiveness. 

This document presents an overview of the state of the art regarding vulnerability assessment and, 

in particular, it focuses on the review of vulnerability scanning methods based mainly on Artificial 

Intelligence techniques. Section 2 introduces the main standards that can be used to structure 

vulnerabilities information, as well as a summary of the main databases that contain information 

for their characterization. Section 3 reviews the main techniques for vulnerability detection (i.e., 

scanning), paying special attention to the techniques based on anomaly detection, patterns and 

prediction models. After that, Section 4 reviews the main techniques for forecasting, which aim 

to give an estimation on the number of vulnerabilities that could arise and the probability of their 

exploitation in a certain period of time, whereas Section 5 focuses on the vulnerability propagation 

analysis techniques, as well as the applicability of the recent standard Manufacturer Usage 

Description (MUD) for vulnerability assessment. Finally, the document ends with a summary of 

the conclusions. 

  

 
11 https://nvd.nist.gov/vuln/detail/CVE-2015-1832  
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2. Analysis of Vulnerability Public Information 

This section presents different types of information that are essential in order to characterize 

adequately a security vulnerability and, therefore, that should be taken into account during the 

design and development of BIECO’s vulnerability assessment tools. The section includes a 

selection of relevant vulnerability standards, a compilation of vulnerability datasets, as well as 

other vulnerability compilation projects.  

A vulnerability assessment process can be significantly difficult without a common baseline. 

Therefore, when dealing with vulnerabilities, it is important to take into account the most common 

standards in the fields (subsection 2.1). Having a structured information about vulnerabilities 

simplifies their assessment process, providing a common understanding of the context of which 

the different vulnerabilities are discovered. 

As the standardization in the vulnerability field has become more mature, several vulnerability 

databases have emerged. These databases are just data repositories, typically public, that compile 

software and hardware vulnerabilities information. To date, there have been published several 

databases that can be used as a support for the assessment of vulnerabilities, and that provide 

users with different types of information. Subsection 2.2 will review the most relevant 

vulnerability databases, paying special attention to National Vulnerability Database (NVD)12. 

Finally, subsection 2.3 introduces OWASP, a reference project that compiles some of the most 

relevant vulnerabilities. 

 

 Vulnerability Standards 

In this subsection we present a selection of vulnerability related standards, such as Common 

Vulnerabilities and Exposures (CVE)13, Common Weakness Enumeration (CWE)14, Common 

Platform Enumeration (CPE)15 and Common Vulnerability Scoring System (CVSS)16. All of them 

are well-known and widespread standards: from identifying vulnerabilities (CVE), to describing 

common weaknesses in software (CWE), to providing consistent names for referring to operating 

systems, hardware and applications (CPE), up to the rating of the severity of vulnerabilities 

(CVSS). 

 

2.1.1. Common Vulnerabilities and Exposures (CVE) 

Common Vulnerabilities and Exposures (CVE) is a list of records of public known information 

about security vulnerabilities, widely used by multiple IT vendors. Its identifiers (CVE-YYYY-

XXXX) enable a common understanding about vulnerabilities and help with the evaluation of the 

coverage of vulnerability tools and services.  

CVE is the industry standard for vulnerability and exposure identifiers whose records provide 

reference points for data exchange so that cybersecurity products and services can speak with 

each other. Products and services compatible with CVE provide easier interoperability, and 

enhanced security. 

 
12 https://nvd.nist.gov  
13 https://cve.mitre.org/  
14 https://cwe.mitre.org/about/index.html 
15 https://nvd.nist.gov/products/cpe  
16 https://www.first.org/cvss/v3-1/  
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The CVE List feeds the NVD or National Vulnerability Database (see section 2.2.1), which then 

builds upon the information included in CVE Records to provide enhanced information for each 

record such as fix information, severity scores, and impact ratings. 

 

2.1.2. Common Weakness Enumeration (CWE) 

Common Weakness Enumeration (CWE) is a dictionary of unique identifiers of common software 

weaknesses (also hardware weaknesses from 2020). This project is supported by the U.S. 

Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency 

(CISA), the Homeland Security Systems Engineering and the Development Institute (HSSEDI), 

which is operated by The MITRE Corporation. 

It offers a wealth of options that can describe common weaknesses such as detection methods, 

consequences, affected resources and likelihood. Even though CWE seems to be related to CVE, 

CWE does not deal with specific software vulnerabilities. For example, CWE would describe a 

buffer overflow in multiple software types, but a CVE ID would be assigned to one specific buffer 

overflow vulnerability in Cisco IOS version X. 

Nonetheless, CWE is useful for: 

• Describing and discussing software and hardware weaknesses in a common language. 

• Checking for weaknesses in existing software and hardware products. 

• Leveraging a common baseline standard for weakness identification, mitigation, and 

prevention efforts. 

• Preventing software and hardware vulnerabilities prior to deployment. 

 

2.1.3. Common Platform Enumeration (CPE) 

Common Platform Enumeration (CPE) is a structured naming scheme for information technology 

systems, software and packages. Based upon the generic syntax for Uniform Resource Identifiers 

(URI), CPE includes a formal name format, a method for checking names against a system and a 

description format for binding text and tests to a name.  

The CPE dictionary contains the official list of CPE names. The dictionary is provided in XML 

format, which follows the CPE XML schema17. In particular a typical CPE name would follow 

the structure cpe:/{part}:{vendor}:{product}:{version}:{update}:{edition}:{language}18. 

In the context of vulnerability assessment, the CPE allows to identify unequivocally within a CVE 

the software and version that is affected by the vulnerability. 

 

2.1.4. Common Vulnerability Scoring System (CVSS) 

Common Vulnerability Scoring System (CVSS) is a free and open industry standard for assessing 

the severity of a security vulnerability. The standard provides a way to capture and understand 

the principal characteristics of a vulnerability by means of assigning severity scores. These scores, 

which can take a value on the range from 0 to 10 (being 10 the most severe), are calculated based 

on a multi-formula process that depends on several metrics.  

 
17 https://csrc.nist.gov/schema/cpe/2.3/cpe-dictionary_2.3.xsd  
18 For example, cpe:/a:microsoft:internet_explorer:8.0.6001:beta 
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Historically, vendors have used their own methods for scoring software vulnerabilities, usually 

without detailing their criteria or processes. This creates a major problem for users, particularly 

those who manage disparate IT systems and applications. In this sense, the goal for CVSS is to 

facilitate the generation of consistent scores that accurately represent the impact of vulnerabilities, 

as it provides full details regarding the parameters used to generate each score. The first version 

of CVSS was released in 2005, version 2 was released in 2007 and version 3 in 2015. The current 

version is 3.1. It was released in 2019. 

The CVSS is calculated from three metrics groups, i.e., Base, Temporal, and Environmental. 

Each of these metrics are calculated taking into account a set of sub scores obtained from several 

features. This process is explained in subsection 2.1.4.4 and the metrics groups are detailed below. 

 

 Basic Metrics 

These set of metrics reflect the severity of vulnerabilities according to their characteristics and 

assumes the worst-case impact across different environments. Base metrics do not change over 

time and are common to all environments. For a better understanding of the vulnerability, base 

metric is divided in three subtypes, Exploitability metrics, Scope metric and Impact metrics, 

which, in turn, are made up of a set of metrics. 

The Exploitability metrics represent the characteristics of a vulnerable component, and reflect 

the technical means by which the vulnerability can be exploited. This metric is composed of four 

features:   

1. Attack Vector reflects the context by which vulnerability exploitation is possible. Its 

value is greater the more distant an attacker can be to exploit the vulnerable component. 

The possible values (and sub scores) of Attack Vector are: 

• Network (0.85) if the vulnerable component is bound to the network stack and 

the set of possible attackers extends up to the entire Internet. 

• Adjacent (0.62) if the attack is limited at the protocol level to a logically adjacent 

topology. An attack must be launched from the same physical or logical network. 

• Local (0.55) if the vulnerable component is not bound to the network stack. The 

attacker must access the target system locally or remotely (e.g., Telnet, SSH), or 

interact with another person to perform the required actions, using social 

engineering techniques. 

• Physical (0.2) if the attack requires the physical touch or manipulation of the 

vulnerable component. 

2. Attack Complexity represents the conditions beyond the attacker’s control that must 

exist in order to exploit the vulnerability. The possible values (and sub scores) are: 

• Low (0.77) if specialized access conditions or extenuating circumstances do not 

exist. Repeatable success can be expected. 

• High (0.44) if successful attack requires certain preparation operations performed 

against the vulnerable component. 

3. Privileges Required describes the level of privileges an attacker must possess before 

successfully exploiting the vulnerability. The possible values (and sub scores) are: 

• None (0.85) if no access to settings or files of the vulnerable component is 

required to carry out an attack. 
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• Low (0.62 if the Scope metric value is Unchanged, or 0.68 if it is Changed) if an 

attack requires privileges that provide basic user capabilities that affect only 

settings and files owned by a user. 

• High (0.27 if the Scope metric value is Unchanged, or 0.5 if it is Changed) if an 

attack requires privileges that provide significant (e.g., administrative) control 

over the vulnerable component, allowing access to component-wide settings and 

files. 

4. User Interaction captures the requirement for a human user, other than the attacker, to 

participate in the successful compromise of the vulnerable component. The possible 

values (and sub scores) are: 

• None (0.85) if no interaction from any user is required to exploit the vulnerability. 

• Required (0.62) if user action is required for vulnerability exploitation. 

The Scope metric indicates whether a vulnerability in one vulnerable component impacts 

resources in components beyond its security scope. The security scope of a component 

encompasses other components that provide functionality solely to that component, even if these 

other components have their own security authority. The possible values are: 

• Unchanged if an exploited vulnerability can only affect resources managed by the same 

security authority. 

• Changed if an exploited vulnerability can affect resources beyond the security scope 

managed by the security authority of the vulnerable component. 

The Impact metric reflects the consequence of a successful exploit over the impacted component, 

which could be a software application, a hardware device or a network resource.  The metric is 

composed of three groups:  

1. Confidentiality measures the impact to the confidentiality of the information resources 

managed by a software component, due to a successfully exploited vulnerability. The 

possible values (and sub scores) are: 

• High (0.56) if there is a serious loss of confidentiality, resulting in all or some of 

the resources within the impacted component being divulged to the attacker. 

• Low (0.22) if there is some loss of confidentiality, but the attacker does not have 

control over what information is obtained and the attack does not cause a direct, 

serious loss to the impacted component. 

• None (0) if there is no loss of confidentiality within the impacted component. 

2. Integrity measures the impact of a successfully exploited vulnerability to the 

trustworthiness and veracity of information. The possible values (and sub scores) are: 

• High (0.56) if there is a serious loss of integrity, or a complete loss of protection. 

A successful attack can modify protected files, resulting a serious consequence 

to the impacted component. 

• Low (0.22) if modification of data is possible, but there is no control over the 

consequences, or the amount of modification is limited. The modifications have 

a partial effect on the impacted component. 

• None (0) if there is no loss of integrity within the impacted component. 

3. Availability measures the impact to the availability of the impacted component resulting 

from a successfully exploited vulnerability. The possible values (and sub scores) are: 
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• High (0.56) if a successful attack can fully or partially deny access to resources, 

presenting a serious consequence to the impacted component. The loss can be 

either sustained (during the attack) or persistent if the condition persists after the 

attack has completed. 

• Low (0.22) if a successful attack can reduce performance or cause interruptions 

in resource availability but overall, there is no serious consequence to the 

impacted component, there is no complete denial of service to legitimate users. 

• None (0) if there is no impact to availability within the impacted component. 

 

 Temporal Metrics 

These metrics measure the current state of exploit techniques or code availability, the existence 

of any patches or workarounds, or the confidence in the description of a vulnerability. These 

metrics adjust the Base severity of a vulnerability based on factors that change over time, but not 

across environments. The availability of a simple-to-use exploit kit would increase the CVSS 

score, while the release of a patch would decrease it. 

Temporal Metrics are composed of three groups: 

1. Exploit Code Maturity measures the probability of the vulnerability being exploited. It 

is based on the current state of exploit techniques, exploit code availability or active 

exploitation. The possible values (and sub scores) are: 

• Not Defined (1) if there is insufficient information to choose one of the other 

values. It has the same effect on scoring as the next variant (High). 

• High (1) if exploit development has reached the level of reliable, widely 

available, easy-to-use automated tools. Exploit code works in every situation or 

is actively being delivered via an autonomous agent (such as a worm or virus). 

Network-connected systems are likely to encounter scanning or exploitation 

attempts.  

• Functional (0.97) if functional exploit code is available, that works in most 

situations. 

• Proof-of-Concept (0.94) if proof-of-concept exploit code or technique is 

available. The code or technique is not functional in all situations and may require 

substantial modification by a skilled attacker. 

• Unproven (0.91) if no exploit code is available, the exploit is theoretical. 

2. Remediation Level reflects the level of vulnerability mitigation techniques. The possible 

values (and sub scores) are: 

• Not Defined (1) if there is insufficient information to choose one of the other 

values. It has the same effect on scoring as assigning Unavailable. 

• Unavailable (1) if there is no available solution, or it is impossible to be applied. 

• Workaround (0.97) if there is an unofficial, non-vendor solution available.  

• Temporary Fix (0.96) if there is available an official temporary fix or 

workaround. 

• Official Fix (0.95) if an official solution is available such as a patch or an upgrade. 

3. Report Confidence measures the degree of confidence in the existence of the 

vulnerability and the credibility of the known technical details. The possible values (and 

sub scores) are: 
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• Not Defined (1) if there is insufficient information to choose one of the other 

values. It has the same effect on scoring as assigning Confirmed. 

• Confirmed (1) if detailed reports or functional exploits exist, or the vulnerability 

is confirmed by the author or vendor of the affected code. 

• Reasonable (0.96) if significant details are available, but the finds are not fully 

confirmed. Reasonable confidence exists that the vulnerability is real and at least 

one impact can be verified. 

• Unknown (0.92) if there are reports of impacts that indicate a vulnerability is 

present, but the true nature of the vulnerability is uncertain. 

 

 Environmental Metrics 

The Environmental Metrics adjust the Base severities to a specific computing environment. They 

consider factors such as the presence of mitigations in that environment. These set of metrics 

enable the customization of the CVSS score depending on the importance of the affected IT asset 

to an organization and they are the modified equivalents of Base Metrics. They are composed of 

two groups, Security Requirements and Modified Base Metrics, which are useful to understand 

impact of the vulnerability:  

1. Security Requirements enable the customization of the Impact Metrics (Confidentiality, 

Integrity and Availability). The full effect on the environmental score is determined by 

the corresponding Modified Base Impact metrics. The possible values (and sub scores) 

are: 

• Not Defined (1) if there is insufficient information to choose one of the other 

values. It has no impact on the overall Environmental Score. It has the same effect 

as Medium. 

• High (1.5) if the customized metric has a great importance for the organization. 

• Medium (1) if the metric does not need customization. 

• Low (0.5) if the customized metric is of little importance for the organization. 

2. Modified Base Metrics allow the Base Metrics to be overridden, based on the specific 

characteristics of the environment. Thus Exploitability, Scope, or Impact can be reflected 

via an appropriately modified Environmental Score. These metrics modify the 

Environmental Score by overriding Base Metric values, prior to applying the 

Environmental Security Requirements. Each Modified Environmental metric has the 

same values as its corresponding Base metric, plus a value of Not Defined, that is that is 

equivalent with the associated Base metric. 

 

 CVSS Scoring 

The CVSS scoring process is depicted in Figure 2. The tree sets of metrics mentioned above 

(Base, Temporal and Environmental) are those that are going to define the CVSS score. They 

have the following qualitative ratings: None (0), Low (0.1 – 3.9), Medium (4.0 – 6.9), High (7.0 

– 8.9) and Critical (9.0 – 10). 
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Figure 2 The CVSS scoring process19. 

  

The Impact and Exploitability metrics are used first, to determine Impact and Exploitability sub 

scores. Then the Base score is determined based on these sub scores, together with the Scope 

metric. The Base Score can then be refined by scoring the Temporal and Environmental metrics, 

in order to more accurately reflect the relative severity posed by a vulnerability to a user’s 

environment at a specific point in time. Scoring the Temporal and Environmental metrics is not 

required but is recommended for more precise scores. 

The Base and Temporal metrics are specified by vulnerability bulletin analysts, security product 

vendors, or application vendors because they typically possess the most accurate information 

about the characteristics of a vulnerability. The Environmental metrics are specified by end-user 

organizations because they are best able to assess the potential impact of a vulnerability within 

their own computing environment. 

CVSS score is an important feature and standard in the field of vulnerabilities. This scoring 

provides a numerical score about vulnerability behaviour and the possible severity of its attack. 

 
19 https://www.first.org/cvss/specification-document#CVSS-v3-1-Equations  

about:blank#CVSS-v3-1-Equations
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Thus, the use of CVSS score could be beneficial in the development of vulnerability assessment 

tools, although its applicability at BIECO framework is still under study. 

 

 Vulnerability Databases 

2.2.1. National Vulnerability Database (NVD)  

The National Vulnerability Database (NVD) is one of the reference vulnerability databases of 

interest of our study. It is maintained by the National Institute of Standards and Technology 

(NIST) Computer Security Division, Information Technology Laboratory and is sponsored by the 

Cybersecurity & infrastructure Security Agency. It is the U.S. government repository of 

standards-based vulnerability management data represented using the Security Content 

Automation Protocol (SCAP). This data enables automation of vulnerability management, 

security measurement, and compliance. Although other vulnerability databases exist, the NVD 

still remains widely used and the most exhaustive resource in security vulnerability data. Based 

on this, it would help our study providing a list of vulnerabilities and exposure data for training 

machine learning models.  

 

Figure 3 Number of vulnerabilities by year (from 2002 to 2019)20.  

NVD includes databases of security checklist references, security-related software flaws, 

misconfigurations, product names and impact metrics, and it records CVEs since 2002. The 

information in NVD is updated permanently, as new information becomes available, and it is fully 

synchronized with the CVE List so that any updates to CVE appear immediately in NVD. As it 

can be seen in Figure 3, in recent years the number of registered vulnerabilities has increasing 

trend, with a maximum value reached in 2018 when 16,556 vulnerabilities were registered. 

In particular, the distribution of the main types of vulnerabilities registered in NVD is shown in 

Figure 4. According to the number of vulnerabilities, the first three places are taken in order by 

Execute Code, Denial of Service and Overflow. 

 
20 Taken from https://www.cvedetails.com/browse-by-date.php  

about:blank
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Figure 4 Number of vulnerabilities by type.21 

The NVD data feeds are available at in JSON format22, which follows the NVD JSON schema23. 

The most important fields that are registered for each vulnerability are the following:  

• ID: the unique identifier of the CVE. 

• problemtype: a list of CWEs that are related to the CVE. 

• reference: links to external sources of information. 

• description: description of the CVE in text format. 

• configurations: a list of CPEs affected by the vulnerability. 

• impact: CVSS v3.1 Base metrics, Base score, Exploitability and Impact subscores, vector 

string, and Base severity. There are also available CVSS v2 metrics and score. 

• publishedDate: date of publication in NVD. 

• lastModifiedDate: date of the last modification. 

Finally, Figure 5 shows the distribution of the CVSS scores of the vulnerabilities registered in 

NVD. In the figure it is possible to observe that the number of vulnerabilities with CVSS scores 

less or equal to 3-4 is lower than those ones with CVSS scores equal or greater than 4-5, with one 

exception, vulnerabilities with CVSS scores between 8 and 9 are almost non-existent. 

 

Figure 5 Number of vulnerabilities by CVSS scores.24 

 
21 Taken from: https://www.cvedetails.com/vulnerabilities-by-types.php  
22 https://nvd.nist.gov/vuln/data-feeds 
23 https://csrc.nist.gov/schema/nvd/feed/1.1/nvd_cve_feed_json_1.1.schema 
24 Taken from https://www.cvedetails.com/  

about:blank
about:blank
about:blank
about:blank
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2.2.2. Other Vulnerability Databases and Platforms 

This section includes a compilation of other vulnerabilities datasets and platforms that are also 

relevant and that could be considered as an input for the vulnerability assessment process within 

BIECO.  

Table 1 includes the name of each of these databases, a short description and its type of access 

(“public”, “private”, or “both” if the dataset has a public and private version), as some of these 

datasets are not completely public and require a payment. 

Table 1 Other vulnerability platforms and datasets. 

Name Description Access 

0 Day Today25 A database of exploits and vulnerabilities written for 

educational purposes. The information is collected from 

submittals and various mailing lists.  

Both 

Awesome Threat 

Detection and Hunting26 

A curated list of threat detection and hunting resources.  Public 

CERIAS Vulnerability 

Database27 

A vulnerability database maintained by Purdue University.  Private 

CERT-EU28 The platform of the Computer Emergency Response Team for 

the EU institutions. It maintains a list of security advisories and 

information on product vulnerabilities, threats and incidents and 

hacking techniques.  

Public 

China National 

Vulnerability Database 

(CNVD)29 

NVD similar database maintained by the Chinese national 

computer emergency response team (CERT). It often presents 

vulnerabilities unavailable in other sources  

Public 

Chinese national CERT’s 

ICS branch30 

The website contains a list of ICS and IoT vulnerabilities. These 

vulnerabilities are found in either CNVD or CNNVD.  

Public 

Chinese National 

Vulnerability Database 

of Information Security 

(CNNVD)31 

Second database from China. It usually follows data found in 

NVD.  

Public 

CVE Details32 It provides an easy-to-use web interface to CVE vulnerability 

data. Information about vendors, products, versions and statistics 

about vendors, products and versions of products are available. 

Public 

DISA STIG Compliance 

Requirements List33 

A STIGs “are the configuration standards for DOD [information 

assurance, or IA] and IA-enabled devices/systems…The STIGs 

contain technical guidance to ‘lock down’ information 

systems/software that might otherwise be vulnerable to a 

malicious computer attack.” 

Public 

 
25 https://0day.today/ 
26 https://github.com/0x4D31/awesome-threat-detection 
27 https://www.cerias.purdue.edu/site/about/history/coast/projects/vdb.php 
28 https://cert.europa.eu/cert/newsletter/en/latest_SecurityBulletins_.html 
29 https://www.cnvd.org.cn/ 
30 https://www.cert.org.cn/publish/english/indix.html 
31 http://www.cnnvd.org.cn/ 
32 https://www.cvedetails.com/ 
33 https://www.stigviewer.com/stigs  

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank


 

Page 20 of 58 

Deliverable 3.1: Report on the State of the Art of Vulnerability Management 

Draper VDISC Dataset34 A dataset that containing the source code of 1.27 million 

functions mined from open-source software, labelled by static 

analysis for potential vulnerabilities. 

Public 

Exploit Database35 A CVE compliant archive of public exploits and corresponding 

vulnerable software, developed for use by penetration testers and 

vulnerability researchers. It contains a comprehensive collection 

of exploits gathered through direct submissions, mailing lists, as 

well as other public sources. The Exploit Database is a repository 

for exploits and proof-of-concepts rather than advisories, making 

it a valuable resource for research. 

Public 

IBM X-Force 

Exchange36 

Cloud-based threat platform that enables the research on the latest 

global security threats, consulting, and collaboration with peers. 

It contains both human and machine-generated information. 

Public 

ICS Vulnerability 

Database 

From a Chinese ICS security company Winicssec37. Contains 

data from other sources (NVD, CNVD and CNNVD). 

Public 

ICS-CERT38 The Industrial Control Systems Cyber Emergency Response 

Team platform. It shares vulnerability information and threat 

analysis through information products and alerts. It provides 

vulnerability and malware analysis, onsite support for incident 

response and forensic analysis. 

Public 

MISP39 It is used to store, share, collaborate on cyber security indicators, 

malware analysis, and to detect and prevent attacks, against ICT 

infrastructures.  It is used to store, share, collaborate on cyber 

security indicators, malware analysis, and to detect and prevent 

attacks, against ICT infrastructures. 

Public 

National Cyber Security 

Centre40 

Located in Finland, it develops and monitors the operational 

reliability and security of communications networks and services. 

It provides situational awareness of cyber security. 

Public 

Netsparker41 A fully automatic vulnerability assessment tool that crawls and 

scans web applications. Vulnerabilities are automatically 

assigned a severity level to highlight the potential damage and 

the urgency with which they must be fixed. 

Private 

NIST Software 

Assurance Reference 

Dataset Project42 

It provides a set of known security flaws in order to allow users 

to evaluate tools and to test their methods. The dataset includes 

"wild" (production), "synthetic" (written to test or generated), and 

"academic" (from students) test cases. The dataset intends to 

encompass a wide variety of possible vulnerabilities, languages, 

platforms, and compilers. 

 

Public 

Packet Storm43 An information security website offering current and historical 

computer security tools, exploits, and security advisories. 

Public 

 
34 https://osf.io/d45bw/ 
35 https://www.exploit-db.com/ 
36 https://exchange.xforce.ibmcloud.com/ 
37 http://ivd.winicssec.com/ 
38 https://www.us-cert.gov/ics/advisories 
39 https://www.misp-project.org/features.html 
40 https://www.kyberturvallisuuskeskus.fi/en/homepage 
41 https://www.netsparker.com/web-vulnerability-scanner/vulnerabilities/ 
42 https://samate.nist.gov/SARD/index.php  
43 https://packetstormsecurity.com/ 
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SecuriTeam44 A security portal containing security information from mailing 

lists, information channels and tools. 

Public 

Security Focus45 Focuses on a few key areas that are of greatest importance to 

security: a mailing list for discussion and announcements related 

to computer security and a vulnerability database. 

Public 

Snyk Intel Vulnerability 

Database46 

An open-source vulnerability database, that also includes 

additional non-CVE vulnerabilities derived from numerous 

sources. Numerous vulnerabilities are exposed before they are 

added to public databases. 

Both 

Talos47 A regular intelligence update from Cisco Talos, highlighting the 

biggest threats each week and other security news. 

Public 

The Global Platform 

MUD File Service48 

It provides a MUD files database, helping device manufacturers 

to publish, in a unique location, the MUD file library associated 

with their products. Publication in the MUD File Service 

simplifies the access and consumption of MUD files from 

networks hosting these devices. 

Private 

The Vulnerability Notes 

Database (VND)49 

It provides information about software vulnerabilities. 

Vulnerability notes include summaries, technical details, 

remediation information, and lists of affected vendors. Most 

vulnerability notes are the result of private coordination and 

disclosure efforts. The CERT/CC Vulnerability Notes Database 

is run by the CERT Division, which is part of the Software 

Engineering Institute, a federally funded research and 

development centre operated by Carnegie Mellon University. 

Public 

Veracode50 An agent-based scan software composition analysis for securing 

web, mobile and third-party enterprise applications. Veracode 

provides multiple security analysis technologies on a cloud-based 

platform, including static analysis, dynamic analysis, mobile 

application behavioural analysis and software composition 

analysis. 

Private 

Vulnerabilities in open-

source systems51 

A project representing a dataset of vulnerabilities in open-source 

projects, as published in Mining Software Repositories 2018 

(MSR) conference. 

Public 

Vulnerability 

Assessment Platform52 

A platform aggregating vulnerability and exploit data from over 

130 sources. 

Both 

Vulnerability Database 

Catalogue53 

A catalogue initially of vulnerability databases, underlining 

differences in identifiers, coverage and scope, size, abstraction 

and other characteristics. Vulnerability databases are loosely 

defined as sites that provide vulnerability information, such as 

advisories, with identifiers. 

Both 

 
44 https://securiteam.com/ 
45 https://www.securityfocus.com/vulnerabilities 
46 https://snyk.io/features/vulnerability-database/ 
47 https://www.talosintelligence.com/ 
48 https://globalplatform.org/iotopia/mud-file-service/ 
49 https://www.kb.cert.org/vuls/  
50 https://help.veracode.com/reader/hHHR3gv0wYc2WbCclECf_A/lQYKhC8AvpIbz5_ULOCYMw 
51 https://github.com/AUEB-BALab/VulinOSS 
52 https://vulners.com/ 
53 https://www.first.org/global/sigs/vrdx/vdb-catalog 
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VulnDB54 A commercial vulnerability intelligence mechanism developed 

by Risk-Based Security that provides actionable information 

about the latest in security vulnerabilities via a SaaS Portal, or a 

RESTful API. The tool tracks over 2,000 software libraries 

looking for security issues and it has a direct mapping with CVE 

and NVD. The client can configure email alerts to receive a 

notification when a new vulnerability is released and he can ask 

for guidance on how to mitigate the vulnerability and for product 

and vendor evaluations. 

Private 

Vulnerability Database55 A database with more than 166000 entries available. The 

information is updated daily since 1970. Besides technical 

details, there are additional threat intelligence information like 

current risk levels and exploit price forecasts provided. 

Both 

WordPress Vulnerability 

Database56 

A database of WordPress vulnerabilities, plugin vulnerabilities 

and theme vulnerabilities. 

Both 

Zero Day Initiative57 Platform for reporting of 0-day vulnerabilities privately to the 

affected vendors by the researchers. There is available a list of 

publicly disclosed vulnerabilities discovered by Zero Day 

Initiative researchers. 

Both 

 

 Open Web Application Security Project 

The Open Web Application Security Project (OWASP)58, which is focused on the compilation of 

software vulnerabilities, developed the OWASP TOP 10 list, a standard awareness document for 

developers and web application security, similar to the list provided by MITRE59. Both lists share 

some common vulnerabilities considered as critical, which should be considered when developing 

software. 

Listing the most critical vulnerabilities will allow us to know their relevance in terms of security, 

and to prioritize them for their subsequent analysis. In particular, the main risks considered by the 

OWASP Top 10 list are the following: 

1.  Injection: Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when 

untrusted data is sent to an interpreter as part of a command or query. The attacker’s 

hostile data can trick the interpreter into executing unintended commands or accessing 

data without proper authorization.  

• CWE-78 Improper Neutralization of Special Elements Used in an OS Command 

(‘OS Command Injection’). 

• CWE-89 SQL Injection.  

• CWE-94 Improper Control of Generation of Code ('Code Injection'). 

• CWE-434 Unrestricted Upload of File with Dangerous Type. 

2. Broken Authentication: Application functions related to authentication and session 

management are often implemented incorrectly, allowing attackers to compromise 

 
54 https://vulndb.cyberriskanalytics.com/  
55 https://vuldb.com/ 
56 https://wpvulndb.com  
57 https://www.zerodayinitiative.com/advisories/published/  
58 https://owasp.org/www-project-top-ten/  
59 https://www.mitre.org  
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passwords, keys or session tokens, or to exploit other implementation flaws to assume 

other users’ identities temporarily or permanently. 

• CWE-862 Missing Authentication for Critical Function. 

• CWE-287 Improper Authentication. 

• CWE-798 Use of Hard-coded Credentials. 

3. Sensitive Data Exposure: Many web applications and APIs do not properly protect 

sensitive data, such as financial, healthcare, and PII. Attackers may steal or modify such 

weakly protected data to conduct credit card fraud, identity theft, or other crimes. 

Sensitive data may be compromised without extra protection, such as encryption at rest 

or in transit, and requires special precautions when exchanged with the browser. 

• CWE-200 Exposure of Sensitive Information to an Unauthorized Actor. 

4. XML External Entities: Many older or poorly configured XML processors evaluate 

external entity references within XML documents. External entities can be used to 

disclose internal files using the file URI handler, internal file shares, internal port 

scanning, remote code execution, and denial of service attacks.  

5. Broken Access Control: Restrictions on what authenticated users are allowed to do are 

often not properly enforced. Attackers can exploit these flaws to access unauthorized 

functionality and/or data, such as access other users’ accounts, view sensitive files, 

modify other users’ data, change access rights, etc. 

• CWE-862 Missing Authorization. 

• CWE-269 Improper Privilege Management. 

• CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path 

Traversal'). 

6. Security Misconfiguration: Security misconfiguration is the most commonly seen issue. 

This is commonly a result of insecure default configurations, incomplete or ad hoc 

configurations, open cloud storage, misconfigured HTTP headers, and verbose error 

messages containing sensitive information. Not only must all operating systems, 

frameworks, libraries, and applications be securely configured, but they must be 

patched/upgraded in a timely fashion.  

• CWE-522 Insufficiently Protected Credentials. 

• CWE-732 Incorrect Permission Assignment for Critical Resource. 

7. Cross-Site Scripting (XSS): XSS flaws occur whenever an application includes 

untrusted data in a new web page without proper validation or escaping, or updates an 

existing web page with user-supplied data using a browser API that can create HTML or 

JavaScript. XSS allows attackers to execute scripts in the victim’s browser which can 

hijack user sessions, deface web sites, or redirect the user to malicious sites. 

• CWE-79 Improper Neutralization of Input During Web Page Generation (‘Cross-

Site Scripting’). 

• CWE-352 Cross-Site Request Forgery (CSRF). 

• CWE-611 Improper Restriction of XML External Entity Reference. 

8. Insecure Deserialization: Insecure deserialization often leads to remote code execution. 

Even if deserialization flaws do not result in remote code execution, they can be used to 
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perform attacks, including replay attacks, injection attacks, and privilege escalation 

attacks. 

• CWE-502 Deserialization of Untrusted Data. 

9. Using Components with Known Vulnerabilities: Components, such as libraries, 

frameworks, and other software modules, run with the same privileges as the application. 

If a vulnerable component is exploited, such an attack can facilitate serious data loss or 

server takeover. Applications and APIs using components with known vulnerabilities 

may undermine application defences and enable various attacks and impacts. 

• CWE-416 Use After Free. 

• CWE-787 Out-of-bounds Write. 

• CWE-20 Improper Input validation. 

• CWE-125 Out-of-bounds Read. 

• CWE-119 Improper Restriction of Operations within the Bounds of a Memory 

Buffer. 

• CWE-190 Integer Overflow or Wraparound. 

• CWE-476 NULL Pointer Dereference. 

• CWE-400 Uncontrolled Resource Consumption. 

10. Insufficient Logging and Monitoring: Insufficient logging and monitoring, coupled 

with missing or ineffective integration with incident response, allows attackers to further 

attack systems, maintain persistence, pivot to more systems, and tamper, extract, or 

destroy data. Most breach studies show time to detect a breach is over 200 days, typically 

detected by external parties rather than internal processes or monitoring. 
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3. Vulnerability Detection Techniques 

In general, vulnerabilities require a different identification process than software defects, and can 

be considered as a subset of faults which occur (and are discovered) much less frequently. They 

are often not realized by developers during the normal operation of the system, while defects are 

more easily noticed.  For example, some authors report that 21% of files in Mozilla Firefox have 

defects, while only a 3% have vulnerabilities [20]. 

To date, several tools and techniques can be used for detecting vulnerabilities in software 

applications. There are two traditional approaches: static code analysis and dynamic analysis 

through symbolic execution. In the former, the code is examined for weaknesses without 

executing it. Besides, it can be considered as a defensive and preventive technique, as it attempts 

to identify weaknesses in the program source code before its actual use. By contrast, in dynamic 

analysis the code is executed to check how software will perform in a runtime environment.  There 

are several static and dynamic analysis tools which can be obtained from the market and also 

some of them are open-source products [21]-[23].  

The selection of a proper and efficient technique to detect vulnerabilities is one of the main goals 

for BIECO. The effectiveness of the tool and in consequence the security of the system will 

depend on the chosen technique.  Therefore, this section presents some contributions published 

in the literature that are related to the detection of software vulnerabilities and, in particular, that 

rely on the use of Machine Learning (ML) and artificial intelligence (AI) techniques. The 

contributions reviewed here can be considered as a subset of the static analysis methods, as they 

aim at analysing the contents of a source code prior its execution.   

Being this a broad field, and to acquire a better overview of the different approaches, they will be 

divided regarding their detection methodology to be able to create a comparative of them. 

Particularly, we will focus on three main topics: anomaly detection-based techniques, code pattern 

recognition, and vulnerability prediction models. For anomaly detection-based techniques and 

code pattern recognition we have included studies that analyse program syntax and semantics, 

unlike vulnerability prediction model approaches in which the majority of works do not analyse 

program syntax and semantics (Figure 6).  

 

Figure 6 Vulnerability detection techniques classification 
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 Anomaly Detection-Based Techniques 

Anomaly detection addresses the problem of finding unusual events that differ significantly from 

the majority of the data applying Machine Learning algorithms (mostly unsupervised). These 

events are often referred to as anomalies, exceptions or outliers [24]. Some of the well-known 

techniques that can be used to perform anomaly detection in a general-purpose scenario are the 

density-based such as Local Outlier Factor (LOF) [25] or Density-Based Spatial Clustering of 

Applications with Noire (DBSCAN) [26], K-Nearest Neighbour [27] or Isolation Forest [28]. 

Some other examples consider deviation from association rules and frequent itemset [29] or they 

are more focused on high dimensional spaces such as subspace-based such as Subspace Outlier 

Degree (SOD) [30] or the Angle-based Outlier Detection (ABOD) [31], among others.  

In the context of software security, vulnerabilities can be considered as an “anomaly”, as they are 

undesired events that can appear during the development of a software, and which occurrence 

should be minimized as far as possible. Under this context, the aforementioned anomaly detection 

techniques could be used. Here, we pay special focus on association rules and frequent itemset 

mining techniques, included in data mining field. In the particular, Engler at el. [32] were among 

the first authors to point out the need for extracting rules that could be used in bug-finding tools. 

In their approach, they demonstrated a static analysis technique based on simple function-pair 

based programming rules that allowed to automatically extract rules from the source code without 

a priori knowledge of the system, decreasing as well the amount of manual labour required to 

analyse other systems. 

Years later, Li and Zhou [5] presented a general technique called PR-Miner to extract implicit 

undocumented programming rules and detect violations on large software code written in C, with 

little effort from their developers. The tool used frequent itemset mining to find sets of functions, 

variables and data types that tend to appear together. Hence, a later study [33] extended this work 

taking also ordering into account, which allowed to identify additional defects that remain 

undetected by PR-Miner. In this new approach, Wasylkowski et al. stated the fact that interacting 

with objects often requires following a protocol which is not always documented, and its violation 

can lead to defects. To automatically extract valid sequences of method calls, the authors proposed 

to use frequent itemset mining on closed patterns taking code examples which are then used to 

detect anomalies. Furthermore, they introduce a defect indicator, implemented by the tool JADET 

(Java Anomaly Detector), which ranks the identified anomalies based on several factors. 

Working on the anomaly detection mechanism of JADET, Gruska et al. [6] improved the 

technique adding cross-project anomaly detection. In this approach authors introduced a method 

based on functions calls and program structure, which allowed to analyse only selected parts of a 

source code. With this, a lightweight parser is achieved which is effective enough to mine usage 

rules from large bodies of almost arbitrary source code. Furthermore, this language-independent 

parser is applicable for analysing programs written in several languages that follow a similar 

syntax, like C, C++, Java or PHP. Compared with JADET, this new approach based on association 

rules offered a set of frequent temporal properties more expressive, and an improvement on the 

ranking system.  

The mentioned previous works [5]-[6] used frequent itemset mining approach to mine frequent 

API patterns, these methods have some limitations especially when multiple APIs are involved 

across different procedures. For that reason, Acharya et al. [34] presented an approach to 

automatically extract frequent partial-orders from API client code. They employ inter procedural 

analysis to discover rules across function boundaries. However, their approach is limited to 

mining function call ordering rules. In contrast, Chang et al. [35] created an approach general 

enough to discover function call ordering rules, as well as their preconditions and postconditions 

ordering rules.  Chang et al. emphasize the importance of neglected conditions as a difficult-to-

find class software defect. In this approach, the authors integrate static program analysis and 
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advanced data mining techniques to reveal implicit conditional rules as well as rule violations that 

indicate neglected conditions. Thus, the user indicates just a few restrictions on the context of the 

rules that have to be searched, rather than specific rule templates. To do so, rules are modelled as 

graph minors of Enhanced Procedure Dependence Graphs (EPDGs). 

An approach related to the one developed by Chang et al., is Alattin [36]. This novel approach 

tried to reduce false positives produced by the frequent sub-graph mining approaches developed 

in previous works. To this end, they introduced a new mining algorithm and technique, ImMiner, 

which extracts alternative patterns and classifies them into two categories: balanced, where all 

patterns are frequent, and imbalanced, where some of them are infrequent. In both ([35], [36]), 

there are targeted neglected conditions, but Chang et al.’s approach cannot mine infrequent 

alternatives and it is heavily limited by its underlying graph mining algorithm which is known to 

suffer from scalability issues. In this context, ImMiner is much more scalable due to its imbalance 

frequent itemset mining algorithm. 

Another form of analysis that can be complementary to Chang et al.’s approach is DynaMine [37]. 

This tool presented by Livshits and Zimmermann proposes an automatic way to extract likely 

error patterns combining revision history information with dynamic analysis. For that purpose, 

the tool analyses source code check-ins to find highly correlated method calls and common bugs 

fixes. DynaMine evaluates incremental changes, obtaining more precise results. However, this 

approach requires extensive history of software revisions in repositories to be effective and, as 

with PR-Miner, it may suffer from issues of a high number of false positives since rule elements 

are not necessarily associated with program dependencies. 

The aforementioned studies are just some examples of anomaly detection techniques carried on 

in the last years applied to the context of software vulnerabilities. Even though some of the results 

exposed reveal good results in terms of detection, there are still high false positive rates since they 

do not take into account rare events. In addition, these types of techniques are focused only on 

the detection process, and they do not provide the type of the vulnerability or even its location. 

 

 Vulnerable Code Pattern Recognition 

Vulnerable code pattern recognition methods use Machine Learning algorithms (mostly 

supervised) to identify in an automatic way patterns of vulnerable code segments. As with the 

anomaly detection approach, this category of works requires the analysis and extraction of 

different features from the source code, but with the difference that it is focused on defining 

models and patterns of vulnerable code segments, instead of obtaining a model of the normal 

behaviour of the software.  

In order to extract the required software features, different techniques can be used such as 

conventional code parsers, static data and control flow analysis, dynamic analysis or text mining, 

among others. Taking the resulting features as an input, different approaches have been proposed 

to statistically detect vulnerable code patterns and, in particular, concepts from the area of 

software verification have been successfully adapted for tracking vulnerabilities. However, the 

biggest challenge with these approaches is to avoid as much as possible burdensome manual 

audits which require considerable time and experience. 

Yamaguchi et al. [38] addressed particularly this issue and proposed a method to assist a security 

analyst during source code audit. The purpose of this approach was to make a manual audit more 

effective by guiding the search for vulnerabilities rather than looking for an automated solution. 

To this end, they based their study on the concept of "vulnerability extrapolation" [39], which 

focuses on the possibility of discovering vulnerabilities by looking for functions that share the 

same code structure, since they are usually linked to the same faulty programming patterns. The 
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method suggested by Yamaguchi et al. extracts an Abstract Syntax Tree (AST) from the source 

code and determines its structural patterns, in such a way that each function in the code can be 

described as a mixture of the obtained patterns. These patterns contain subtrees in which each 

node corresponds to types, functions and syntactic constructions of the codebase. Thanks to this 

representation, it is possible to break down a known vulnerability and suggest code with similar 

properties to the analyst. 

The main limitation of the previous approach was that even though the AST can be useful when 

it comes to transform simple code and identify code with similar semantics, it is not suited for 

more advanced analysis. For this reason, and continuing this direction of research, Yamaguchi et 

al. [40] presented a method to effectively mine large amounts of source code and find 

vulnerabilities. In this approach, authors combined classic concepts of program analysis with 

recent developments in the field of graph mining. They introduced a new graph representation 

named code property graph that combined in the same data structure properties of ASTs, Control 

Flow Graphs (CFGs)60 and Program Dependence Graphs (PDGs)61. With this approach, they were 

able to create templates for vulnerabilities using graph traversal representations in such a way that 

could identify buffer overflows, integer overflows, format string vulnerabilities and memory 

disclosures, among others. Code property graphs and graph traversals are suitable to find common 

types of vulnerabilities but more importantly, they can be well adapted to identify vulnerabilities 

specific to a code base. 

Using the code property graph representation, in a latter work Yamaguchi et al. [41] presented a 

method for automatically deducing search patterns for taint-style vulnerabilities from C source 

code. This definition of vulnerabilities has its origin in taint analysis, a technique for tracing the 

propagation of data though a program. The method proposed automatically identifies source sink 

systems in a code base given, analyses their data flow and generates search patterns in the form 

of graph transversals that enable uncovering vulnerabilities in the data flow to the sink. In order 

to generate search patterns, the approach combines techniques from unsupervised machine 

learning (i.e., clustering techniques) and static program analysis, using an extension of the 

platform Joern62 for the generation of graph transversals. It should be noted that although this 

automatic search significantly speeds up the analysis in large code bases, the approach still 

requires a considerable amount of manual auditing and analysis work. 

A more general approach is the one given by Scandariato et al. [7] using text analysis and machine 

learning techniques, such us Naïve Bayes and Random Forest, in order to predict vulnerable 

software components. The approach is based on text mining the source code mainly with bag-of-

words techniques, in which a software component (source code file) is seen as a series of terms 

with associated frequencies. These terms are the features that are used to predict whether each 

component is likely to contain vulnerabilities. Hence, the set of features used for modelling is not 

fixed but rather depends on the vocabulary used by the developers. 

A related approach was proposed by Pang et al. [42] who investigated the possibility of predicting 

vulnerable software components employing a hybrid technique combining N-gram text mining 

and feature selection techniques. The N-gram text mining technique is an advanced version of 

bag-of-words, handling not only single tokens but also sequences of tokens. However, dealing 

with high dimensionality -curse of dimensionality [43]- can affect the performance and 

effectiveness of training datasets and therefore classification models. In order to solve this 

challenge, they proposed to select the most relevant and important attributes from a dataset, 

reducing the space of features. 

 
60 CFG are graphical representations of the control flow of a software during its execution. 
61 Program representation that includes the data and control dependences for each possible operation. 
62 Joern, Open-Source Code Querying Engine: https://joern.io/  
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Most of the reviewed approaches are focused on locating vulnerable code only at software 

component or file levels. However, from a web developers' point of view, input validation and 

input sanitization are also essential secure coding techniques that can be used to protect programs 

from common vulnerabilities. Under this premise, Shar and Tan [44] proposed a set of input 

sanitization code attributes that can be statically collected and based on Control Flow Graphs 

(CFG), and which can be used to predict if a certain program statement could be vulnerable to 

SQL-injection (SQLI) or cross-site scripting (XSS) attacks. These static code attributes are used 

to characterize input sanitization code patterns, which are then analysed in order to check if the 

associated program statements are vulnerable to SQLI or XSS. As a result, they developed an 

automated data collection tool called PhpMinerI63 to extract the data of the proposed input 

sanitization code attributes from PHP programs, in order to build vulnerability prediction models 

based on supervised learning algorithms by means of manually tag the data with vulnerable labels. 

This new tool was evaluated and compared on some open-source web applications, i.e., a static 

analysis tool named Pixy [45]. On average, Pixy discovered more vulnerabilities, but also 

produced much more false positives than PhpMinerI. As expected, even though the proposed 

static attributes are a good predictor, their predictive capability is limited as it depends on the 

classification of the input validation and sanitization code patterns.  

Being aware of this limitation, Shar et al. [46] presented a more extensive empirical study 

proposing a hybrid analysis. Their idea was to use static analysis for the classification of nodes 

that have unambiguous security related purpose, and avoid the lack of precision that it provides 

by the use of dynamic analysis. In order to predict vulnerabilities, they proposed the use of both 

supervised machine learning models such as Logistic Regression and Multi-Layer Perceptron, 

and unsupervised machine learning models, such as the k-means algorithm (for the presence or 

absence of labelled training data, respectively).  

In a latter work, the study was extended [47] adding new contributions and changes. The authors 

proposed to use static slicing64 and dynamic execution techniques that mine data dependency and 

control dependency information. Moreover, they used a semi-unsupervised approach, unexplored 

in this domain till the date, along the supervised approach, to predict vulnerabilities from a new 

set of code attributes. These attributes are called Input Validation and Sanitization (IVS) attributes 

from which vulnerability-built predictions are fine-grained, accurate and scalable. The authors 

also extended the support to predict vulnerabilities to SQLi and XSS by adding the detection of 

Remote Code Execution (RCE) and File Inclusion (FI) web vulnerabilities, implementing a 

modification of their previous tool. 

The aforementioned works, with the exception of Shar et al. [46], [47], are based on static analysis 

techniques for the detection of vulnerabilities. In addition, these techniques focus on the analysis 

of the source code. Grieco et al. [8] presented the first large scale study on vulnerability discovery 

for binary code. The objective of this work was to create a scalable Machine Learning approach 

that used lightweight hybrid features of static and dynamic analysis techniques to predict if a 

binary program is likely to contain an easily exploitable memory corruption vulnerability. They 

also developed and implemented VDiscover, a tool based on Machine Learning techniques such 

as logistic regression, stochastic gradient descent or random forest, to predict vulnerabilities in 

test cases. This study increases the possibility to find a greater number of vulnerabilities at 

operating system scale. 

In the last years, deep learning-based techniques have had a big success in many domains, which 

has led their application study to a new trend in the field of software vulnerability detection. The 

first systematic framework for using deep learning to detect vulnerabilities was the one presented 

 
63 http://aharlwinkhin.com/phpminer.html  
64 Technique that allows to represent a simplified version of source code, ensuring that the effects of the software on a 

certain variable is preserved. 
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by Zhen Li et al. [48]. The framework, called SySeVR, was focused on extracting program 

representations that can accommodate syntax and semantic information that are relevant for the 

vulnerabilities such us function call and pointer usage. Zhen Li et al. [49] also propose the use of 

deep learning to detect vulnerabilities at the slice level65. Since then, deep learning was used to 

detect vulnerabilities at a coarser granularity such as in a function level. In this approach, authors 

focus on multiple lines of code that are semantically related to each other in terms of data or 

control dependency. To this end, they design and implement a deep learning-based vulnerability 

detection system called VulDeePecker.  

Each of the approaches previously introduced present a different perspective and tools for the 

detection of vulnerabilities. In this case, the goal is not detecting anomalies in the source code, 

but rather to define vulnerability patterns for their detection. Although vulnerable code pattern 

recognition is a promising approach for the detection of vulnerabilities, especially in comparison 

with the previous one, it still has some limitations. As with anomaly detection approaches, the 

studies presented do not identify the type of the vulnerability and, while it is possible to detect the 

location of a the vulnerability within the source code, it is still not fine-grained. 

 

 Vulnerability Prediction Models 

Prediction techniques rely on Machine Learning models (mostly supervised) and Artificial 

Intelligence techniques in order to determine the location of the vulnerabilities within a source 

code. In other words, these techniques determine which software components are most likely to 

contain a certain vulnerability. These particular models are commonly referred as Vulnerability 

Prediction Models (VPM) [50]. Yet, there are many other prediction models that can be used to 

forecast different aspects of the nature of a vulnerability, which will be presented in detail in 

Section 4.  

As we mentioned at the beginning of Section 3, vulnerabilities occur less frequently than defects, 

and in consequence, VPMs have to deal typically with highly unbalanced datasets. There are still 

a number of open issues in the construction of effective VPM: i) choice of granularity: model 

granularity, the selection of a unit to collect data and make predictions for binary, source file, 

class, and function/method; ii) statistical learner choice: it can be considered the most important 

step. For a good introduction of all the techniques see e.g. [51], or for more advanced details see 

[52]; iii) classification performance: in this sense, [20] and others [53] have suggested specific 

precision and recall values and they can be considered as a good starting point.  

The first work related to VPM was published in 2007 by Neuhaus et al [54]. The authors proposed 

to fit a ML model by means of incorporating the imports and the function call contained in a file 

as independent variables. This approach is based on the intuition that vulnerable files are likely 

to share similar sets of imports and function calls which could be used to identify them. The idea 

is in accordance with the work performed by Schroter et al. [55], which aims at predicting defects. 

The authors begin this study by performing a correlation analysis of import/function calls and 

vulnerabilities on a dataset of Mozilla Firefox vulnerabilities to validate the intuition. In their 

evaluation, the authors perform random splitting and experiment two approaches, one using the 

includes of the file as features while the other use its function calls. To build the models, the 

authors opt for the Support Vector Machine (SVM) algorithm. 

There is extensive literature for VPMs approaches that use software engineering metrics 

computed from the source code to build their models. The starting point of all studies that use 

complexity metrics is the study carried out by Shin et al. [56]. Some years later, in addition to 

 
65 i.e., Multiple lines of code that are semantically related to each other in terms of e.g., data dependency or control 

dependency. 
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complexity metrics, code churn and develop activity metrics are evaluated as indicators of 

software vulnerabilities [57]. Other studies use code complexity, code churn, and other static 

alerts to predict attack-prone or vulnerable components, [58] and [57] among others.  

Additionally, Morrison et al. [59] replicate the study of Zimmermann et al. [9] who studied typical 

code metrics as well as dependency metrics and evaluated their correlation with post-release 

vulnerabilities in Windows Vista binaries. Besides, Morrison et al. [59] investigated the 

performance of the models using the same metrics on finer levels of granularity (source file level). 

They used a total of 29 metrics classified as follows: churn metrics, complexity metrics, 

dependency metrics and legacy metrics and size metrics.   

In a more recent study carried out by Younis et al. [60] was described the attributes of code that 

contain vulnerabilities that are more likely to be exploitable. To this end the authors gather 183 

vulnerabilities from the Linux kernel and Apache HTTPD web server projects, which includes 82 

exploitable vulnerabilities.   

Recently, Bilgin et al. [10] examined how to predict software vulnerabilities from source code by 

employing ML techniques prior to their release. To this end, they developed a source code 

representation that enables us to perform intelligent analysis on the Abstract Syntax Tree (AST) 

form of source code and then investigate whether ML can distinguish vulnerable and non-

vulnerable code fragments. 

After reviewing several works for detecting security vulnerabilities, and among the different 

approaches described, VPMs seem to be a good starting point for the development of a 

vulnerability detection tool in BIECO. To this end, and according to various experiments provided 

by the researchers, the goal is to build a VPM based on advanced software metrics, determining 

which ones allow to obtain more accurate results on the vulnerability detection process.  

 

 Privacy-Preserving Strategies 

Source code is considered in general a sensitive asset, as it is part of the intellectual property of 

the companies that develop software and, in consequence, it should be protected adequately in 

order to avoid leakages that could derive in an economical and reputational impact. 

The tools that will be developed in BIECO for the vulnerability assessment will deal directly with 

the analysis of source code. Due to its sensitiveness, the project will explore the feasibility of 

using of privacy preserving mechanisms as means of protecting the confidentiality of the source 

code during the vulnerability assessment process.  

As a result, in this section a review of existing privacy-preserving mechanisms to protect sensitive 

data and intellectual property is provided. These mechanisms could include differential privacy, 

secure multi-party computation and Federated Learning, between others, although we will pay 

special attention to Federated Learning technique as an interesting mechanism to further explore 

its usage within BIECO.  

Current and emerging techniques for privacy and preservation can be found in [61]. They show a 

general visual overview of the privacy-preserving field in Figure 7. 
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Figure 7 Overview of the relationship between data, algorithms, actors, and techniques in the field of secure 

and private AI.66 

 

On the one hand, secure AI includes methods concerned with safeguarding algorithms and, on the 

other hand, private AI includes methods for systems allowing data processing without revealing 

the data itself. A summary of the terms presented in the previous figure is shown below: 

• Differential privacy: modification of a dataset to obfuscate individual information as a 

means of ensuring that the risk incurred by participating in a dataset is only marginally 

greater than the risk of not included in it. It can also be applied to algorithms. 

• Anonymization: removal or transformation of personally identifiable information from 

a dataset in such a way that the observable data cannot be used to breach user's privacy. 

It is an irreversible technique.   

• Pseudonymization: replacement of sensitive data with realistic synthetic data that cannot 

be attributed to a specific individual without additional information which, according to 

GDPR, is to be “kept separately and subject to technical and organization measures to 

ensure non-attribution to an identified or identifiable person”. It is an optional reversible 

technique. 

• Secure multiparty computation: collection of techniques and protocols enabling two or 

more parties to split up data among them to perform joint computations in a way that 

prevents any single party from gaining knowledge of the data but preserving the 

computational result. 

• Homomorphic encryption: cryptographic technique that preserves the ability to perform 

mathematical operations on data as if it was unencrypted (in plain text).  

 
66 Taken from [62] 
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• Federated learning: Machine Learning system relying on distributing the algorithm to 

where the data is instead of gathering the data where the algorithm is. 

Next, we will focus on federated learning technique, which belongs to a class of 

decentralized/distributed systems. 

 

3.4.1. Federated Learning (FL) 

It is well known that Machine Learning techniques require centralizing the training data on one 

machine or datacentre for building accurate and robust models. However, these techniques have 

a disadvantage from the security and privacy perspective, that is, the coupling of the training 

model with the need for direct access to the raw training data.  Because of the increasing concern 

in data privacy (e.g., General Data Protection Regulation, GDPR), restrict access to the data is 

still a major challenge.   

Recently, a new paradigm was proposed by McMahan et al. [62]. They investigate a learning 

technique that lets users collectively take the benefits of shared models trained from data, without 

the need to centrally store it. They coined the term Federated Learning (FL) since the learning 

task is solved by a loose federation of participating devices (clients) which are coordinated by a 

central server. Briefly, the idea is that each client (e.g., mobile devices) has a local training dataset 

which never is transferred to the server or other clients. Instead, each client computes an update 

to the current global model maintained by the server, and only this update is communicated. This 

is an example of application of the principle of focused collection [63].  

Federated Learning is considered as an iterative process wherein each iteration the central 

Machine Learning model is improved. FL implementations can be generalized into the following 

three steps: (1) The central pre-trained ML model (i.e., global model) and its initial parameters 

are initiated and then the global ML model is shared with all the clients in the FL environment. 

(2) After sharing the initial ML model and parameters with all clients, the initial ML model at the 

client level (called local ML models) is trained with individuals training data. (3) Local models 

are trained at the client level and updates are sent to the central server in order to aggregate and 

train the global ML model. The global model is updated and the improved model is shared among 

the individual clients for the next iteration. Federated Learning is in a continuous iterative learning 

process that repeats the training steps of 2 and 3 above to keep the global Machine Learning model 

updated across all the clients. A scheme of the architecture and the training approach can be seen 

in Figure 8 (taken from [64]). 
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Figure 8 Federated Learning process flow.67 

Federated Learning is a recent technique which is still under development and uses different 

approaches in order to apply it in practice. Some of the most current and common approaches are, 

for example, included in data partition category with Horizontal Federated Learning, Vertical 

Federated Learning and Transfer Federated Learning. In the aggregation/optimization algorithms 

classification it should be highlighted the Federated Averaging which is Google´s implementation 

of FL, or FedMA (Federated Learning with Matched Averaging) which is useful for constructing 

a shared model for convolutional neural networks (CNNs) and LSTM based in FL environments, 

between others. 

  

 
67 Taken from [65] 
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4. Vulnerability Forecasting Techniques 

As it has been explained in Section 3.3, prediction is a more general term than the topic related to 

this section. In particular, the term forecasting refers to the process of making predictions of the 

future as accurately as possible, based on past and present data available or even knowledge of 

any future events that might impact the forecasts.  

In the early stages of a forecasting analysis, decisions need to be made about what should be 

forecasted, taking into account that some things can be easier to forecast than others. In particular, 

the predictability of an event or quantity depends on: i) how well understand the factors that affect 

the event, ii) how much data are available, and iii) whether the forecast can affect the thing we 

are trying to forecast. Depending on the study field, one could be interested in short-term, 

medium-term or long-term forecasts. Thus, it is also relevant to consider forecasting horizon, as 

a different type of technique must be applied depending on how the forecasting horizon is set.  

Moreover, in forecasting it is important to be able to capture the relationships that exist in the 

historical data, but do not replicate past events that will not occur again; in other words, to 

distinguish between random fluctuations in the past data that should be not taken into account, 

and a genuine pattern that should be modelled and extrapolated. To this end, a variety of methods 

can be used: from the simplest ones, such as the usage of the most recent observation as a forecast 

(named as naïve method) or more complex ones, such as neural networks.  

There are many forecasting techniques that have been described in the literature, often developed 

within specific fields for specific goals. Each technique has its own accuracies, properties and 

assumptions that are relevant for selecting the method to be used [65].  

Forecasting future data can be addressed based on time series domain, where data are collected at 

regular intervals over time (e.g., hourly, daily, monthly, annually). Time series analysis try to find 

a model that describes the pattern of data with natural temporal ordering and they include models 

such as moving average (MA), autoregressive models (AR), the more general Autoregressive 

Moving Average (ARMA) [66]-[68], Autoregressive Integrated Moving Average models 

(ARIMA) [69]-[72] and Seasonal Autoregressive Integrated Moving Average (SARIMA) [75], 

all of them based on autoregressive moving averages. Focusing on a family models based on 

autoregressive conditional heteroskedasticity, Autoregressive Conditional Heteroskedasticity 

(ARCH) or Generalized Autoregressive Conditional Heteroskedasticity (GARCH) [73] can be 

used. Another option could be models such as Threshold Autoregressive (TAR) or Smooth 

Threshold Autoregressive (STAR) [74], nonlinear models of mean and non-linear variances, as 

well as others such as the Hamilton mode switch [75] and the Theta method [76]. 

Other of the most well-known techniques for forecasting analysis are the exponential smoothing 

models such as single exponential smoothing, Holt´s linear method, or Holt´s winter method [77]-

[80].  

In order to estimate how the sequence of observations will continue into the future, it can also be 

addressed by predictor variables based on an explanatory model [81][82]. This type of model 

incorporates information about other variables instead of only historical values of the variable to 

be forecast. There is also another type of models, called mixed models, which combines the 

features of explanatory models and time series models. They are known as dynamic regression 

models, longitudinal models, panel data models, etc. [78][83].  

The appropriate selection of the forecasting method depend on what resources and data are 

available, the accuracy of the competing models and the way in which the forecasting model is to 

be used.   
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 Forecasting Techniques Regarding the Exploitability of a Vulnerability 

Vulnerability forecasting refers to the estimation of certain information such as the number, type 

or time of occurrence of an event (i.e., software vulnerabilities) in the future. As mentioned 

earlier, the number of software vulnerabilities disclosed every year is staging and, consequently, 

the risks for system security officers are also increasing. To date, substantial research has been 

dedicated to techniques that analyse source code and detect security vulnerabilities. However, 

only limited research has focused on forecasting security vulnerabilities that are detected and 

reported after the release of a software.  

One interesting and widely studied approach is estimating the probability that a vulnerability will 

be exploited. Some contributions have been described in the literature such as Jacob et al. [14] 

and Bhatt et al. [84]. Unlike these research works which study if a Common Vulnerability and 

Exposure (CVE) is used in an exploit, an important question growing between researchers is 

forecasting when an exploit might appear. This issue is especially important for system 

administrators, because of their need to devote scarce resources to take corrective actions when a 

new vulnerability appears [15]. When vulnerability information is disclosed, there is an attacker´s 

tendency to exploit vulnerabilities, and consequently, vendors' tendency to release patches. 

Because patching is expensive, many vulnerabilities go unpatched because of the limited 

resources to tackle with large patching tasks [85]. So, it is crucial to prioritize patching based on 

the results of prediction models about when a vulnerability will be exploited. 

It should be highlighted that there are two types of exploits: i) Proof of concepts (PoC) exploits 

that are one where someone generates a sample exploit code to demonstrate vulnerability in a 

controlled environment and ii) real world exploits that were used in real world attacks. In 

particular, [86], [87] and [88] focus on predicting PoC exploits (published exploits) rather than 

real world exploits. Sabottke et al. [89] developed methods to predict both PoC and real-world 

exploits. They were the first to demonstrate that prediction accuracy could be improved by using 

(one year of) Twitter data.  

Recently, much more efforts have been made in order to studied real world exploits [90] where, 

in addition to National Vulnerability Database (NVD) and Exploit Database Archive (EDB), data 

from the Zero Day Initiative (ZDI)68 and dark web and deep web posts are used.  

On the other hand, even though Common Vulnerability Scoring System (CVSS) has become an 

industry standard for assessing fundamental characteristics of vulnerabilities, some limitations 

have been identified, such as the absence of an authoritative entity to update the metric values and 

lack of data to inform the score. Following this idea, Haipeng et al.  [15] described a method to 

predict when a vulnerability will be exploited based on CVE ID and Twitter discussion data, 

without the need for Common Vulnerability Scoring System (CVSS) scores. In addition, Jacob et 

al. [14] proposed a first open, data-driven threat scoring system, called Exploit Prediction Scoring 

System (EPSS), for predicting the probability that a vulnerability will be exploited within the 12 

months following public disclosure.  

Taking into account the increasing number of vulnerabilities and their consequently need for 

prioritizing them, the goal in BIECO is to develop a tool that allows to predict when a certain 

vulnerability will be exploited. Following the ideas proposed by Sabottke et al. [89], Haipeng et 

al. [15], Jacob et al. [14], among others, different features or variables will be tested as input for 

training the Machine Learning model and, also, a period time window will be established and 

adjusted in order to provide accurate forecasting results. 

 

 
68 http://www.zerodayinitiative.com/  
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 Other Vulnerability Forecasting Techniques 

 Between all of the challenges that are still open or not completely studied in forecasting 

vulnerabilities, predictions of the numbers of vulnerabilities in the next period of time are an 

important input for several managerial decisions [91], [11], [92]. Some well-known approaches 

are described in order to achieve this goal. 

From a time series perspective, Roumani et al. [11] implemented Autoregressive Integrated 

Moving Average (ARIMA) and exponential smoothing models for predicting the number of 

vulnerabilities, but also, other authors applied regression techniques [56] [12] or reliability growth 

models [93].  

However, none of the research takes into account the rareness of the vulnerability occurrence and 

high volatility, non-stationarity and seasonality. To solve this gap in the literature, recently, 

Yasasin et al. [94] concentrate on forecasting the number of vulnerabilities implementing a 

multiple forecasting approach, in which they compare several methodologies and evaluate their 

performance in terms of forecasting accuracy. On the one hand, they applied exponential 

smoothing model and Box-Jenkins models (such as ARIMA). On the other hand, they apply zero-

inflated time series which is especially suitable in this context because there are multiple periods 

of zero values [13], particularly, Croston´s methodology [95] and Neural Network based approach 

[96], [97]. The conclusion is that the Croston’s method and ARIMA are recommended for 

forecasting IT vulnerabilities since they achieved low forecasting errors for the considered 

software, for both metrics. Exponential smoothing methods are not recommended because of their 

susceptibility to the time series’ nature of IT vulnerabilities.  The feed forward neural network 

with a single hidden layer used achieved also poorer prediction accuracy. 

To achieve better forecasting results, it could be interesting to explore in depth some properties 

of security vulnerabilities: vulnerabilities are rare events so it is common that no vulnerabilities 

are reported, but also, there are some periods in which high numbers of vulnerabilities are 

reported. In this regard, vulnerabilities found by software engineering, and closed without 

publicly announced could be taken into account, as well as the relationship between monetary 

incentives such as third-party bug bounty platforms [98] and the number of vulnerabilities 

reported could be studied harder, leading to a decrease in zero values.   

Forecasting zero-day vulnerabilities is also an important issue in software security. David Last 

described in [92] three vulnerability discovery forecast model suites:  i) Composite Regression 

Models that use linear and quadratic regression to fit trendlines of the training period, ii) ML over 

Cumulative Vulnerabilities Models in which cumulative data for vulnerabilities to the beginning 

of the forecast period are used for training and iii) Machine Learning over Monthly Vulnerabilities 

Models, in which the number of vulnerabilities discovered each month in the training period is 

used for training instead the cumulative vulnerabilities. Because it is impossible to say which of 

these forecast models will be the most accurate, a consensus model influenced by all the 

components model is created. 

One of the latest achievements in the time series prediction, presented in M4 Competition69 [99] 

show that in the last few years a significant advancement in accuracy of predicting time series has 

been observed, mostly due to the use of ML [100]. To our best knowledge they have not been 

used for the vulnerabilities forecasting but, based on their accuracy, it might be very promising 

to use them in this field. 

One of the methods that presents significant progress in state of the art of time series forecasting 

is hybrid ES-RNN method by Slawek Smyl (from Uber Technologies; the winner of M4 

 
69 The M Competitions (also known as Makridakis Competitions) are led by prof. Spyros Makridakis from the 

University of Nicosia and are the most comprehensive studies of time series forecasting methods. 
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Competition), which is a hybrid statistical (Exponential Smoothing) and Machine Learning 

(Recurrent Neural Networks) method [101]. In the M4 competition, it outperforms the benchmark 

method for almost 10% of accuracy on 100 000 of time series, which is a really significant 

improvement to the previous state of the art. The second method, the one provided by Montero-

Manso et al. [102] from the University of A Coruña and Monash University, uses a novel 

combination (ensemble) of one machine learning model and several statistical ones. 

One approach which introduces novel concepts of Machine Learning for time series forecasting 

and has already outperformed the aforementioned methods, was the one presented as N-BEATS 

(Neural basis expansion analysis for interpretable time series forecasting) [103]. Another 

interesting venue are the methods based on recurrent embedding kernels which predict based on 

similarities between time series [104]. This kind of methods might give promising results for 

vulnerabilities predictions as they are based on complex pattern learning. The similarity in this 

case is learned by the neural network during the training as opposed to relying on clustering 

methods with fixed metrics. Some other interesting methods include those based on Echo State 

Networks with deep reservoir [105] and SFM (State-Frequency Memory) which combines LSTM 

networks with wavelet time series analysis [106]. 

Finally, there are two very successful ML methods not originally targeted at time series analysis: 

Differentiable Neural Computer [107] and Tsetlin Machine [108]. According to our knowledge, 

they have not been used yet for time series forecasting and vulnerabilities forecasting, but we 

expect them to achieve good performance after some improvements. It should be noted that these 

methods are generally far more effective than any others previously used for time series 

forecasting, including vulnerabilities forecasting. Another key approach that can be undertaken is 

focused on the novel architectures of the neural network's models, like the Transformer 

architecture [109] and Capsule Networks [110]. These architectures exhibited remarkable results 

in NLP and image recognition tasks, outperforming previous models by a solid margin. The usage 

of these architectures for vulnerabilities prediction is not researched fully yet, but nonetheless we 

consider it a very promising approach. 
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5. Vulnerability Propagation Techniques 

A software system can be composed by several entities or components that are related to each 

other.  A change in one of them, such as adding new features or a patch, can affect their related 

entities, creating unexpected effects and causing inconsistencies with other parts of the original 

software.  

This interdependency can also impact the software security, as a vulnerability located in a specific 

area of a source code could be propagated and escalated through the supply chain via multiple 

paths, making a fragment of the code with no vulnerability being part of vulnerable path, and 

leading to a different system security risk. 

In order to deal with these issues, in BIECO we want to create a tool with which it is possible to 

detect the propagation of vulnerabilities across interconnected ICT systems and modules. As a 

first step, in this task we will focus on vulnerability propagation through the code, doing a review 

of the state-of-art of different techniques to be able to evaluate the most prone one. As a 

complement of vulnerability code propagation, MUD standard is introduced, where the expected 

behaviour of an ITC component is defined, helping to avoid or mitigate future potential security 

attacks. 

The next section presents a review of several approaches published in the literature to evaluate 

how a vulnerability can be propagated across the software supply chain. 

 

 Review on Vulnerability Propagation Methods 

Program dependency relations, such as functions and variables, have been the goal of many 

researchers in order to evaluate how a change in one source code entity propagates to other entities 

[111].  In the last decades, there have been many investigations for identifying the effects of those 

changes using Change Impact Analysis (CIA) [112]. CIA is a technique that can be employed to 

predict the impact on a change in software, as well as estimating what needs to be modified to 

accomplish a certain change and their cost. Depending on the level of abstraction between 

elements, CIA methods can be divided into those that are based on the traceability examination 

(traceability-based CIA) and those that are on dependence relationships (dependence-based CIA). 

In the former, the analysis tries to trace the existing dependencies between elements from different 

levels of abstraction, while the latter analyses the dependencies between program entities from 

the same level. 

These dependencies above mentioned can lead to the introduction of known (or unknown) 

security vulnerabilities in software systems by third-party components, as for example in the case 

of integrating open source libraries with vulnerable code. Several tools have been developed in 

order to detect if a third-party component with known security vulnerability has been used. This 

is the case of Cadariu et al.  [3], who develop a tool-based process to track known vulnerabilities 

in software systems named Vulnerability Alert Service (VAS). In this approach, inputs (software 

project and vulnerability disclosures) are destined for the vulnerability checker (OWASP 

Dependency Check) which extracts dependency data, recognizes them and matches them with 

known vulnerabilities. Another perspective is the one introduced by Plate et al. [113]. This 

approach presents a dynamic analysis technique to automatically determine if the changes made 

by a security patch in a library are propagated to their source code, in such a way that they can 

identify where they may have a vulnerability when using the library from third parties. To identify 

changes, they consider headers and function constructors that change from the original library 

source code relative to the security patch, subsequently identifying their use in their source code. 

Another interesting approach to take under consideration is the impact of using unvalidated input, 

also known as taint data. Taintedness is propagated in the obvious way, as strings derived from 
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tainted string are also considered tainted. Perl’s taint mode [114] prevents the use of taint data as 

arguments for sensitive functions that can affect the local system creating files, sending data over 

the network or running local commands among others. Inspired by this idea, Haldar et al. [115] 

introduce a technique for tagging, tracking and detecting the taintedness of untrusted input 

throughout the lifetime of the application. To this end, both data originating from the client as 

tainted and data derived from tainted data are marked. In this approach, they track taintedness 

from sources to methods that should not use taint data, and prevent tainted data from being passed 

into them, which could lead to an improper use in a security-sensitive context. 

Moreover, many researchers have proposed the use of graph methods, such as Bayesian Networks 

and attack graphs among others, for providing an estimation of risk factors and being able to 

analyse the complexity and uncertainty of the propagation of a vulnerability. To make these 

methods more effective, it is important to use vulnerability propagation analysis tools that are 

capable of proactively assessing propagation. This can be obtained by using graph optimization 

methods. 

One of these methods is the known Ant Colony Optimization [19]. Ant Colony Optimization is a 

metaheuristic method that is inspired by the behaviour of real ants. This algorithm is used to solve 

computational problems that can be solved by finding a good path through a graph. The 

combination of this method together with the use of Bayesian Networks [16] built a security risk 

analysis model (SRAM) to which determine the propagation paths with the highest probability 

and the largest estimated risk value. 

Other authors like Hu et al. [116] propose a search algorithm based on lazy strategy, in terms of 

the macro component level, and on propagation difficulty when it comes to the microcode class 

level. With it, it is possible to reduce the search space complexity from exponential to polynomial. 

Furthermore, the algorithm can effectively identify software vulnerabilities that may affect a 

specific project. 

Although numerous works have already been done in attack graph analysis, most of the works 

have focused on vulnerability prioritization instead of attack path prioritization. Many algorithms 

have been developed to prioritize individual vulnerability, but these do not work well in multi-

step attack situations. Thus, it is essential to propose an overall security rate to indicate the risk 

level of the complete attack path and not just the single vulnerability. Agrawal and Khan [17] 

used the idea of Breadth First Search (BFS) algorithm (a graph and tree search algorithm) to 

propose an algorithm for computing vulnerability propagation of an attribute. To do so, they 

introduce a measure called Attribute Vulnerability Ratio (AVR).  More recently, Garg et al. [4] 

developed a hybrid methodology to estimate attack path score by first calculating the risk score 

of individual vulnerabilities using CVSS score metrics (base, temporal and environmental 

metrics) to prioritize them, and using Page rank model and Markov model to calculate the attack 

path risk score, thus being able to be prioritized.  Hence, it will be easy to decide which 

vulnerability needs to be patched first to avoid a complete attack path.  

 

 Review on the Application of MUD Files for vulnerability assessment 

based on  Security Policies 

The specification of the intended behaviour of IoT devices could help to avoid or mitigate 

potential security attacks. In this direction, policy-based approaches have been traditionally 

considered to define the set of allowed and denied actions for a particular system. One of the most 
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prominent examples is the eXtensible Access Control Markup Language (XACML)70, which is 

considered the de facto standard for the definition and enforcement of access control policies. 

One of the main advantages of XACML is the interoperability it provides between different 

vendor access control implementations. Also related to access control, token-based methods have 

been widely used to perform authorization. It provides a simple method where the token contains 

the permissions of a specific entity. 

In addition to the access control aspect, other recommendations are also defined to express other 

restrictions on system behaviour. Specifically, authors in [117] propose a layered architecture in 

which an access control policy model is used for security and privacy. The method is based on 

the model-based security toolkit Seckit, which provides different meta-models to represent the 

security requirements of the system behaviour. 

Regarding network-layer security aspects, authors of [118] and [119] believe that the network 

behaviour of a device is predictable and therefore easily restricted. Indeed, they propose a network 

security policy enforcement architecture based on this idea by restricting the network behaviour 

of the devices.  

Network aspects are also the focus of the recently created (in 2019) Internet Engineering Task 

Force (IETF) Manufacturer Usage Description (MUD)71 standard, which is intended to represent 

the intended network behaviour of IoT devices. The MUD standard defines the architecture and 

data model necessary to restrict the communication from and to a device. This file is intended to 

be generated by the manufacturer, as a way to describe the intended network behaviour of their 

devices, which can be used later to detect unwanted behaviours that could derive on vulnerabilities 

and attacks.  

MUD files define the type of communications and access of a certain device in the form of policies 

or ACLs. In this sense, the MUD standard is capable of specify policies of the following types: 

“allow the communication between devices of the same manufacturer”, “allow the access to the 

controller”, or “deny the communications coming from a specific port”. MUD is based on 

YANG72 standard to model such restrictions, and JSON73 for serialization purposes. It also 

provides mechanisms to extend the MUD model, so manufacturers can express other conditions 

not contemplated in the standardized MUD data model (e.g., Quality of Service (QoS) proposed 

in [120]).  

Hamza et al. [121], as well as authors in [122] and [123] used the MUD rules as input for an 

Intrusion Detection System (IDS). They also discussed the limitation of the MUD in protecting 

the device from local attacks, as local endpoints are not defined in the MUD file.  Authors in [124] 

focus on the battery life extension within the 802.11ax devices, optimizing the wake time. In 

[125], the authors focus on flooding attacks, using Software Defined Networks (SDNs) and MUD 

rules. Also, the project proposed in [126] reduces the vulnerabilities and increase the resilience 

of devices in the smart home domain, combining the MUD with threat signalling and updates. 

However, this documents only gives some recommendations and it does not enter into details. 

The guidelines of the document are completed in the NIST Cybersecurity Practice Guide74 (SP 

1800-15), which explains how MUD protocols and tools can reduce the vulnerability of IoT 

devices to botnets and other network-based threats as well as reduce the potential for harm from 

exploited IoT devices. 

 
70 http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html  
71 https://tools.ietf.org/html/rfc8520   
72 https://tools.ietf.org/html/rfc6020 
73 https://datatracker.ietf.org/doc/rfc8259/   
74 https://csrc.nist.gov/publications/detail/sp/1800-15/draft   
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Regarding validation, the thesis developed in [127] pre certifies the security of a device based on 

its MUD file, validating that the behaviour is the one described in the file. Furthermore, the thesis 

considers existing vulnerabilities (e.g., for a specific version of a protocol) and all is performed 

in an automated way. 

However, MUD files have not been applied only to simple IoT devices. Authors in [128] 

combines the MUD file with machine learning techniques within the 5G environment for 

predicting the resources the user will need.  Also, MUD files have been applied to more complex 

devices such as smartphones [129] with the objective to mitigate the threat of malicious apps and 

IoT devices in smart home networks. Even so, the MUD model, as described in the standard is 

limited to certain network layer aspects. In this sense, and coping with this, current research has 

addressed this limitation by extending the model to integrate more fine-grained information that 

could be useful to detect more types of vulnerabilities. Authors in [130] extend the MUD model 

to consider dynamic aspects in the context of smart homes, whereas in [131], authors propose a 

new behavioural profile based on the MUD with the aim of creating a feature vector. Moreover, 

authors in [132] define an augmented MUD profile to include security properties such as key sizes 

or cryptographic algorithms and to limit the maximum number of simultaneous connections. The 

same authors in [133] extend the MUD model to integrate the Medium-level Security Policy 

Language (MSPL), which provides flexibility to define other policies (privacy, data protection, 

channel protection, authorization, etc.). 

MUD files have been widely used in current research to validate the configuration of the device, 

detecting misalignments from the recommended behaviour. Although in the majority of the cases, 

these detections come hand by hand with an IDS, MUD files can be also used during design phase 

as a way to validate the conformity of the manufacturer recommendations with the system, before 

it is released into the market, adjusting it in case it is necessary. Moreover, although the provided 

semantics does not allow the specification of more fine-grained security aspects to be defined, 

some of the analysed works provide extensions to integrate more information in the MUD model 

that can be also analysed during the design phase (e.g., key lengths or cryptographic algorithms 

used). Due to the significant growth of IoT devices, the use of a standardized approach such as 

MUD will be crucial to face existing and new security threats, as well as the heterogeneity of 

existing devices and technologies. Furthermore, although the original MUD file was oriented to 

IoT devices, the research has proved that the potential of the MUD goes beyond, providing 

behavioural profiles to more complex systems such as mobile phones or 5G environments, and 

providing extensions to reflect more types of security policies. 
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6. Conclusions 

In this document a review of the main vulnerability datasets and standards was provided, as well 

as a review of the state of the art on vulnerability detection, forecasting and propagation.  

Based on the idea that vulnerability identification is one of the first steps in software security 

lifecycle, the techniques for this purpose have been reviewed and categorized in the following 

three topics: anomaly detection, vulnerable pattern recognition and vulnerability prediction 

models.  

Anomaly detection approaches can be used to find vulnerabilities caused by the use of improper 

APIs as well as missing checks or neglected conditions. However, the assumption that missing 

checks or the use of improper APIs are rare events makes deviations that cannot be easily detected, 

leading to high false-positive rates. On the other hand, vulnerable pattern recognition is focused 

on discovering vulnerabilities by defining patterns of vulnerable code segments. Even though the 

results provided from the aforementioned works were acceptable, they suffer from some 

important shortcomings since they employ approaches based on very limited or shallow 

information about the software. An effective modelling and discovery of vulnerabilities requires 

information about different aspects of software like syntactic, control-flow and data-flow. A 

different perspective for trying to predict the presence of software vulnerabilities is by means of 

VPM based on software metrics.  

It should be noted that, although detection is a crucial step and can be obtained by means of the 

aforementioned techniques, identifying which ones are more likely to be exploitable could be 

even more important in order to prioritize the vulnerability management. Being aware of this, in 

the VPM context based on metrics, some studies were performed focused on this goal, unlike the 

other two approaches.  

To the best of our knowledge, anomaly detection, vulnerable pattern recognition and vulnerability 

prediction models are focused on the detection of vulnerabilities in a general way. Although 

detection is the first step to reduce the risk in software security, it is also interesting to determine 

the type of vulnerability, in order to prioritize which ones could be exploited sooner.  Taking this 

into account, BIECO will focus on the research of mechanisms that allow not only to detect 

but also to try to identify the type of vulnerability, as well as to provide their fine-graine 

location. Furthermore, the application of Federated Learning techniques will be explored more 

in depth for the training of the Machine Learning models used in the vulnerability detection 

process. The application of Federated Learning, besides not being used in the field of 

vulnerability detection until the date, could allow to solve confidentiality issues (avoiding the 

sharing of sensitive source code).  

Related to the forecasting topic, there are two Machine Learning methods, Differentiable 

Neural Computer and Tsetlin Machine, that have not been used yet in vulnerabilities 

forecasting, but we expect them to achieve good performance after some improvements. It should 

be noted that these methods are generally far more effective than any other methods previously 

used for time series forecasting, including vulnerabilities forecasting. Another key approach that 

could be undertaken is focused on the novel architectures of the neural network's models, like 

the Transformer architecture and Capsule Networks. These architectures exhibited remarkable 

results in NLP (Natural Language Processing) and image recognition tasks, outperforming 

previous models by a solid margin. The usage of these architectures for vulnerabilities prediction 

is not researched fully yet, but we consider it a very promising approach nonetheless. 

Additionally, based on the reviewed literature of the subsection 4.1 for predicting when a 

vulnerability will be exploited within a period of time, our idea is to provide a methodology 

applied to the BIECO´s use cases considering a closest period of time (e.g., 6 months), or at 

least, the same period (within the next 12 months).  
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In terms of propagation, and after the reviewed studies, graph algorithms will be explored to 

model the path that a vulnerability can follow across a source code. Furthermore, since a 

vulnerability can be propagated through different paths, several optimization graphs algorithms 

are going to be tested in order to obtain the most prone one. In addition, the use of severity rating 

methods will be assessed as a complement to the path optimization.  

Finally, policy-based approaches, and specially the recently approved MUD standard, appears 

as a promising tool that could allow not only to mitigate suspicious behaviours during the runtime 

phase, but also to detect misalignment with the manufacturer's security specifications during 

the design phase, applying the corrections that are necessary before its market release. 

The review of the different approaches and the works mentioned in this document provides us 

with a good starting point for the design of the different tools that will be developed in order to 

perform the vulnerability assessment process of BIECO. These approaches will be further 

researched within the tasks “T3.3 Vulnerability detection and forecasting” and “T3.4 

Vulnerability propagation”, and the preliminary results documented in deliverables “D3.3 Report 

of the tools for vulnerability detection and forecasting” and “D3.4 Report of the tools for 

vulnerabilities propagation”. 
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