

This project has received funding from the European Union´s Horizon 2020 Research and

Innovation Programme under Grand agreement No. 952702.

Deliverable 3.3

Report of the Tools for Vulnerability Detection

and Forecasting

Technical References

Document version : 1.0

Submission Date : 28/02/ 2022

Dissemination Level

Contribution to

:

:

Public

WP3 – Vulnerability Management

Document Owner : GRAD

File Name

Revision

:

:

BIECO_D3.3_28.02.2022_V1.0

3.0

Project Acronym : BIECO

Project Title : Building Trust in Ecosystem and Ecosystem

Components

Grant Agreement n. : 952702

Call : H2020-SU-ICT-2018-2020

Project Duration : 36 months, from 01/09/2020 to 31/08/2023

Website : https://www.bieco.org

Ref. Ares(2022)1489338 - 28/02/2022

Page 2 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Revision History

REVISION DATE
INVOLVED
PARTNERS

DESCRIPTION

0.0 05/10/2021 GRAD Draft structure of the document

0.1 06/10/2021 GRAD Table of Contents

0.2 26/11/2021 GRAD Contribution to Sections 2 and 3.

0.3 19/12/2021 GRAD Contributions to Subsections 2.1, 2.2 and 2.3

0.4 13/01/2022 GRAD Contributions to Section 1 and Executive Summary

0.5 23/01/2022 UTC Added section 3.2, updated the acronyms table

0.6 26/01/2022 GRAD Contributions to Subsection 2.4

0.7 30/01/2022 UTC Added sections 3.2.4 and 3.2.5

0.8 02/02/2022 7B Added section 3.3

0.9 03/02/2022 GRAD Contributions to Section 4

0.10 04/02/2022 UTC Contributions to Section 4

1.0 04/02/2022 GRAD
Internal review by Borja Pintos and implementation
of suggestions

1.1 11/02/2022 IESE First review

1.2 15/02/2022
GRAD, 7B,

UTC
Comments from review addressed

1.3 23/02/2022 CNR Second review

2.0 24/02/2022 GRAD Comments from review addressed

2.1 26.02. 2022 UNI Final Revision and correction by Coordinator

3.0 28.02.2022 UNI Finalizing deliverable and submission

List of Contributors

Deliverable Creator(s): Eva Sotos (GRAD), Laura Pérez (GRAD), Javier Yépez (GRAD),

Mónica Alonso (GRAD), Ovidiu Cosma (UTC), Paweł Skrzypek (7B), Radosław Piliszek

(7B), Katarzyna Karnas (7B)

Reviewer(s): Borja Pintos (GRAD), Emilia Cioroaica (IESE), Felicita Di Giandomenico

(CNR), Giulio Masetti (CNR); Sanaz Nikghadam-Hojjati(UNI); José Barata(UNI)

Page 3 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Disclaimer: The information in this document is subject to change without notice.

Company or product names mentioned in this document may be trademarks or

registered trademarks of their respective companies.

All rights reserved.

The document is proprietary of the BIECO consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written

agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not

liable for any use that may be made of the information contained herein.

BIECO project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
952702.

Page 4 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Acronyms
Acronym Term

ANN Artificial Neural Networks

AST Abstract Syntactic Tree

AUC Area Under the ROC Curve

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DCT Data Collection Tool

DM Data Minning
EDA Exploratory Data Analysis
EDB Exploit Database
GLM General Linear Models
GAM Generalized Additive Models
GBT Gradient Boosting Tree
GD-BP Gradient Descent – Back Propagation
ICT Information and Communication Technology
IT Information Technology
LLoC Logical Lines of Code
LoC Lines of Code
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multilayer Perceptron
NIST National Institute of Standards and Technology

NVD National Vulnerability Database
PoC Proof-of-concept
PVE Provisional CVE
RF Randon Forest
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SLoC Source Lines of Code
SVM Support Vector Machine
TFT Temporal Fusion Transformer
VPM Vulnerability Prediction Models
WP Work Package

XSS Cross-site scripting attacks

Page 5 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Executive Summary

The goal of Work Package (WP3) is to research and develop a set of cybersecurity tools

oriented to the detection, forecasting and propagation of vulnerabilities across complex

Information and Communication Technology (ICT) systems. Many issues have to be

considered when designing a tool for vulnerability management and, specially, when it

relies on the use of Machine Learning (ML) models. The functionality of the tool as well

as the definition of the concrete algorithms to be used are the main points to consider.

The core of the deliverable is to present the status and progress of the different tools

developed within the task T3.3. The tools that make up the aforementioned task are

those focused on the detection of vulnerabilities, as well as the forecast of different

vulnerability parameters which will help to better assess system vulnerabilities. In terms

of detection, a vulnerability detection tool is being developed with the goal to detect and

identify vulnerabilities within the source code by the use of supervised learning

algorithms. With regard to vulnerability forecasting, three different tools are developed.

These tools are focused on the prediction of different parameters, the possibility of a

vulnerability being exploited in a time window, the number of vulnerabilities detected in

a period of time and the severity of a vulnerability.

The deliverable includes an introduction of the concept of security vulnerabilities and

their assessment as well as a description of the different tools. For a better

understanding of their development, some theoretical concepts of different ML models

are included along with a selection of functions and data to be used in their training.

Once the theoretical notions have been put into practice, a comparison of the results is

presented together with the conclusions to summarize the most important advances

made to date, as well as possible future actions.

Page 6 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Project Summary

Nowadays most of the ICT solutions developed by companies require the integration or

collaboration with other ICT components, which are typically developed by third parties.

Even though this kind of procedures are key in order to maintain productivity and

competitiveness, the fragmentation of the supply chain can pose a high-risk regarding

security, as in most of the cases there is no way to verify if these other solutions have

vulnerabilities or if they have been built taking into account the best security practices.

In order to deal with these issues, it is important that companies make a change on their

mindset, assuming an "untrusted by default" position. According to a recent study only

29% of IT business know that their ecosystem partners are compliant and resilient with

regard to security. However, cybersecurity attacks have a high economic impact, and it

is not enough to rely only on trust. ICT components need to be able to provide verifiable

guarantees regarding their security and privacy properties. It is also imperative to detect

more accurately vulnerabilities from ICT components and understand how they can

propagate over the supply chain and impact on ICT ecosystems. However, it is well

known that most of the vulnerabilities can remain undetected for years, so it is necessary

to provide advanced tools for guaranteeing resilience and also better mitigation

strategies, as cybersecurity incidents will happen. Finally, it is necessary to expand the

horizons of the current risk assessment and auditing processes, taking into account a

much wider threat landscape. BIECO is a holistic framework that will provide these

mechanisms in order to help companies to understand and manage the cybersecurity

risks and threats they are subject to when they become part of the ICT supply chain. The

framework, composed by a set of tools and methodologies, will address the challenges

related to vulnerability management, resilience, and auditing of complex systems.

Page 7 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Partners

Disclaimer

The publication reflects only the author's view, and the European Commission is

not responsible for any use that may be made of the information it contains.

Page 8 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Table of Contents

Technical References ... 1

Revision History... 2

List of Contributors ... 2

Acronyms ... 4

Executive Summary... 5

Project Summary ... 6

Partners .. 7

Disclaimer .. 7

Table of Contents .. 8

List of Figures .. 10

List of Tables ... 11

1. Introduction .. 12

1.1 Connection with other tasks .. 12

2. Vulnerability Detection .. 14

2.1 Dataset ... 14

2.1.1 Features .. 15

2.2 Models ... 17

2.2.1 Tree-based methods .. 17

2.2.2 Support Vector Machine .. 20

2.2.3 Generalized Additive Models ... 21

2.3 Implementation and evaluation ... 22

3. Vulnerability Forecasting .. 27

3.1 Exploitability Forecasting ... 27

3.1.1 Features .. 27

3.1.2 Logistic regression models ... 28

3.2 Vulnerability Forecasting .. 29

3.2.1. Multilayer Perceptron Models .. 30

3.2.2. Recurrent Neural Networks .. 32

3.2.3. Long Short-Term Memory Models ... 33

3.2.4. Dataset preparation and model training .. 33

3.2.5 Vulnerabilities Forecasting Tool ... 36

3.3 Severity Forecasting ... 38

3.3.1. Forecasting methods state of the art overview .. 38

Page 9 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

3.3.2. N-Beats method .. 39

3.3.3. Temporal Fusion Transformer method ... 39

4. Conclusions and future actions .. 42

5. References ... 44

Annex A. ... 46

AST example .. 46

Page 10 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

List of Figures

Figure 1: Dependency between tools ... 13

Figure 2: Structure of a data analytic project ... 14

Figure 3: Feature extractor tools .. 15

Figure 4: Random Forest Structure .. 18

Figure 5: Gradient Boosting Decision Tree Structure ... 19

Figure 6: Classification in two groups by using SVM ... 20

Figure 7: Confusion Matrix for the RF model .. 25

Figure 8: ROC curve for the RF model .. 25

Figure 9: Perceptron structure ... 29

Figure 10: Common activation functions .. 30

Figure 11: MLP model with one hidden layer .. 31

Figure 12: Compact representation of the MLP model with one hidden layer 31

Figure 13: RNN structure .. 32

Figure 14: RNN operation ... 32

Figure 15: LSTM cell structure. .. 33

Figure 16: Monthly vulnerabilities of LTS UBUBTU releases ... 35

Figure 17: Monthly vulnerabilities of LTS UBUBTU releases ... 35

Figure 18: UBUNTU monthly vulnerabilities .. 35

Figure 19: UBUNTU monthly vulnerabilities forecasting .. 36

Figure 20: UBUNTU 2 months average number of vulnerabilities forecasting 37

Figure 21: UBUNTU 3 months average number of vulnerabilities forecasting 37

Figure 22: UBUNTU 6 months average number of vulnerabilities forecasting 37

Figure 23: N-Beats architecture... 39

Figure 24: Temporal Fusion Transformer – architecture ... 41

Figure 25: Example source code of a function that checks the type of a triangle 46

Figure 26: Part of the AST generated for the example in Figure 25 46

Page 11 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

List of Tables

Table 1: Results with paired and unpaired data .. 23

Table 2: Results with a reconfiguration of the output feature ... 24

Table 3: Results considering the number of CVE per library.. 24

Table 4: Descriptive Parameters of the Results for the RF model 25

Table 5: UBUNTU operating system versions. .. 34

Page 12 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

1. Introduction

In recent years a significant rise of cyberattacks has been detected1. The new normality

derived from the COVID pandemic has led to an increase in the use of teleworking, as

well as the use of more telematic processes that replace those previously carried out in

person. This new lifestyle has become an attractive target for attackers, due to the fact

that they have a large amount of information. In many cases this information is

unprotected and with easily breakable access, which loss can provoke economical or

even reputational damage. That is why cybersecurity has become such an important

field in recent years.

One of the main factors which can help attackers to corrupt a system is the existence of

vulnerabilities in the code. A simple vulnerability in the code can affect a whole system.

Thus, it is vital to execute a suitable vulnerability assessment to the code.

To perform a good vulnerability and risk assessment process, it is important to

complement a secure development methodology [1]. One of its main steps is to perform

a code review or, in our case, the detection of critical or vulnerable code that can lead to

a security breach. To this purpose, many have been the approaches used, having great

relevance those focused on the use of Machine Learning (ML) and Data Mining (DM)

algorithms. In the context of BIECO, we want to develop a tool which through ML and DM

techniques is capable of detecting vulnerabilities within a static source code.

Detecting the existence of vulnerabilities within a system source is the first step in terms

of vulnerability assessment. Nevertheless, such process alone is not enough to ensure

a proper vulnerability assessment. Evaluating the severity or possible future impact of

each discovered vulnerability are crucial steps when it comes to the security assessment

in ICT components, as well as the prediction of future security threats for their risk

identification. With it an improvement is achieved in order to prioritize mitigation efforts.

Thus, and to provide the most comprehensive vulnerability assessment possible, three

different forecasting tools are deployed. They are: a forecasting tool which estimates

the likelihood of a given vulnerability to be exploited within a time window (e.g., 3, 6 or

12 months), a vulnerability forecasting tool which provides an estimation of the number

of vulnerabilities to be expected in the main system software components for certain

times frames, and a severity forecasting tool which predicts the severity of newly

discovered and related vulnerabilities.

1.1 Connection with other tasks

The main purpose of WP3 is the research and development of the security tools and

methodologies of BIECO’s framework that are oriented to risk and security assessment.

Particularly, it is focused on the detection, forecasting and propagation of vulnerabilities

across complex ICT systems.

In the case of the task T3.3, four different tools are deployed to be implemented within

the design phase: one focused on the detection of vulnerabilities in the source code, and

another three which forecast different parameters related with the vulnerabilities.

1https://blog.checkpoint.com/2022/01/10/check-point-research-cyber-attacks-increased-50-year-over-
year/

https://blog.checkpoint.com/2022/01/10/check-point-research-cyber-attacks-increased-50-year-over-year/
https://blog.checkpoint.com/2022/01/10/check-point-research-cyber-attacks-increased-50-year-over-year/

Page 13 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

The dependency between the tools developed in WP3 within the BIECO framework is

shown in Figure 1. If we focus on those corresponding to task T3.3, it is possible to

observe how these depend on vulnerability database (mostly from the Data Collection

Tool developed in T3.2), as well as how their different outputs provide the input to the

tools created in WP7 for the security claim evaluation.

Figure 1: Dependency between tools

For a better understanding of the tools aforementioned, the deliverable is organized as

follows:

Section 2 introduces the vulnerability detection tool, focusing on the description of the

process to acquire the dataset to be used for the training of the ML algorithms, a

theoretical description of the different methods adopted in the process of evaluation as

well as the reasons for their selection, and the implementation and obtained results of

the different models trained.

Section 3 presents the three different forecasting tools developed within WP3:

exploitability forecasting tool, vulnerability forecasting tool and a new severity

forecasting tool, surged at the beginning of this task. In it, a description of each tool as

well as the models considered for their implementation, possible features and results, if

any, are provided. Due to the recent incorporation of the development of a severity

forecasting tool, in this case, only the tool is presented offering a brief state of the art

and possible algorithms to be used.

Section 4 concludes the deliverable by reporting the conclusions obtained in the tool

development process as well as future actions to be taken.

Page 14 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

2. Vulnerability Detection

As it was mentioned in previous deliverables, [2] and [3], there are several procedures

and techniques developed for the detection of vulnerabilities in the source code. After

an extensive study and once the different existing possibilities have been assessed, a

combination of techniques has been chosen boarding ML and DM techniques. In a first

stage of the project, it has been decided to design a tool using Vulnerability Prediction

Models (VPM) to detect vulnerable libraries in Python code. Detecting if a component

could contain a vulnerability, helps to focus future efforts when analyzing the type of

vulnerability contained. Once the approach has been chosen, it is necessary to obtain

and transform the data to be used, following the steps of a typical data analytic project

(Figure 2).

Figure 2: Structure of a data analytic project [4]

For the development of the aforementioned techniques, the task has been divided in

different phases:

− Obtention of the dataset to use for the analysis of the models, which includes the

search for different public repositories of vulnerability datasets, its download or

import, and its tidiness (Section 2.1),

− a transformation of the dataset to acquire the selection of the different features

which characterize the inputs/outputs of the models,

− an analysis of different ML prediction models (Section 2.2),

− and the implementation and results obtained from those (Section 2.3).

2.1 Dataset

In order to obtain a public dataset for the training of ML algorithms, a library download

tool has been created. This tool takes public libraries from Pypi repositories2 and divides

them into vulnerable and not vulnerable. For having this classification, it has been

consulted a repository3 that indicates which libraries and versions are vulnerable to a

2 https://pypi.org/
3 https://raw.githubusercontent.com/pyupio/safety-db/master/data/insecure_full.json

https://pypi.org/
https://raw.githubusercontent.com/pyupio/safety-db/master/data/insecure_full.json

Page 15 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

given CVE (Common Vulnerabilities and Exposures) or PVE, in case that the CVE is still

provisional.

After parsing the repository, the data is processed to obtain extra information, such as

the versions in a library that are not vulnerable or their corresponding CWE (Common

Weakness Enumeration), if available, which will be used by further analysis. Once the

data is processed a total of 3204 versions of different libraries have been downloaded.

For a first phase of the evaluation, libraries and their versions are divided in two

categories:

1. vulnerable, that are those which have at least one known vulnerability, and

2. safe, those that have no known vulnerabilities.

After having carried out this classification, 1930 vulnerable and 1274 not vulnerable

libraries have been obtained. This division is going to characterize the analysis which

will determine if a library is vulnerable or not.

2.1.1 Features

Once the data is provided, it is necessary to define the variables that will provide the

necessary information to predict the existence or not of vulnerabilities. To this end, it is

required a preprocessing of the acquired information. Data preprocessing is understood

as the computation needed to transform the collected data into suitable input data for

modeling. This procedure implies tidiness of the data by storing them in a consistent

form which corresponds to the descriptive characteristics of the collected data, i.e.,

features. This transformation implies the creation of new variables of interest, to

calculate a set of summary statistics, etc. These features are used as inputs to the ML

models to characterize the problem to solve.

The obtention of the descriptive variables that will appear in the dataset is made by the

use of different tools. These tools perform a static analysis of the source code and

extract different characteristics such as the number of lines, possible dependencies with

security issues or the complexity, among others. To acquire the features to be used in

the ML models for the detection tool, different existing tools have been used, as well as

an internal developed tool which will provide those features not able to be obtained by

the existing ones (Figure 3). These tools are described below:

Figure 3: Feature extractor tools

Page 16 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Bandit (static code analysis)

Bandit4 is a tool which provides common security issues in Python code. To do

this, it processes each file, acquiring its Abstract Syntactic Tree (AST), and runs

different plugins against the AST nodes. Once the process is finished, Bandit

generates a report, available in different formats, with different issues together

with the number of evaluated lines in the code and the number of issues

classified by confidentiality and severity. The features obtained are the following:

• Plugin tests: which encompasses misc. tests, application/framework

misconfiguration, blacklists (calls and imports), cryptography, injection

and XSS (Cross Site Scripting)

• Confidence: high, low, medium and undefined

• Severity: high, low medium and undefined

Radon

Radon5 is a tool based in Python which computes various code metrics to obtain

information about code complexity. These supported metrics are:

• Raw metrics: based on the evaluation about the lines of the code. This

information includes: LOC (lines of code), LLOC (logical lines of code),

SLOC (source lines of code), comment lines and blank lines.

• Cyclomatic Complexity (i.e., McCabe’s Complexity): a quantitative

measure of the logical complexity presented by a code calculated from

the associated AST.

• Halstead metrics: focused on the different Python operators (arithmetic,

logic, assign...) which can lead to the existence of bugs.

• Maintainability Index (a Visual Studio metric): a software metric to assess

the level of difficulty to support or modify a code.

Safety (dependency check)

Safety6 is a command line tool that checks the local virtual environment, required

files or any input from stdin for dependencies with security issues. As a result of

the analysis, the tool provides a dependency report indicating those vulnerable

libraries on which they are dependent on.

AST feature extractor tool

In addition to the previously described tools, an internal one has been developed

to acquire those features of interest that the existing tools are not able to provide.

The tool, developed in Python, uses the public library ast7 to obtain the AST code

representation. AST is an abstract representation of the source code that keeps

the structural and context details, excluding all the inessential punctuation and

4 https://bandit.readthedocs.io/en/latest/index.html
5 https://radon.readthedocs.io/en/latest/
6 https://pyup.io/safety/
7 https://docs.python.org/3/library/ast.html

https://bandit.readthedocs.io/en/latest/index.html
https://radon.readthedocs.io/en/latest/
https://pyup.io/safety/
https://docs.python.org/3/library/ast.html

Page 17 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

delimiters such as braces, semicolons or parentheses. This is often used by

compilers as an intermediate representation before generating the binary

executable since they can be modified and enhanced programmatically (e.g., to

check the correctness of the syntax, remove death code or apply some high-level

optimizations.) (detailed in Annex A)

In our case we use the AST to extract or calculate different features which will

describe the static characteristics of the code such as the number lines, function

classes or the imported libraries between others. Even though it is possible to

obtain these features without the use of this representation, the extraction of the

AST makes it easier and, in some cases, instantaneous.

In order to obtain the final dataset and given the heterogeneity of the downloaded files,

it is necessary to perform certain adaptation tasks to the downloaded libraries for being

able to use the different tools selected and, therefore, obtain the features in a

standardized way. After processing the filtered data, a total of 2159 records (1398

vulnerable and 761 no vulnerable) and 144 different features have been evaluated.

2.2 Models

Once the different features have been obtained, they are analyzed through a training

process using different ML metrics based on predictive models. These models are

based on the use of a unique equation applied to an entire sample space. Occasionally,

its implementation is hard due to the fact that it can result difficult to find a single global

model capable of reflecting the relationship between the variables.

As previous works reviewed in the state of the art in [2], and taking into account the

complexity of the calculated features and the results to be obtained, as starting point it

has been chosen the tree-based method Random Forest (RF). Thinking ahead about the

possibility of obtaining results that are not clarifying enough, three more models are

implemented to provide a complete analysis and achieve the best results through their

comparison. These models are Gradient Boosting Tree (GBT), Support Vector Machine

(SVM) and Generalized Additive Models (GAM).

2.2.1 Tree-based methods

Tree-based methods have become one of the benchmarks within the predictive fields

since they provide good results in different areas, either regression or classification

problems [5]. These methods encompass a set of supervised techniques that are able

to split an entire sample space into simple regions, which makes it easier to handle their

interactions. To do so, an initial node is taken as the beginning, which is formed by the

entire training sample, and subdivided conditioned by a certain feature into two new

subsets, giving rise to two new nodes. This process is performed recursively with

subsequent created nodes until a predetermined finite number of times, thus obtaining

a final decision tree whose nodes are used to perform the prediction.

In the case of predicting if a certain library is vulnerable or not, the nodes generated by

the tree-based method should be pure, that is, vulnerable or no vulnerable observations.

Nevertheless, the fulfillment of this condition in practice is difficult to achieve, due to the

nature of the available data. This results in models that, even though they have low bias,

Page 18 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

they present high variability, that is, a small data variation can lead to the creation of a

different decision tree. Acquiring a balance between bias and variance is one of the main

issues we can face when it comes to the selection of the tree-based model to use.

Random Forest

As discussed above, one of the main issues we can face when it comes to the

use of tree-based methods, is to achieve a balance between bias and variance.

To solve a possible decompensation between them, a combination of multiple

models is used, better known as ensemble models, improving the predictions

obtained by any of the original ones used individually. One of the most used

ensemble models is bagging. These models adjust multiple models, each one

trained with different training data, and provide the mean of the different

obtained predictions or the most frequent class. One example of algorithm that

is based on these models is Random Forest (RF) [5].

RF models offer suitable analysis results by implementing it in those scenarios

in which a sheer number of features are handled. Some of the main advantages

of such models are that they provide an automatic selection of predictors, which

can be numerical or categorical, good scalability, low dependence on outliers and

no need for standardization, among others.

This model is made up of an ensemble of individual decision trees which are

trained individually with a random sample extracted from the original training

data. The observations are distributed through the nodes generating the tree

structure until reaching a terminal node or leaf. The set of predictions of each of

the trees that make up the general model, generates the total prediction of the

new observation (Figure 4).

Figure 4: Random Forest Structure (8)

8 https://medium.com/swlh/random-forest-and-its-implementation-71824ced454f

https://medium.com/swlh/random-forest-and-its-implementation-71824ced454f

Page 19 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

The steps to follow when it comes to execution of the algorithm, are described

as:

1. Being B the number of trees, for b = 1 to B

a. Draw a bootstrap sample Z* of size N from the training data.

b. Grow a random-forest tree T 𝑏 to the bootstrapped data, by

recursively repeating the following steps for each terminal node of the

tree, until the minimum node size n𝑚𝑖𝑛 is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T 𝑏 } 1
𝐵 .

To make a prediction at a new point x:

Regression: f’𝑟𝑓
𝐵 (x) =

1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1 .

Classification: Let 𝐶𝑏
′ (𝑥) be the class prediction of the bth random-forest tree.

Then 𝐶𝑟𝑓
′𝐵(𝑥) = average all predictions{𝐶𝑏

′ (𝑥)}1
𝐵.

Gradient Boosting Tree

Another approach used to find the balance between bias and variance is the use

of the ensemble models based on the use of boosting. Unlike bagging, these

adjust sequentially multiple simple models. An example of these kind of models

which use this kind of metric is Gradient Boosting Tree (GBT).

GBT are models made up of a set of individual decision trees, trained sequentially

and achieving weak learners by the use of trees with one or few branches. Being

run sequentially, each tree is trained by taking into account the information

provided by the previous tree, correcting the prediction errors made to improve

each iteration. This process is executed recursively until it achieves a final node,

creating a complete tree structure. The prediction resulting from having executed

all of them is the mean of all the individual results, or the most frequent class

(Figure 5).

Figure 5: Gradient Boosting Decision Tree Structure (9)

9https://www.researchgate.net/figure/Structure-of-the-gradient-boosting-decision-trees_fig2_344395470

Page 20 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

The algorithm for the implementation of the GBT models, can be described as

follows:

1. Initialize 𝑓0(𝑥) = arg   min
𝛾

  ∑ 𝐿(𝑦𝑖  ,  𝛾)𝑁
𝑖=1 , where 𝐿 is the loss function

2. For 𝑚  =  1  to 𝑀:

a. For 𝑖  =  1,  2,   … ,  𝑁  compute

𝑟𝑖𝑚  =   − [
𝛿𝐿(𝑦𝑖  ,  𝑓(𝑥𝑖))

𝛿𝑓(𝑥𝑖)
]  𝑓=𝑓𝑚−1

b. Fit a regression tree to the targets 𝑟𝑖𝑚 giving terminal regions 𝑅𝑗𝑚, 𝑗  =

 1,  2,   … ,  𝐽𝑚.

c. For 𝑗  =  1,  2,   … ,  𝐽𝑚 compute

𝛾𝑗𝑚  =   arg   min
𝛾

  ∑ 𝐿(𝑦𝑖  ,  𝑓𝑚−1 (𝑥𝑖)  +  𝛾)

 

𝑥𝑖 ∈ 𝑅𝑗𝑚

 .

d. Update 𝑓𝑚 (𝑥)  =  𝑓𝑚−1 (𝑥)  +   ∑𝐽𝑚
𝑗=1  𝛾𝑗𝑚 𝐼(𝑥  ∈  𝑅𝑗𝑚) .

3. Output 𝑓′ (𝑥)  =  𝑓𝑀  (𝑥) .

2.2.2 Support Vector Machine

Another model to take into account is the use of the algorithm Support Vector Machine

(SVM) [6]. This algorithm provides good results when it comes to datasets with binary

classification outputs, which can suggest a good performance in the case of detecting

the vulnerability or non-vulnerability of a library.

SVM is a supervised and linear ML algorithm that looks at data and sorts it into one of

two categories. These types of methods were created to solve binary classification

problems, based on the idea of dividing data through hyperplanes, and maintaining all

the main features that characterize the algorithm.

Figure 6: Classification in two groups by using SVM (10)

10 https://fhernanb.github.io/libro_mod_pred/svm-clas.html

Page 21 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

The objective is to build a tolerance margin (𝜀) with which there will be observations

(support vectors) within the margins and outside them (Figure 6). Using only the

observations outside the margins, the errors 𝜉  are calculated and with them the

objective function (FO) to be minimized is constructed11, i.e.:

Minimize:

𝐹𝑂  =  
1

2
  ∥ 𝑤 ∥2   +  𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1  ,   subject to 𝑦𝑖  (𝑤,  𝑥𝑖 ) ≥ 1,  ∀𝑖.

Where:

• 𝑤  is the vector with the slopes associated with each of the variables

• 𝐶 is the penalty value for the errors

2.2.3 Generalized Additive Models

An alternative methodology in terms of predictive models is the use of linear models,

and in particular the General Linear Models (GLM) [7]. GLMs are a generalization of the

stacking approach to ensemble learning that follows the concepts of the Super Learner

models [8]. These models offer an approachable way to acquire a soft transition to more

flexible models, while retaining some of the interpretability, as opposed to the opacity of

many ML models.

To evaluate the possible improvement of results and make a more complete study, a

model with a different approach was executed. In this case, it is decided to implement a

model that allows greater flexibility in the dependence of each covariate with the

response variable. This functionality can be obtained by the use of GLM which allows to

interpret the features information knowledge. Nevertheless, despite the advantages

offered by these kinds of models, they present some limitations when it comes to the

relationship between predictors as well as the need for the variable response mean to

be linear and constant. Thus, an extension of GLM which allows the use of non-linear

relationships is used: GAM [9].

GAMs are regression models which require the assumption that the response variable

follows a certain parametric distribution (normal, beta, and gamma), but with the

particularity that the parameters used can be modeled, each one independently,

following non-parametric functions (I.e., linear, additive or non-linear). This makes these

models being considered as semi-parametric. Thanks to this versatility, GAMs are a

suitable tool for the modeling of features which follow a wide range of distributions.

In these models, the relation between each predictor and the variable response mean is

not direct, but it is made through a function. The most used ones are the smooth non-

linear functions, such as cubic regression splines, tin plate regression splines or

penalized splines.

The purpose of GAM is to maximize the prediction accuracy of a dependent variable and

several distributions, by specific non-parametric functions of the predictor variable

11 https://fhernanb.github.io/libro_mod_pred/svm-reg.html

https://fhernanb.github.io/libro_mod_pred/svm-reg.html

Page 22 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

which are connected to the dependent one through a link function. In other words, GAMs

structures can be expressed as:

𝑔(𝐸(𝑌))  =  𝛽  +  𝑓1 (𝑥1)  +  𝑓2 (𝑥2)  +   …   +  𝑓𝑚 (𝑥𝑚) 

Where:

• 𝑔(𝐸(𝑌)) is the link function which associates the expected value with the

predictive variables 𝑥1 ,  𝑥2 ,   …  ,  𝑥𝑚.

• 𝑓1 (𝑥1)  +  𝑓2 (𝑥2)  +   …   +  𝑓𝑚 (𝑥𝑚) is the functional form with an additive series

that generates the response variable 𝑌  .

2.3 Implementation and evaluation

When implementing ML tools, the selection of the input dataset for model training as

well as the features to be used is crucial. For the implementation of the aforementioned

methods, it is necessary to preprocess the acquired features through an Exploratory

Data Analysis (EDA) from where different inferences can be drawn to ensure a selection

of efficient features. After performing this EDA, it has been possible to verify a large

presence of outlier data, as well as the existence of similar records, dependence

between numerous features and low dependence of them with the response variable,

among others. This assessment leads to the discarding of those features that could

result in repetitions or that could have dependencies with others already calculated.

After this preprocessing, a total of 84 features have been selected for the use of the

models based on decision tree and the SVM.

Besides this filtering, algorithms based on logistic regression require a recompilation of

features which are the most significant or provide the greatest contribution to the model.

Thus, a selection has been carried out by discarding those variables with a high

correlation between them. Furthermore, an own selection has been done taking those

features which are considered the best significant option for a vulnerability prediction.

After the analyses, a total of 48 features have been collected to be used in the model.

When it comes to the selection of the input dataset, and to avoid possible input data

which could compromise the results, a balancing has been carried out, i.e., an

approximately equal number of vulnerable and non-vulnerable samples have been

selected. Likewise, and in order to make a complete evaluation of the models, two

different scenarios have been created: one in which a set of paired data is provided, and

another whose samples are unpair. For the former, a vulnerable and non-vulnerable

version of each of the libraries has been chosen, while for the latter, the vulnerable and

non-vulnerable samples correspond to different libraries. In the case of models GAM, the

use of paired datasets does not provide satisfactory results, since they can lead to

confusion. Therefore, the dataset used will be the one that, in addition to being balanced,

has unpaired data.

To obtain the optimum results of the model, samples have been divided into those used

for the training process and those used for testing. In addition, a grid search has been

Page 23 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

implemented by cross validation for obtaining the hyperparameters corresponding to the

best result of each model.

When implementing the different models, the use of the Python programming language

has been chosen, since it includes specific libraries for performing their execution. In the

case of RF, the public library RandomForestClassifier12 is used. GBT is implemented by

the library GradientBoostingClassifier13. SVM is configured by the use of the SVC14 from

the public library sklearn15. By last, for the implementation of linear generalized models

two different methodologies have been applied: one based on the logistic regression

model by the use of linear_model.LogisticRegression16 included in the Python library

sklearn and another by implementing the generalization to the additive case of the linear

model, using LogisticGAM()17 from the Python library sklearn.

The proportion between the records obtained and variables, together with the

conclusions aforementioned and the exploratory nature of the study presented, favor the

possibility of evaluating several different data sets. These are the result of performing

certain transformations such as the grouping of certain variables, the elimination of

paired data, the suppression of certain categorical variables, etc.

In a first test, it has been taken as a dataset those libraries vulnerable and no-vulnerable

to a known CVE, that is, it has been discarded those libraries and versions marked with

provisional CVE or PVE. The results obtained in the different models with said dataset

are not conclusive since the number of existing samples in it is not enough for a correct

implementation of the selected models.

To solve the lack of samples in the dataset, it has been taken those libraries with PVE,

considering them as vulnerable, as well as their no-vulnerable version. These samples

have been evaluated in both scenarios paired data and unpaired data, except for the

GAM models which nature only allows their use with unpaired data.

Table 1: Results with paired and unpaired data

Scenario Model
Accuracy
training

Accuracy
testing

AUC

Paired data

RF 0.509 0.502 0.518

GBT 0.602 0.579 0.539

SVM 0.6 0.581 0.541

Unpaired data

RF 0.497 0.496 0.528

GBT 0.532 0.558 0.569

SVM 0.552 0.554 0.552

GAM 0.521 0.523 0.498

For the evaluation of the results, it has been taken into account the accuracy training,

accuracy testing and the AUC (Area Under the ROC Curve) whose optimal values have to

be around the 0.7 and 0.9. In this scenario, the obtained results (Table 1) showed low

adjustments in all the models and scenarios indicating that a data extension has not

12https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
13https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
14 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
15 https://scikit-learn.org/stable/user_guide.html
16https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
17 https://pygam.readthedocs.io/en/latest/api/logisticgam.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://pygam.readthedocs.io/en/latest/api/logisticgam.html

Page 24 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

provided solutions in improving the modeling. When making a comparison between the

different models and scenarios, there is no indication of a significant difference. In

addition, having a low accuracy with the training data indicates that models are not being

able to learn properly, which leads to consider performing an improvement of the

problem context.

As a way of improvement of the model’s results, it has been chosen to add a

contextualization on the dataset. For this, the possibility of adding new features to the

existing ones has been evaluated, which can characterize more accurately the response

feature of the same. After various analyses, a reconfiguration of the output feature is

performed.

The results obtained after the execution of the models with the new reconfiguration are

those shown in Table 2. Since the results obtained with the paired and unpaired data do

not show any difference, only those whose dataset are paired are shown, but the GAM

models which only allows their use with unpaired data.

Table 2: Results with a reconfiguration of the output feature

Model Accuracy training Accuracy testing AUC

RF 0.566 0.561 0.623
GBT 0.651 0.634 0.628
SVM 0.653 0.631 0.535
GAM 0.642 0.564 0.573

After the obtention of the results, it can be seen that, in general terms, all the models

present a slight improvement after the response reconfiguration. Likewise, the trend in

the variation within the training test settings is maintained. However, the differences

between the models are still not significant, and the unpaired scenario presents a weaker

improvement regarding this information.

During the process of reformulating the problem, the possibility of modifying the

response feature is explored taking into account the different types of CVE contained in

the libraries. Since a certain library can have several different vulnerabilities, the

possibility of obtaining a new dataset is contemplated, in which the records

corresponding to a certain library appear as many times as different CVEs contain.

In this way, a new dataset has been generated which includes all the original libraries

considered no-vulnerable, and those vulnerable to a given CVE, discarding those with

PVE label. Due to the fact that data samples are paired, GAM is not performed as its use

confuses the model giving unsatisfactory results. This dataset contains a total of 1613

records.

Table 3: Results considering the number of CVE per library

Model Accuracy training Accuracy testing AUC

RF 0.754 0.727 0.776
GBT 0.751 0.702 0.719
SVM 0.653 0.621 0.637

The execution of the algorithms with the new dataset provides results in which a

significant improvement can be verified with respect to the previous one (Table 3). In

this case, the evaluated models present an improvement in the adjustment reached

around 75%, being the model RF the one that provides the best results. The evaluation

Page 25 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

of the performance of said model offers a confusion matrix with false positive and false

negative rates greater than 10% (Figure 7).

Figure 7: Confusion Matrix for the RF model

In addition, the obtained report details other representative measures such as precision

(number of true positives that are actually positive compared to the total number of

predicted positive values), recall (number of true positives that the model has classified

based on the total number of positive values) and F1 score (harmonic mean of the above)

(Table 4), which values are around 70% in both precision and recall.

Table 4: Descriptive Parameters of the Results for the RF model

Outputs Precision Recall F1-score % Support

0 0.72 0.754 0.727 0.493
1 0.74 0.653 0.621 0.507

By focusing on the ROC curve (Figure 8) and the AUC, it is possible to observe a summary

of the model’s performance, which is close to 80%.

Figure 8: ROC curve for the RF model

Page 26 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

As a result of the different transformations carried out to improve the evaluations, it has

been verified that the results do not depend to a great extent on the chosen model, since

they provide similar results between them. Moreover, adding records to the sample does

not provide relevant improvements. Only by adding context to the problem and recoding

the response feature provides slight improvements to the results.

Page 27 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

3. Vulnerability Forecasting

In order to evaluate how a detected vulnerability can affect a system, from the context

of BIECO, it is proposed the implementation of tools focused on the prediction of

different vulnerability aspects. With it, a more complete security assessment and risk

identification within the ICT system is provided.

One of the first steps when it comes to a forecasting analysis is to concretize which

parameters are going to be predicted. When it comes to vulnerabilities, it is important to

predict those aspects that may be most relevance when compromising the security of

the system under analysis. Under this premise, and taking into account the life cycle of

a vulnerability [10], it has been stipulated to forecast three types of vulnerability aspects:

the probability of a vulnerability to be exploited in a selected time window, the number

of vulnerabilities that may appear in the next period of time in a given system, and how

severe a vulnerability may be. To this end, three different tools are going to be developed,

that will focus on each of the previously mentioned approaches.

3.1 Exploitability Forecasting

In an initial phase, a tool is going to be developed to predict if a vulnerability will be

exploited in a window time period, such as 3, 6, or 12 months. The selection of this period

has been set according to the different information provided by the review of the state

of the art [2] centered in the exploitability forecasting and by the results obtained in the

training step of the ML model.

The following subsections detail the dataset under analysis and the academic

description of the model that will be implemented to obtain the probabilities. The idea

aims to improve the proposal of Jacobs et al. [11] by expanding the set of features with

the contribution of the information provided by social networks about vulnerabilities.

3.1.1 Features

As mentioned in previous deliverables ([2], [3]) a selection of different features is

evaluated in order to obtain the best results. These features are taken from different

public data sources, which provide details about vulnerability disclosures, proof-of-

concept (PoC) exploits and vulnerability descriptions.

For the obtention of features regarding vulnerability information, the Data Collection Tool

(DTC18) developed in T3.2 is used. This tool is a web application which stores

information from relevant vulnerability datasets. The information offered by the DCT, is

taken by public repositories such as the National Vulnerability Database (NVD19),

MITRE20 and Exploit Database (EDB21) among others. Thanks to the information provided

by the DCT, different features are obtained, which will be taken into consideration in the

development of the forecasting tool. Some of these features are: CVE identificatory, CVE

publication date, CVE description.

18 https://dct.bieco.org/
19 https://nvd.nist.gov/
20 https://cve.mitre.org/
21 https://www.exploit-db.com/

Page 28 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Another public data source to be used in the acquisition of vulnerability information

features and particularly regarding its exploitability, is EDB. This is a web repository for

exploits and proof-of-concepts where penetration testers and vulnerability researchers

upload application vulnerabilities and its corresponding vulnerable software to exploit

them. Some of the information provided by EDB useful for the creation of the forecasting

tool, is the CVE associated with a given exploitability, as well as the discovered date.

As a complementation of the previous public repositories for the obtention of useful data

to predict the exploitability, it has been studied the possibility of the use of public data

sources. In previous works [12], the social network Twitter has been proposed to be used

to obtain various useful information. Following the same path, for the development of

the tool, queries will be made to different social networks in order to obtain useful data

in the forecasting of exploits. The required information is acquired by parsing different

specific channels with topics related to cybersecurity, counting the occurrences

keywords for a given vulnerability within different time windows.

3.1.2 Logistic regression models

In a first assessment, for the implementation of the tool, the possibility of implementing

algorithms based on logistic regression models is considered, since these allow

explaining the contribution offered by the predictor features on the behavior of the

response variable.

A linear regression model predicts the value of the response feature using the equation

(E1):

𝑦𝑖   =  𝛽0  + 𝛽1 𝑥𝑖1  +  𝛽2 𝑥𝑖2  + ⋯ + 𝛽𝑝 𝑥𝑖𝑝  +  𝜖𝑖 (E1)

Where:

• 𝑦𝑖  is a specific observation 𝑖

• 𝛽0 is the intercept

• 𝛽𝑝 represents the partial regression coefficients

• 𝜖 is the residue or error

In the case of binary logistic regression, the objective is to model the probability of a

binary qualitative variable as a function of one or more independent variables. To do this,

the value returned by the linear regression is transformed with a function whose results

are always between 0 and 1. One of the most used functions is the logistic function, well

known as sigmoide function (E2)

𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝑒  =  𝜎(𝑦)  =  
1

1+𝑒−𝑦 (E2)

Substituting the 𝑦 of the previous equation (E2) by the linear function (E1), the general

equation of the logistic regression is obtained:

Page 29 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

𝑃(𝑦 = 1 /𝑋 = 𝑥) =  
𝑒𝛽0 +𝛽1 𝑥1 +⋯+𝛽𝑝 𝑥𝑝 

1+𝑒𝛽0 + 𝛽1 𝑥1 + …+𝛽𝑝 𝑥𝑝
 (E3)

in which 𝑃(𝑦 = 1 /𝑋 = 𝑥) is the probability that the response feature 𝑦 is equal to 1, given

the predictors 𝑥1 , … ,  𝑥𝑝 .

The resulting model has the regression coefficient in the exponents, which implies that

it is not a linear model and, therefore, the strategy to fit the model will also be different

from that of the linear model.

With this, it can be affirmed that the objective of logistic regression is not to predict the

value of the variable from one or several predictor variables, but to predict the probability

that it occurs knowing the variable values.

3.2 Vulnerability Forecasting

When it comes to vulnerabilities, forecasting the number of them that will appear in the

next period of time is an important information for various managerial decisions

[13],[14]. The forecasting of vulnerabilities deals with the main system software

components used within a complex ICT system. The results represent a measure of the

ICT system level of trust, since each vulnerability that affects a major component, can

represent a vulnerability of the entire system that can be exploited by a malicious attack.

The forecasting tools developed in T3.3 will provide an estimation of the number of

vulnerabilities to be expected for the main system software components in certain time

frames.

The vulnerability forecasting tool uses artificial neural network models which are made

up of a set of interconnected components, called neurons or perceptrons. The neurons

are placed in several layers. The inputs of each neuron are connected to the outputs of

the neurons in the previous layer. The neurons in the first layer get the inputs of the

model, and the outputs of the neurons in the final layer provide the result.

The structure of a neuron is presented in Figure 9, where 𝑥𝑖,  𝑖 = 1, . . , 𝑛 are the

inputs, 𝑤𝑖 ,  𝑖 = 1, . . , 𝑛 are the weights associated to the inputs, 𝑏 is the bias, 𝑓 is the

activation function and 𝑦 is the output.

Figure 9: Perceptron structure

The neuron operation is defined by relation (E4). It calculates a weighted sum of the

inputs and bias, and then it passes it through the activation function to determine the

Page 30 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

output. The most widely used activation functions are Identity (E5), Sigmoid (E6), ReLu

(E7), Tanh (E8) and Softplus (E9), which are shown in Figure 10.

𝑦 = 𝑓 (𝑏 + ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) (E4)

𝑓1(𝑥) = 𝑥 (E5)

𝑓2(𝑥) =
1

1 + 𝑒−𝑥
 (E6)

𝑓3(𝑥) = max (0, 𝑥) (E7)

𝑓4(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (E8)

𝑓5(𝑥) = ln (1 + 𝑒𝑥) (E9)

Figure 10: Common activation functions

3.2.1. Multilayer Perceptron Models

A Multilayer Perceptron (MLP) model with an input layer, a hidden layer, and an output

layer is shown in Figure 11. The outputs of the model are given by relations (E10) and

(E11), where 𝑓 is the activation function of the output layer neurons and 𝑔 is the

activation function of the hidden layer neurons.

Page 31 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

 Figure 11: MLP model with one hidden layer

h𝑗 = 𝑔 (𝑏𝑗
ℎ + ∑ 𝑊𝑖𝑗𝑥𝑖

𝑛

𝑖=1

) , 𝑗 = 1, … , 𝑚 (E10)

y𝑘 = 𝑓 (𝑏𝑘
𝑜 + ∑ 𝑉𝑗𝑘ℎ𝑗

𝑚

𝑗=1

) , 𝑘 = 1, … 𝑝 (E11)

A more compact representation of this model is given in Figure 12, where 𝑥 and 𝑦

represent the input and the output vectors, 𝑊 and 𝑉 are the hidden and the output layers

weights matrices, 𝑏ℎ and 𝑏𝑜 are the hidden and the output layers bias vectors, ℎ is the

hidden layer output vector, and 𝑔 and 𝑓 are the activation functions of the hidden and

the output layers. The output is given by relations (E12) and (E13), that are compact

representations of (E10) and (E11). The model can be extended by adding more hidden

layers. Training such a model involves adjusting the weights and biases in such a way

as to provide an output as close as possible to the correct value for each input. The most

widely used methods of training Artificial Neural Networks (ANNs) are based on the

Gradient Descent – Back Propagation (GD-BP) algorithms [15] or genetic algorithms.

 Figure 12: Compact representation of the MLP model with one hidden layer

ℎ = 𝑔(𝑏ℎ + 𝑥𝑊) (E12)

𝑦 = 𝑓(𝑏𝑜 + ℎ𝑉) (E13)

Page 32 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

3.2.2. Recurrent Neural Networks

Recurrent Neural Nets (RNNs) [16] were designed to process sequential data. They can

memorize previous states and use them to determine the current state. The structure of

a RNN is shown in Figure 13.

Figure 13: RNN structure

The operation of a RNN is shown in Figure 14. Its state is composed by the hidden layer

output vector ℎ . The state vector ℎ calculated at step 𝑡 − 1 is processed as an entry at

step 𝑡 . The total number of trainable parameters does not depend on the number of

steps, but only on the dimensions of the layers. Thus, for the network structure in Figure

13, the total number of parameters is (𝑛 + 𝑚 + 1)𝑚 + (𝑚 + 1)𝑝, were 𝑛 is the size of the

input vector 𝑥 , 𝑚 is the size of the status vector ℎ , and 𝑝 is the size of the output vector

𝑦 . The outputs at step 𝑡 are given by relations (E14) and (E15). They depend not only on

the entries at step 𝑡 , but on their entire evolution, starting from the initial step.

Figure 14: RNN operation

ℎ𝑡 = 𝑔(𝑏ℎ + 𝑥𝑡U + ℎ𝑡−1W) (E14)

𝑦𝑡 = 𝑓(𝑏𝑜 + ℎ𝑡V) (E15)

Page 33 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

3.2.3. Long Short-Term Memory Models

The main disadvantage of RNNs lies in the fact that they cannot learn long sequences,

because of the vanishing gradient problem [15]. This problem occurs in deep networks

with many hidden layers. RNNs do not have long-term memory. The Long Short-Term

Memory (LSTM) models have been projected to solve this problem. The structure of a

LSTM cell is presented in Figure 15, where 𝑓 is the forget gate, 𝑖 is the input gate, 𝑔 is the

input updater, 𝑂 is the output gate, 𝐶𝑡 is the current cell state and ℎ is the hidden state.

Its operation is defined by relations (E16) – (E21).

Figure 15: LSTM cell structure.

𝑓 = 𝜎(𝑥𝑡𝑈𝑓 + ℎ𝑡−1𝑊𝑓) (E16)

𝑖 = 𝜎(𝑥𝑡𝑈𝑖 + ℎ𝑡−1𝑊𝑖) (E17)

𝑔 = tanh (𝑥𝑡𝑈𝑔 + ℎ𝑡−1𝑊𝑔) (E18)

𝐶𝑡 = 𝐶𝑡−1 ∘ 𝑓 + 𝑔 ∘ 𝑖 (E19)

𝑂 = 𝜎(𝑥𝑡𝑈𝑜 + ℎ𝑡−1𝑊𝑜) (E20)

ℎ𝑡 = tanh (𝐶𝑡) ∘ 𝑂 (E21)

3.2.4. Dataset preparation and model training

One of the main software components used in the BIECO use cases is the UBUNTU

operating system, produced by Canonical Ltd. The first variant of this operating system

appeared in 2004 and its development continues to this day. Common versions of this

operating system that were released before 2013 have an operating life of 18 months

and are reviewed approximately every 6 months. Since 2013, the service life of these

versions has been reduced to 9 months. Every fourth version of UBUNTU benefits from

Long Term Support, for a minimum period of 5 years. The versions of this operating

system are shown in Table 5.

Page 34 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Table 5: UBUNTU operating system versions.
Version Name Release date End of support

4.10 Warty Warthog 2004-10-20 2006-04-30
5.04 Hoary Hedgehog 2005-04-08 2006-10-31
5.10 Breezy Badger 2005-10-13 2007-04-13

6.06 LTS Dapper Drake 2006-06-01 2011-06-01
6.10 Edgy Eft 2006-10-26 2008-04-25
7.04 Feisty Fawn 2007-04-19 2008-10-19
7.10 Gutsy Gibbon 2007-10-18 2009-04-18

8.04 LTS Hardy Heron 2008-04-24 2013-05-09
8.10 Intrepid Ibex 2008-10-30 2010-04-30
9.04 Jaunty Jackalope 2009-04-23 2010-10-23
9.10 Karmic Koala 2009-10-29 2011-04-30

10.04 LTS Lucid Lynx 2010-04-29 2015-04-30
10.10 Maverick Meerkat 2010-10-10 2012-04-10
11.04 Natty Narwhal 2011-04-28 2012-10-28
11.10 Oneiric Ocelot 2011-10-13 2013-05-09

12.04 LTS Precise Pangolin 2012-04-26 2019-04-26
12.10 Quantal Quetzal 2012-10-18 2014-05-16
13.04 Raring Ringtail 2013-04-25 2014-01-27
13.10 Saucy Salamander 2013-10-17 2014-07-17

14.04 LTS Trusty Tahr 2014-04-17 2024-04-25
14.10 Utopic Unicorn 2014-10-23 2015-07-23
15.04 Vivid Vervet 2015-04-23 2016-02-04
15.10 Wily Werewolf 2015-10-22 2016-07-28

16.04 LTS Xenial Xerus 2016-04-21 2026-04-23
16.10 Yakkety Yak 2016-10-13 2017-07-20
17.04 Zesty Zapus 2017-04-13 2018-01-13
17.10 Artful Aardvark 2017-10-19 2018-07-19

18.04 LTS Bionic Beaver 2018-04-26 2028-04-26
18.10 Cosmic Cuttlefish 2018-10-18 2019-07-18
19.04 Disco Dingo 2019-04-18 2020-01-23
19.10 Eoan Ermine 2019-10-17 2020-07-17

20.04 LTS Focal Fossa 2020-04-23 2030-04-23
20.10 Groovy Gorilla 2020-10-22 2021-07-22
21.04 Hirsute Hippo 2021-04-22 2022-01-20
21.10 Impish Indri 2021-10-14 2022-07-14

22.04 LTS Jammy Jellyfish 2022-04-21 2032-04-21

Figures 16 and 17, obtained from the analysis carried out in the vulnerability forecasting

tool, show the vulnerabilities discovered for LTS releases of the UBUNTU operating

system. The red portion represents vulnerabilities that were discovered before the

release date, and the green area represents vulnerabilities discovered after the end of

the support period.

https://en.wikipedia.org/wiki/Ubuntu_version_history#0410
https://en.wikipedia.org/wiki/Ubuntu_version_history#0504
https://en.wikipedia.org/wiki/Ubuntu_version_history#0510
https://en.wikipedia.org/wiki/Ubuntu_version_history#0606
https://en.wikipedia.org/wiki/Ubuntu_version_history#0610
https://en.wikipedia.org/wiki/Ubuntu_version_history#0704
https://en.wikipedia.org/wiki/Ubuntu_version_history#0710
https://en.wikipedia.org/wiki/Ubuntu_version_history#0804
https://en.wikipedia.org/wiki/Ubuntu_version_history#0810
https://en.wikipedia.org/wiki/Ubuntu_version_history#0904
https://en.wikipedia.org/wiki/Ubuntu_version_history#0910
https://en.wikipedia.org/wiki/Ubuntu_version_history#1004
https://en.wikipedia.org/wiki/Ubuntu_version_history#1010
https://en.wikipedia.org/wiki/Ubuntu_version_history#1104
https://en.wikipedia.org/wiki/Ubuntu_version_history#1110
https://en.wikipedia.org/wiki/Ubuntu_version_history#1204
https://en.wikipedia.org/wiki/Ubuntu_version_history#1210
https://en.wikipedia.org/wiki/Ubuntu_version_history#1304
https://en.wikipedia.org/wiki/Ubuntu_version_history#1310
https://en.wikipedia.org/wiki/Ubuntu_version_history#1404
https://en.wikipedia.org/wiki/Ubuntu_version_history#1410
https://en.wikipedia.org/wiki/Ubuntu_version_history#1504
https://en.wikipedia.org/wiki/Ubuntu_version_history#1510
https://en.wikipedia.org/wiki/Ubuntu_version_history#1604
https://en.wikipedia.org/wiki/Ubuntu_version_history#1610
https://en.wikipedia.org/wiki/Ubuntu_version_history#1704
https://en.wikipedia.org/wiki/Ubuntu_version_history#1710
https://en.wikipedia.org/wiki/Ubuntu_version_history#1804
https://en.wikipedia.org/wiki/Ubuntu_version_history#1810
https://en.wikipedia.org/wiki/Ubuntu_version_history#1904
https://en.wikipedia.org/wiki/Ubuntu_version_history#1910
https://en.wikipedia.org/wiki/Ubuntu_version_history#2004
https://en.wikipedia.org/wiki/Ubuntu_version_history#2010
https://en.wikipedia.org/wiki/Ubuntu_version_history#2104
https://en.wikipedia.org/wiki/Ubuntu_version_history#2110
https://en.wikipedia.org/wiki/Ubuntu_version_history#2204

Page 35 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Figure 16: Monthly vulnerabilities of LTS UBUBTU releases

Figure 17: Monthly vulnerabilities of LTS UBUBTU releases

Figure 18 represents all the vulnerabilities discovered for the UBUNTU operating system,

in the 206 months of its existence, since its launch, until now. The red line represents the

age of the last release of UBUNTU, in months.

Figure 18: UBUNTU monthly vulnerabilities

Page 36 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

3.2.5 Vulnerabilities Forecasting Tool

The vulnerability forecasting tool is based on LSTM models trained with the iterated k-

fold cross validation technique. The models are equipped with dropout layers in order to

avoid overtraining. The models' parameters were optimized using grid search. The

inputs of the model are the history of UBUNTU vulnerabilities and the age of the newest

version in months.

At this stage, the vulnerability forecasting tool contains four models for predicting the

monthly number of vulnerabilities for the UBUNTU operating system, as well as the

average number of vulnerabilities for 2, 3 and 6 months.

The results of the monthly vulnerabilities prediction model are presented in Figure 19.

The red line represents the real number of vulnerabilities, and the blue one represents

the forecasting tool prediction. The mean absolute error of the forecasts obtained for

the test dataset is 6.12.

Figure 19: UBUNTU monthly vulnerabilities forecasting

The results for predicting the average number of vulnerabilities for 2, 3 and 6 months

periods are presented in Figures 20, 21 and 22. The mean absolute errors obtained for

the test dataset are 3.84, 3.03 and 1.87 respectively.

The red lines represent the actual data, and the blue lines represent the results obtained

by the forecasting tool for each month, based on the information from the previous

months. The horizontal labels represent the age of the studied component, which is at

this stage the UBUNTU operating system. The first month (0) corresponds to the release

of the first UBUNTU version (October 2004) and the last month (206) corresponds to the

date on which the work on this document began (December 2021).

Page 37 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Figure 20: UBUNTU 2 months average number of vulnerabilities forecasting

Figure 21: UBUNTU 3 months average number of vulnerabilities forecasting

Figure 22: UBUNTU 6 months average number of vulnerabilities forecasting

Page 38 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

3.3 Severity Forecasting

Vulnerabilities can be characterized by their severity which depends on the risk they may

generate or the consequences caused by being exploited. For this reason, in addition to

the prediction tools described above, the development of a new tool is considered which

can offer a forecast of it. To achieve said prediction, it is intended to forecast the severity

of newly discovered and related vulnerabilities, i.e., considering time correlation of

related vulnerabilities among the already registered ones and comparing that to newly

discovered ones. The model will be trained on a data set containing all previously

discovered vulnerabilities. For this purpose, we use the NVD provided by NIST22 (National

Institute of Standards and Technology) of the United States. For training and evaluation,

the input data set is split into three parts, training set, validation set and test set.

We consider novel algorithms for time series forecasting: ES-Hybrid and N-Beats, as the

basis of our model. We also consider advances in neural network methods such as the

Transformer architecture and Capsule Network.

3.3.1. Forecasting methods state of the art overview

One of the methods that presents significant progress in the state of the art of

forecasting is ES-Hybrid method by Slawek Smyl, which is a hybrid machine learning and

statistical method [17]. In the M4 competition [18], it outperforms the benchmark

method for almost 10% of accuracy on 100 000 of time series, which is a really

significant improvement to the current state of the art.

Another approach, which introduces novel concepts of machine learning for forecasting

and has already overperformed the aforementioned method was presented in [19] and

is called N-Beats. N-Beats method was designed to use deep learning for time series

forecasting and proposes a deep neural architecture based on backward and forward

residual links and a very deep stack of fully-connected layers. The architecture has a

number of desirable properties, being interpretable, applicable without modification to a

wide array of target domains, and fast to train. We discuss it further later in this

document.

We also consider novel architectures of the neural networks' models, like Transformer

architecture [20] and Capsule Networks [21]. These architectures displayed very good

results in natural language processing and image recognition tasks, outperforming

previous models for a solid margin. The usage of these architectures for forecasting is

not researched yet fully. The first experiments show very promising results [22] [23]. The

latest method evaluated and reviewed is Temporal Fusion Transformer [24], considered

the current state of the art in the field of forecasting and based on the Transformer

architecture. It combines high-performance multi-horizon forecasting with interpretable

insights into temporal dynamics. We discuss it further later in this document.

Based on the above review, we plan to use two methods: N-Beats and Temporal Fusion

Transformer as forecasting algorithms in our tool.

22 https://nvd.nist.gov/

Page 39 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

3.3.2. N-Beats method

The N-Beats [19] architecture design has certain assumptions. The base architecture is

simple and generic, yet expressive (deep). It does not rely on timeseries-specific feature

engineering or input scaling and is extendable for interpretability.

The basic building block is a multi-layer fully-connected network with ReLU (Rectified

Linear Unit) nonlinearities. It predicts basis expansion coefficients both forward and

backward. Blocks are organized into stacks using doubly residual stacking principle.

Forecasts are aggregated in hierarchical fashion. This enables building a very deep

neural network with interpretable outputs.

N-Beats proposes a novel, hierarchical, doubly-residual topology depicted in Figure 23.

There are two residual branches, one running over backcast prediction of each layer and

the other one is running over the forecast branch of each layer. The figure shows the

architecture in detail. There are M stacks each of which is made of K blocks while each

block has 4 common, fully-connected (FC) layers and another, separate, fully-connected

layer for backcast and forecast. The inputs and outputs are passing through stacks,

blocks and FC layers as shown. The initial stack (stack 1) receives the original data for

lookback (lookback period/window). The forecast output of all stacks is combined to

obtain the global forecast (model output). The backcast output of a stack (also called

its residual) is passed to the next stack as its input. The inputs to blocks, except the first

one which receives the stack input, are composed of the backcast of the previous block

and the input of that previous block.

Figure 23: N-Beats architecture [19]

3.3.3. Temporal Fusion Transformer method

The Temporal Fusion Transformer (TFT) [24] is a novel attention-based architecture that

combines high-performance multi-horizon forecasting with interpretable insights into

Page 40 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

temporal dynamics. To learn temporal relationships at different scales, TFT uses

recurrent layers for local processing and interpretable self-attention layers for long-term

dependencies. TFT utilizes specialized components to select relevant features and a

series of gating layers to suppress unnecessary components, enabling high

performance in a wide range of scenarios.

“To obtain significant performance improvements in state-of-the-art benchmarks, TFT

introduces multiple novel ideas to align the architecture with the full range of potential

inputs and temporal relationships common to multi-horizon forecasting – specifically

incorporating (1) static covariate encoders which encode context vectors for use in other

parts of the network, (2) gating mechanisms throughout and sample-dependent variable

selection to minimize the contributions of irrelevant inputs, (3) a sequence-to-sequence

layer to locally process known and observed inputs, and (4) a temporal self-attention

decoder to learn any long-term dependencies present within the dataset. The use of these

specialized components also facilitates interpretability; in particular, TFT enables three

valuable interpretability use cases: helping users identify (i) globally-important variables for

the prediction problem, (ii) persistent temporal patterns, and (iii) significant events.” [24].

On a variety of real-world datasets, TFT demonstrates significant performance

improvements over existing benchmarks.

Detailed architecture of Temporal Fusion Transformer architecture is presented in

Figure 24. In particular, one can see that the basic building block in this architecture is a

Gated Residual Network (GRN) – architecture of which can be seen in the upper right

corner – with dense neural network layers, Exponential Linear Unit (ELU) activation

functions, and a residual connection forwarding the input to the add and norm layer. All

the input data goes through dedicated Variable Selection Networks (their architecture is

depicted in the bottom right corner). The applied input processing depends on the kind

of input data – the Temporal Fusion Transformer allows for encoded static metadata to

be fed into GRNs for static enrichment. The variable selection residual is also passed to

the add and norm layer of the (Variable Selection, LSTM [Long Short-Term Memory]

Encoder/Decoder) block and encoded static metadata is used also for LSTM Encoding

and Decoding (directly in the first layer and then after the LSTM encoding/decoding

process). The final thing to notice is that the residuals from decoding blocks are passed

as far as the last add and norm layers.

Page 41 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Figure 24: Temporal Fusion Transformer – architecture [24]

Page 42 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

4. Conclusions and future actions

This deliverable has focused on presenting and overviewing different tools for an

adequate vulnerability assessment.

First, a vulnerability detection tool has been presented which, for a first phase of study,

will focus on the analysis of public libraries in Python language, to detect whether they

are vulnerable or non-vulnerable. This deployment is breaking down in different stages:

the obtention of the database and features which best represents the data to analyze,

selection and study of different models and approaches to carry out, and the

implementation and result of the different models executed.

The results obtained from different models under the same sample to be analyzed do

not show a great difference between them, being RF models the ones that present a

small improvement. In addition, it has been possible to observe the dependence of the

results on the input features when reformulating the problem through their variation,

obtaining considerable improvements in them. These results show how crucial the

choice of variables is when developing the ML detection tools.

Despite having obtained decent results in the last analyzed scenario, the option of

changing the current binary response feature (vulnerable/non-vulnerable) to a multiple

one is contemplated as the next step in the development, this being the type of CWE

detected. In this way, once the type of vulnerability is detected in a software component,

its more specific location can be focused by using patterns techniques for a specific

type of vulnerability. Furthermore, the study will be extended to the remaining

programming languages, I.e., Java and C.

When it comes to the forecasting assessment, different tools have been presented:

exploitability, vulnerability and severity forecasting.

For the development of the exploitability forecasting tool, several data sources have

been explored for the obtention of the features to be used in the prediction: the deployed

DCT for acquiring those features related with vulnerability descriptions, the public

dataset EDB which provides exploits information such as dates and exploits id, and

different social networks to obtain the day-by-day information. Carrying out an efficient

parsing of the different sources to obtain the features is an essential step in the

development, since these will be the ones that describe the model. Specifically, future

actions will be focused on obtaining different features from the social networks Twitter

and Telegram, as they are the least immediate to obtain. Likewise, the aforementioned

logistic regression models will be implemented.

The vulnerability forecasting tool contains 4 models based on LSTM neural networks,

which have been optimized and trained for the UBUNTU operating system. The training

data was taken from the data collection tool, which is part of D3.2. [2]. Since there is

relatively little training data, the iterated k-fold cross validation technique was used. To

avoid the overtraining, it has been chosen the use of dropout layers. Likewise, the

forecasting models have been optimized through grid search. As future lines of work, it

is intended to continue to experiment with other optimization techniques, such as, for

example, genetic algorithms. In the next stage of development, new models of

vulnerability forecasting will be created, for other software components that are used in

complex ICT systems. It is also aimed to experiment with expanding the models created

so that they process new features obtained from the components developer and through

feature engineering.

Page 43 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Finally, a new tool to be developed within the BIECO project has been presented: severity

forecasting tool. The goal of this tool will be to predict the severity of newly discovered

and related vulnerabilities. After analyzing the different existing methods in the state of

the art, it has been planned to use two methods for the implementation of said tool: N-

Beats and Temporal Fusion Transformer.

Page 44 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

5. References

[1] G. McGraw, "Software Security: Building Security In," 17th International Symposium

on Software Reliability Engineering, 2006, pp. 6-6.

[2] Deliverable D3.1 “Report on the State of the Art of Vulnerability Management”

[3] Deliverable D3.2 “Dataset with Software Vulnerabilities”

[4] H. Wickham and G. Grolemund. “R for Data Science: visualize, model, transform, tidy,

and import data”. O’Reilly (2017).

[5] G. James, et al. “An introduction to statistical learning.” Vol. 112. New York: springer,

2013.

[6] S. Suthaharan. “Support Vector Machine”, in Machine learning models and algorithms

for big data classification (pp. 207-235). Springer, Boston, MA. (2016)

[7] A. J. Dobson and A. G. Barnett. “An introduction to generalized linear models”.

Chapman and Hall/CRC, 2018.

[8] M. J. Van der Laan, E. C. Polley and A. E. Hubbard. “Super learner”. Statistical

applications in genetics and molecular biology, 6(1), 2007.

[9] T. Hastie and R. Tibshirani. "Generalized additive models: some applications." Journal

of the American Statistical Association 82.398 (1987): 371-386.

[10] M. Shahzad, M.Z. Shafiq, & A.X. Liu. “A large scale exploratory analysis of software

vulnerability life cycles”. In 2012 34th International Conference on Software Engineering

(ICSE) (pp. 771-781), 2012

[11] J. Jacobs et al. “Exploit prediction scoring system (EPSS)”. arXiv preprint

arXiv:1908.04856, 2019.

[12] H. Cheng, R. Liu, N. Park, and V. S. Subrahmaian, “Using Twitter to Predict When

Vulnerabilities will be Exploited”, Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2019.

[13] H. S. Venter and J. H. P. Eloff, “Vulnerability forecasting—a conceptual model,”

Comput. Secur., vol. 23, no. 6, pp. 489–497, Sep. 2004.

[14] D. Last, “Forecasting Zero-Day Vulnerabilities,” Proceedings of the 11th Annual

Cyber and Information Security Research Conference, pp. 1–4, Apr. 2016

[15] Venkata Reddy Konasani, Shailendra Kadre: Machine Learning and Deep Learning

Using Python and Tensor Flow. McGraw Hill: New York, 2021.

[16] A. Sherstinsky "Fundamentals of recurrent neural network (RNN) and long short-

term memory (LSTM) network." Physica D: Nonlinear Phenomena 404. 2020.

[17] S. Smyl, “A hybrid method of exponential smoothing and recurrent neural networks

for time series forecasting,” International Journal of Forecasting, 2019.

[18] S. Makridakis E. Spiliotis, and V. Assimakopoulos, "The M4 Competition: 100,000

time series and 61 forecasting methods." International Journal of Forecasting 36.1

(2020): 54-74.

[19] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-beats: neural basis

expansion analysis for interpretable time series forecasting,” arXiv preprint

arXiv:1905.10437, 2019.

Page 45 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances in neural information

processing systems, 2017, pp. 5998–6008.

[21] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in

Advances in neural information processing systems, 2017, pp. 3856–3866

[22] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus, T.

Januschowski, D. C. Maddix, S. Rangapuram, D. Salinas, J. Schulz, et al., “Gluonts:

probabilistic time series models in python”, 2019.

[23] J. Liu, X. Liu, H. Lin, B. Xu, Y. Ren, Y. Diao, and L. Yang, “Transformer-based capsule

network for stock movements prediction,” in The First Workshop on Financial

Technology and Natural Language Processing in conjunction with IJCAI 2019, p. 66.

[24] B Lim et al., "Temporal fusion transformers for interpretable multi-horizon time

series forecasting." International Journal of Forecasting, 2021.

Page 46 of 46

Deliverable 3.3: Report of the Tools for Vulnerability Detection and Forecasting

Annex A.

AST example

Next, a simple Python program is shown (Figure 25) along with part of the AST

representation generated from it (Figure 26).

Figure 25: Example source code of a function that checks the type of a triangle

Figure 26: Part of the AST generated for the example in Figure 25

