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Executive Summary 

Work Package 5 goal is to define and develop techniques, methods, and tools supporting 

the audit activity in the BIECO project. Thus, the Auditing Framework has been developed 

as a constituent of Work Package 5 and integrated into the BIECO Runtime phase. The 

Auditing Framework exploits the field data produced by devices, components, sensors, 

services, Systems of Systems (SoS), or ecosystems involved in the auditing activity to 

predict and assess functional and non-functional properties and increase the overall 

ecosystem's trustworthiness.  

This document reports the Work Package 5 activities performed to improve the 

Deliverable D5.1 preliminary framework proposal and realizes the current first version of 

the Auditing Framework and its main components. Specifically, the deliverable targets:  

• The Runtime Monitoring is responsible for collecting on-the-field data events and 

assessing an established set of functional and non-functional properties. 

• The Predictive Simulation provides the Runtime Monitor with suitable predictions 

about future systems or components’ behaviours. 

• The Ontology Manager manages the knowledge about the different Ecosystem 

entities (such as devices and components) and the specification process of the 

monitoring rules. 

• The Auditing Framework GUI manages the interaction with the user. It also 

provides features for the Auditing Framework setup and execution and data 

storage and retrieving. 

The deliverable reports also the research advancements performed during the project's 

second year (from M13 to M24) regarding the methodologies and features implemented 

in Auditing Framework components and its validation through one of BIECO's available 

use cases.  

Considering the Work Package 5 objectives (as reported in the BIECO DoA), the 

deliverable targets the implementation of the first version of the Auditing Framework 

that enables: 

1. The definition of the executable simulation models and the parameters against 

which the behaviour of the ICT systems and their interacting actors are judged 

as trustworthy or not. 

2. The definition of monitoring methodologies and tools for detecting malicious 

behaviours of ICT systems and their interacting actors and assessing the validity 

of the simulation models. 

3. The definition of monitoring tools able to validate the simulation decisions 

through real-time data of systems sensors and actuators. 

In addition, to improve the usability of the Auditing Framework and the knowledge 

management, the following (extra DoA) objectives have been added and targeted during 

the second year of the BIECO project: 

4. Definition of a dynamic, user-friendly, and adaptable methodology for specifying 

functional and non-functional properties and their management. 

5. Definition of holistic support for knowledge management and data sharing within 

the overall BIECO Runtime Phase. 

6. Definition of the Auditing Framework GUI for improving the usability in 

customizing the Auditing Framework and managing its executions. 
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The activities reported in this deliverable are strictly connected with Work Packages 3, 

4, 6, 7, and 8. 

Targeting reviews’ comments, indications, and possible improvements 

Considering the BIECO General Project Review Consolidated Report, we provide 

clarifications about the Work Package 5 comments in the following.  

R.R.#1:  Review Report - Section 1. 3. - Auditing System Framework - page 4/17  

Concerning Auditing Framework execution, in the Introduction, Section 2.2, and Section 

8, the deliverable clarifies that execution of the Auditing Framework can be performed 

considering three different situations:  

a. using a simulation of the Controlled Environment (CE). 

b. using a testing environment (or forensic reconstructions) in which the CE 

components can either be executed in a real context, simulated models, or 

stubs. 

c. using operational systems where the CE components and the SUA are 

executed in the operating (real) environment. 

R.R.#2:  Review Report - Section 1. 3. - Auditing System Framework - page 4/17  

Concerning the Use of Extended MUD file, Section 2.2.1 details the use of the Extended 

Mud file.  

R.R.#3:  Review Report - Section 1.5. - 5. (Vulnerability detection and forecasting tool)- 
page 5/17  

The Introduction, Section 2.2, and Section 8 of the deliverable clarify that the Auditing 

Framework can be executed considering different situations (see R.R.#1 above). The 

provided implementation can be executed at runtime in the production environment 

without adaptations or improvements., 

R.R.#4:  Review Report - Annex 1- D5.1- page 13/17  

This deliverable provides the technical description of the Auditing Framework and details 

about its validation. In particular: 

• in Section 2 provides the improved Auditing Framework architecture and details 

about the Blueprints management. 

• Section 3 presents the Auditing Framework (and its components) 

implementation. It also details the GitHub repository, technologies used, and 

licenses needed. 

• Section 8 presents the Auditing Framework execution on one of the BIECO use 

cases. 
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Project Summary 

Nowadays, most ICT solutions companies develop require the integration or 

collaboration with other ICT components, which third parties typically create. Even 

though these kinds of procedures are essential to maintain productivity and 

competitiveness, the fragmentation of the supply chain can pose a high-risk regarding 

security, as in most cases, there is no way to verify if these other solutions have 

vulnerabilities or if they have been built considering the best security practices. 

Companies must change their mindset to deal with these issues, assuming an "untrusted 

by default" position. According to a recent study, only 29% of IT businesses know that 

their ecosystem partners are compliant and resilient to security. However, cybersecurity 

attacks have a high economic impact, and it is not enough to rely only on trust. ICT 

components need verifiable guarantees regarding their security and privacy properties. 

It is also imperative to detect vulnerabilities from ICT components more accurately and 

understand how they can propagate over the supply chain and impact ICT ecosystems. 

However, it is well known that most of the vulnerabilities can remain undetected for 

years, so it is necessary to provide advanced tools to guarantee resilience and better 

mitigation strategies, as cybersecurity incidents will happen. Finally, it is essential to 

expand the horizons of the current risk assessment and auditing processes, considering 

a much broader threat landscape. BIECO is a holistic framework that will provide these 

mechanisms to help companies to understand and manage the cybersecurity risks and 

threats they are subject to when they become part of the ICT supply chain. The 

framework, composed of tools and methodologies, will address the challenges related 

to vulnerability management, resilience, and auditing of complex systems. 
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Partners 
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 Introduction  

This deliverable focuses on developing techniques, methods, and tools supporting the 

audit activity in the BIECO framework. It describes the first version of the simulation 

environment and the monitoring solution and details their preliminary implementation 

and validation. It also details the additional components, the Ontology Manager and the 

Auditing Framework GUI (Graphical User Interface), included in the framework for 

making user interaction and knowledge management easier. 

Indeed, the Auditing Framework is the BIECO dynamic mechanism for the online analysis 

of functional and non-functional properties of an entity against well-stated conditions, 

such as contractual conditions for trust. The Auditing Framework collects events at 

different specification levels and goals and from heterogeneous sources (such as 

applications, components, sensors, or devices). It uses the collected data to infer 

complex patterns that indicate specific functional and non-functional properties. Those 

patterns represent the observed behaviours and are compared with the trustable ones 

of the monitored entities to detect anomalies, vulnerabilities, or problems. 

As introduced in the deliverable D5.1 [11], the Auditing Framework can: 

a) Collect and analyse data from the different SoS sources (e.g., applications, 

sensors, software, and hardware components or devices).  

b) Assess the run time behaviour of the SoSs (components or devices) based on 

the expected behaviour rules. 

c) Promptly raise alarms in case of violations, anomalies, or misbehaviours. 

Within the BIECO project, the Auditing Framework leverages the current state of the 

practice in diverse ways: 

• Providing the implementation of a dynamic, user-friendly, and adaptable 

methodology for the specification of functional and non-functional properties. It 

is also holistic support for knowledge management and data sharing within the 

overall BIECO runtime phase. 

• Including a predicting simulation system for anticipating the behaviour of a 

trustable ecosystem (components). Working with the monitoring facilities 

represents a dynamic oracle defining the trustable patterns. 

• Providing an integrated mechanism for assessing the correctness of the run time 

executions of the ecosystem and its components against the collected 

prediction without knowing the source code structure; and  

• Providing a dynamic, user-friendly, and adaptable methodology for managing the 

alarms, triggering the corresponding notifications, and executing the associated 

countermeasures. 

As detailed more in this deliverable, the Auditing Framework is fully integrated into the 

BIECO Framework. Indeed, it uses the Runtime Phase mechanism for retrieving and 

integrating the Design Phase data (hereafter called Blueprints) into its knowledge base. 

It also uses the BIECO framework execution environment for collecting events about the 

entities to be audited. 

Following the terminology introduced in D5.1[11], in this deliverable, the System Under 

Auditing (SUA) indicates the device, the component, or the system that is the target of 

the auditing activity, and the Controlled Environment (CE) refers to the environment in 

which SUA is executed. 
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The Auditing Framework has been developed independently from the realization of the 

CE. Therefore, the auditing activity can be performed considering three different 

situations: 

a) CE executed in a simulation context, i.e., the CE is abstracted as a simulation 

model. 

b) CE executed in a testing context, i.e., the CE is executed in a testing environment, 

and the components, directly interacting with the SUA, are either executed in the 

real context or simulated model or executed using stubs. 

c) CE executed in a real context, i.e., the CE and its components are executed in a 

real environment.  

In all the above situations, the required precondition for Auditing Framework execution 

is the instrumentation of the CE and SUA with probes, i.e., pieces of code injected in the 

entities for sending events about the execution. 

 

 Auditing Framework Challenges 

This section provides the main challenges by referring to the deliverable D8.2 [17] for a 

detailed list of the Auditing Framework objectives. The remainder of the deliverable 

details how these challenges have been targeted inside Work Package 5. 

 

CH1: Whitening the Black-Box Assessment Process 

Using probes inside the CE and SUA lets the Auditing Framework collect internal 

execution data (white-box data) without knowing their source code structure (black-box 

data). Indeed, the implemented methodology makes the CE and the SUA more” 

transparent” for functional and non-functional properties assessment and prediction 

without revealing their internals. Data is collected through probes preserving the 

principles of loose coupling and implementation neutrality. 

 

CH2: Separating Properties Predictions and Assessment 

The implementation of the Auditing Framework follows the principle of independence 

between the components. All the conceived components have a specific role and 

contribute to the overall quality, usability, and effectiveness. However, the Auditing 

Framework can work with few adjustments, excluding some of its components: 

• Predictive Simulation could be executed independently from the monitoring 

activity. In this case, predictions can be used by an external monitoring engine or 

for different purposes.  

• Monitoring activity could run independently from the Knowledge Management 

process and the Predictive Simulation decisions. Indeed, the monitoring 

properties could be provided as an external data set, and the properties 

assessment executed without having the oracle decision (i.e., as any standard 

monitoring engine). 

• Knowledge management processes could run independently from monitoring 

and Predictive Simulation activities. Indeed, the classification and collection of 

the specific peculiarities, properties, and quality attributes of the different 
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ecosystems and their components and devices is a starting point for any 

development and assessment activity. 

 

CH3: Leveraging the Existing Monitoring Solutions  

The Auditing Framework leverages the existing monitoring solutions considering several 

aspects. In particular: 

• The implemented monitoring solution includes and leverages some of the 

features proposed by solutions like XRD (eXtended Detection and Response), 

EDR (Endpoint Detection and Response), and SIEM (Security Information & Event 

Management). 

• The implemented monitoring component is an open-source component that can 

collaborate with other available monitoring solutions (like Ganglia1, Zabbix2, and 

Netdata3) with required adaptations.  

• The implemented monitor solution lets diverse levels of reaction to the detected 

violations or misbehaviour. Indeed, notifications, execution termination, and 

application of suitable countermeasures to make the auditing execution continue 

in a safe mode are all possible.  

• The functional and non-functional properties collected through the knowledge 

management process and assessed by the monitoring solution can be easily 

customized, enriched, or modified. The properties dataset also represents a 

shared dataset exploitable for further application or research activity. 

• The implemented knowledge management process lets the user customize the 

manual/automatic countermeasures based on the risk analysis. This possibility 

lets mitigate the vulnerability detection risks and keep the human in the loop.  

• The implemented monitoring solution can be easily modified by using smart 

agents to automatically apply the possible countermeasures on the CE or SUA in 

agreement with the loose coupling principles.  

 

CH4: Leveraging the failure Prediction Methods  

Auditing Framework leverages the prediction of malicious attack by implementing the 

Predictive Simulation components that enable evaluation of a software behaviour before 

it is executed thanks to the use of specialized Digital Twin (DT), i.e., abstract models 

representing the executable abstractions of the ecosystem components (ICT systems, 

ICT system components, and actors) and their interactions. In case of failure prediction 

caused by a malicious attack, the Predictive Simulation methods let discover 

performance degrading over time and sporadic and specific situations when a 

destruction target impact of an attacker is likely to be achieved.  

 

CH5: Leveraging the Implementation of the Digital Twins  

The Auditing Framework leverages the existing approaches for implementing the Digital 

Twins by creating a model that can capture the failure in the “pure Predictive Simulation 

phase,” where the conformity between the abstract models and the real-world digital 

 
1 http://ganglia.info/ 
2 https://www.zabbix.com/ 
3 https://www.netdata.cloud/ 
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asset is evaluated in a set of conformity testing. Further on, Predictive Simulation 

abstracts specifics of the models directed to the scope of the evaluation (timing 

synchronization, functional interaction) that needs to be defined before deployment.  

 

 Roadmap 

The deliverable is structured as follows:  

• Section 2 presents the Auditing framework and details the used Blueprints.  

• Section 3 details the implementation of the Auditing Framework and its 

components. Specifically, Section 3.1 describes the overall implementation of 

the Auditing Framework and the interaction with the Runtime Phase.  Sections 

3.2, 3.3, 3.4, and 3.5 detail the Runtime Monitoring, the Predictive Simulation, the 

Ontology Manager, and the Auditing Framework GUI, respectively.  

• In Sections 4, 5, 6, and 7 report advancements in the Ontology Manager, the 

Auditing Framework GUI, the Predictive Simulation, and the Runtime Monitoring 

specification with respect to deliverable D5.1 [11], respectively. 

• Section 8 describes the application of the Auditing Framework to one of the 

BIECO use cases, while Section 9 provides discussion and future works.  

• Finally, Appendix A provides additional material about the Auditing Framework 

implementation. 
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 Auditing Framework in the BIECO Runtime Phase  

By referring to deliverable D2.4 [9] for a detailed description of the Auditing Framework 

architecture, this section provides details about its execution inside the BIECO Runtime 

Phase. In particular, Section 2.1 illustrates the updated Auditing Framework architecture, 

whereas Section 2.2 discusses the definition and management of BIECO Blueprints. 

 

  Using Inferred knowledge Auditing Framework’s main components 

This section summarizes the main components of the Auditing Framework architecture 

already introduced deliverables D5.1 [11] and D2.4 [9]. In this deliverable, the interactions 

with the BIECO middleware and the additional components of the BIECO Runtime Phase 

are omitted to focus on the Auditing Framework activity.  

As in Figure 1, the Auditing Framework includes five main components: (1) Runtime 

Monitoring, (2) Auditing Framework GUI, (3) Predictive Simulation, (4) Ontology Manager, 

and (5) Auditing Framework message BUS. 

For each of them, here below, a brief description is provided. We will discuss those 

components in detail in the remainder of the deliverable.  

 

 
Figure 1: An updated view of the Auditing Framework   

 

(1) Runtime Monitoring: It uses SUA and CE events to match a predefined set of 

functional and non-functional properties that the CE and the SUA should satisfy. Runtime 

Monitoring works in collaboration with the Predictive Simulation component for 

assessing specific rules focused on SUA behaviour predictions; Ontology Manager for 

receiving the set of properties (rules) to be monitored during the execution; and the 

Auditing Framework Message Bus for receiving the events.  

(2) GUI: The GUI component, hereafter called Auditing Framework GUI, resides within the 

BIECO User Interface. Its primary purpose is to let the user interact with the Framework. 

That includes the Auditing Framework setup and settings for the project level. The 

Auditing Framework GUI interacts with the Ontology Manager, requesting available setup 
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information and providing the user input. The Auditing Framework GUI also manages the 

project state, saving the user-provided information for later use. 

(3) Predictive Simulation: The Predictive Simulation component resides on the BIECO 

server. It targets the definition of the Digital Twin, i.e., abstract models representing the 

executable abstractions of the ecosystem components (ICT systems, ICT system 

components, and actors) and their interactions. These will be used to predict the future 

ecosystem components' behaviour.  

(4) Ontology Manager: This component is the manager of the knowledge for the 

classification and categorization of the different Systems of Systems, their devices, and 

components, as well as the relative skills and functional and non-functional properties. 

The ontology manager is responsible for the management of the specification process 

of the monitoring rules: from the abstract to well-defined, and finally to instantiated rules. 

(5) Auditing Framework Message BUS: This component is the backbone of the Auditing 

Framework. It manages all the communication between all the framework parts and 

relies on two technologies: Java Message Service (JMS) Messages and 

REpresentational State Transfer (REST) interfaces. Those technologies are exploited 

using Apache Artemis4 and Java Spring Boot with Thymeleaf5. 

 

  Auditing Framework Blueprints 

This section describes the Blueprints provided by the Design Phase and used inside the 

Auditing Framework. They are the Extended MUD File and the ConSerts data (detailed in 

Sections 2.2.1 and 2.2.2, respectively). The Data Collection Tool (see deliverable D2.4 [1] 

for a detailed description) stores the Blueprints, while the Ontology Manager component 

(detailed in Sections 3.4 and 4) integrates them into the ontology used by the Auditing 

Framework.   

 

2.2.1. Extended MUD File 

As detailed in deliverable D6.2 [12], the MUD file is an IETF6 standard that the 

manufacturer can use to describe in a homogeneous the expected network behaviour of 

a particular device in terms of Access Control Lists. Dealing with its lack of 

expressiveness beyond the network layer and communication aspects, the BIECO Task 

T6.2 defined an extended MUD model. It can describe more fine-grained aspects beyond 

the network layer (see Figure 2), such as cryptographic configuration, the number of 

communications allowed, REST services offered and accessed by the device, and even 

known vulnerabilities and weaknesses associated with the device (see deliverable D6.2 

for more details). 

The extended MUD file is created from the standard MUD during the BIECO Design 

Phase, using the Resilblockly tool7 [12] (developed inside Work Package 6) for 

preliminary risk analysis (see Figure 2). At the end of the security evaluation 

methodology developed in BIECO Work Package 7, the extended MUD is updated, 

 
4 https://activemq.apache.org/components/artemis/ 
5 https://spring.io/projects/spring-boot 
6 https://www.ietf.org/ 
7 https://resilblockly.resiltech.com:8407/#/ 



 

Page 20 of 82 

Deliverable D5.2 : First version of the simulation environment and monitoring solutions  

reflecting the actual values and configuration obtained from the security testing. This 

updated MUD is intended to be used to deploy the device securely and to detect 

suspicious behaviours not reflected by the MUD. 

During the auditing phase setup, as depicted in Figure 3, the updated MUD, among 

others, can be used as a Blueprint and integrated into the ontology data to define the 

functional or non-functional monitoring rules. Indeed, during the Auditing Framework 

execution, the Runtime Monitoring can detect deviations or violations of the established 

rules. Consequently, it can promptly apply mitigation actions or update the MUD policies 

in case of new functionality or configuration deviations. 

 

Figure 2: Extended MUD model 

 

If the security issues detected by the Auditing Framework cannot be mitigated, it may 

imply an update of the system and even a re-evaluation of the system security. In this 

case, the security evaluation methodology (described in the Work Package 7 D7.2 [15] 

and D7.3 [16] deliverables) should be re-executed, focusing on the affected component 

and security property, which could also imply an update of the MUD file based on the 

test results. 
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A further (future) investigation for the Auditing Framework is the possibility to let 

vulnerability detection information sharing. Indeed, when the SUA component is 

executed in a real context, the Auditing Framework could provide facilities for sharing 

information about the affected components with the interested parties. In this sense, a 

threat MUD file could be created to define mitigation policies to restrict access to the 

compromised component or service. For this purpose, deliverable D6.3 [13] provides 

more details about the structure of the threat MUD (see Figure 4), and the architecture 

needed to share and obtain it. 

 

 

Figure 3: Usage of the MUD file within BIECO 

 

 

Figure 4: Threat MUD structure 

 

2.2.2. Conditional Safety Certificate (ConSerts) 

A Conditional Safety Certificate (ConSert) [22], [24] is a modular pre-assured safety 

concept. ConSerts are engineered during the safety development lifecycle as models of 

reconfiguration, allowing safety-related properties to be guaranteed under variable 

systemic and environmental conditions. Generalizing ConSerts to be applied within 

BIECO, we consider how safety relates to the more general concept of dependability, 
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which simultaneously encompasses security. In doing so, we can specify non-functional 

requirements related to safety-related security requirements, which may be dynamically 

evaluated at the time of system composition rather than the time of specification. 

ConSerts can be engineered during the systems development process (BIECO 

deliverable D6.4 [14] provides a more detailed discussion). This engineering process 

results in a ConSerts model, which can be exported as a blueprint in a specified file 

format (based on YAML8). 

ConSerts considers two sources of information: the level of quality available from 

demanded external services and evidence collected internally by the system to 

determine the quality at which a given service can be provided. Such ‘Runtime Evidence’ 

(RtE) can be acquired during system operation and trigger updates to the quality of the 

provided service. What kind of information is relevant as RtE depends on the safety (or 

dependability, e.g., security) concept upon which the ConSert is specified. 

ConSerts is flexible in incorporating an open domain of runtime information to ascertain 

the operational context and recommend a system adaptation. Inside BIECO, the 

following possibilities have been considered:  

• Exploiting the vulnerability detection, forecasting, and propagation data collected 

inside the Work Package 3. In this case, ConSerts can use the Work Package 3 

models to determine the services' acceptable levels of quality and (or) the 

vulnerability risks to conceive service reconfiguration or service halt if necessary. 

• Exploiting the failure prediction methods developed inside Work Package 4 to 

anticipate subsystem/component failures and trigger ConSert re-evaluation 

(reconfiguration). 

On the technical level, using the approach already described for the extended MUD file 

(see the previous section), the ConSerts blueprints can be integrated into the ontology 

data. They can provide either the composition and adaptation checking mechanisms to 

be used in case of violations or the countermeasures to be activated to force the SUA or 

CE reconfiguration functions. 

  

 
8 https://yaml.org/  

https://yaml.org/
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 Auditing Framework Implementation  

The implementation of the Auditing Framework architecture presented in Section 2 and 

Figure 1 has been provided as a virtual framework component. Therefore, the Runtime 

Monitoring, Ontology Manager, Predictive Simulation, and the Auditing Framework GUI 

communicate through the Auditing Framework Message BUS for transferring data and 

managing the process phases. 

In the following, Section 3.1 presents the overall implementation of the Auditing 

Framework and the interaction with the Runtime Phase. Sections 3.2, 3.3, 3.4, and 3.5 

detail the implementation of the Runtime Monitoring, the Predictive Simulation,  the 

Ontology Manager, and the Auditing Framework GUI, respectively.  Each section has 

almost the same structure i) first, it introduces the internal components and their 

implementation details; ii) then, it presents the (intra- and inter-) communication details 

and the exposed interfaces; iii) successively, the section details the (input and output) 

data structures, iv) and finally it focuses on the technologies used and the installation 

guidelines.   

 

 Auditing Framework Implementation Details 

To satisfy the Section 1.1 challenges and, in particular, “CH2: Separating properties 
predictions and assessment”, the Auditing Framework components are not strictly 

connected. This also provides the possibility to either deploy them on different machines 

or clouds; or replace them with more performant components or services.  

The virtual framework has been merged within a typical docker composition using the 

technologies that docker-compose described in a yml file. Specifically, the 

implementation of the Predictive Simulation was supported by the concept of the triple 

modular framework as detailed in deliverable D2.4 [1] . 

 

3.1.1. Communication Flows Intra-Nodes/Components 

The entry point for the virtual component is the messageBus. Every component in the 

virtual framework exposes its REST interface for communicating directly with the BIECO 

platform. 

 

3.1.2. Technologies Used  

The technologies used are 

•  Docker for packaging the framework. 

• Apache ActiveMQ or Apache Artemis, or Mosquitto for the communication bus. 

 

3.1.3. Licenses  

No licenses are needed. 

 

3.1.4. GitHub Details Repository  

Auditing Framework is exposed as a single docker artifact using docker-compose. 
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 Runtime Monitoring 

The Runtime Monitoring component has been developed to target the challenges 

mentioned in Section 1.1 and in particular: CH1: Whitening the black-box assessment 
process; CH2: Separating properties predictions and assessment; CH3: Leveraging the 
existing monitoring solutions.  

The Runtime Monitoring splits functionalities into independent modules that can be 

enacted according to the desired configuration/operational profile. The components can 

also be instantiated as stand-alone nodes or containers on top of a Docker architecture. 

This choice provides a more substantial decoupling and lets the components deploy on 

different machines for improving resources management. In particular, the Complex 

Event Processor (CEP), the core part of the Runtime Monitoring, can be deployed in 

multiple instances on several nodes.  

Development relies on Java technologies (OpenJDK9 16 and 17) for the core 

functionalities and Drools10 for the principal Complex Event Processor. 

The project and the dependencies between libraries are managed: for the JMS through 

Maven11, i.e., the message broker embedded into the system is ActiveMQ12 (an open-

source multi-protocol Java-based message broker); for the interface that exposes the 

interaction with REST interfaces, through Mosquitto13. More details about technologies 

are in Section 3.2.6. 

 

3.2.1. Internal Artifact’s Structure 

The core modules of the Runtime Monitoring are depicted in Figure 5 and described 

hereafter. 

 

Figure 5: Runtime Monitoring Components  

 
9 https://openjdk.org/ 
10 https://www.drools.org/ 
11 https://maven.apache.org/ 
12 https://activemq.apache.org/ 
13 https://mosquitto.org/ 
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3.2.1.1. Main  

It is the launcher of the architecture; it oversees executing the components required for 

a specific profile in the correct order. The Runtime Monitoring can be performed with or 

without a Rest component. This allows managing the Runtime Monitoring lifecycle 

according to what is required to interact with the BIECO platform. 

 

3.2.1.2. Rest 

This component will start a Glassfish Grizzly Server14  that exposes:  

• a basic web page for publishing the status of the Runtime Monitoring. 

• a set of POST methods for interacting within the Runtime Monitoring according 

to the lifecycle specified inside the BIECO Project and reported in Figure 6. 

 

 
Figure 6: Service Status from the BIECO project  

 

Moreover, the Rest component provides facilities to authenticate the messages sent or 

received by the REST interface. According to the agreed lifecycle, the developed 

authentication mechanism is based on two tokens (one for incoming and one for 

outcoming messages). 

Figure 7 shows the web interface, the logs, and the related activities. 

 
14 https://javaee.github.io/grizzly/ 
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Figure 7: Service Status from the BIECO project  

3.2.1.3. Logger  

It provides common logging facilities across the Runtime Monitoring components. 

Logging is implemented using Log4j15. 

 

3.2.1.4. Broker  

The component executes an internal instance of a message broker and provides 

facilities for sending messages (events and requests) between the artifacts involved in 

a monitoring session. The execution of this component is optional. Depending on the 

technology used for the communication, two solutions can be supported (also at the 

same time): 

1) Using a configuration that runs an ActiveMQ instance. In this case, the JMS 

Message Broker is exposed on port 61616. The instance execution is managed 

following the pattern Singleton, and the artifact is included using maven 

dependencies in the Project Object Model (POM) of the project. 

2) Using Mosquitto, i.e., an open-source message broker that implements MQTT 

protocol, allows light transmission between low-power devices using 

publish/subscribe messaging techniques.  

 

3.2.1.5. Register  

This component traces and stores all the information related to the connections 

between the internal Runtime Monitoring components and external artifacts involved in 

a monitoring session. For instance, the Register collects the list of the Complex Event 

Processor instance executed, the channel used for listening for events, and the 

parameters they use. This information is collected using the object TopicAndProperties 

as detailed in Figure 8. 

As in the figure, the class provides the information needed for: connecting to a specific 

channel; routing a message or a request to the channel on which a dedicated Complex 

Event Processor instance is running.  

 
15 https://logging.apache.org/log4j/2.x/ 
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Figure 8: Class diagram of the connections Register   

 
3.2.1.6. EventListener and ServiceListener  

EventListener and ServiceListener components automatically execute the routing. Both 

the components execute a thread poll. Each thread listens on a specific channel: the 

event messages generated by probes (EventListener Task);  the requests for the 

evaluation of one or more rules on (generic or specific) Complex Event Processor 

(ServiceListener Task).  

These two components guarantee the scalability of the Runtime Monitoring: if 

necessary, generating more channels or more complex event processor instances for 

specific scopes can be generated. 

 

3.2.1.7. Complex Event Processor  

The Complex Event Processor manages the automatic rule execution and assessment. 

It can be executed considering two different engines in parallel: Drools16 or Esper17. 

In particular, Drools is an engine based on the RETE algorithm, based on analysis 

executed on forward and backward chains. It can be instructed through a specific 

Domain-Rule-Language. Drools guarantee high speed and scalability, thanks to the rule 

engine engendered by the RETE algorithm (RETE-OO).  

Esper uses the Event Processing Language rule language that implements and extends 

the SQL-standard language. Usually, the Esper engine has more performant memory 

management than Drools, which relies on a garbage collector that is not performant in 

case of millions of events. 

 

3.2.1.8. Rules  

This component enacts either the rules generation or the self-injection process when 

meta-rules are invoked during the Runtime Monitoring execution.   

 
16 https://www.drools.org/ 
17 https://www.espertech.com/esper/ 
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The Rules component is also in charge of routing the messages that contain rules to the 

target Complex Event Processor. It uses CepType, the parameter stored on the event, 

and the analysis of the ActiveCep list stored in the Register.  

 

3.2.1.9. Mediator  

This component guarantees the interoperability between MQTT messages (mostly sent 

using JSON - JavaScript Object Notation) and the JMS Messages.  

The Mediator uses messages from/to two kinds of brokers: ActiveMQ and Mosquitto. 

This component executes two main functions:  

1. converting a JSON message into a JMS Message and injecting it into one of the 

dedicated channels. 

2. converting a JMS message into JSON when a notification needs to be sent to an 

entity that does not support the JMS message paradigm. 

The high-level behaviour is described in Figure 9. 

Figure 9: JSON2MQTT Mediator behavior  

 

3.2.1.10. StorageController  

This component manages to store all the events and data generated by the Runtime 

Monitoring. The StorageController allows (simultaneously) two implementations:  

1) using a generic MySQL18 server deployed outside Runtime Monitor to store 

simple events. 

2) Using a database structured for time series, such as InfluxDB19, allows for 

managing vast amounts of events faster. 

 

 
18 https://www.mysql.com 
19 https://www.influxdata.com/ 
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3.2.1.11. Notification Manager  

This component manages the notification of failure sent by the Complex Event 

Processor. It forwards the failure notification to the specific channel gathering the 

correct information (channels details) from the ChannelRegistry component. 

 

3.2.1.12. Execution Flow 

This section details the basic start-up procedure to clarify the communications between 

the Runtime Monitoring artifacts. 

Startup: In particular, when the Main component is invoked, it checks if the parameters 

related to the execution of the Rest component, ActiveMQ, and Mosquitto broker are set 

to true or false. Indeed, according to the parameters set, the Runtime Monitoring Engine 

can be executed according to a specific operation profile.  

If the Rest component is invoked, a GrizzlyServer is run so that the REST interface for 

invocating the Runtime Monitoring by external components is exposed.  

At this point, the Main component invokes the execution of one (or more) Broker for the 

communication according to the specific message paradigm. The first broker is 

ActiveMQ for local instance execution, and the second is Mosquitto. This can be 

executed locally within the Runtime Monitoring to raise the backbone on which 

messages can flow. 

Successively, the Register component can start-up, and the ChannelRegistry be created 

to enable the storage of data related to components, Complex Event Processor (CEP), 

and the created channels. 

In this stage, an instance of the StorageController component is created as a data 

structure on which the received events are stored. This is a connection to a MySQL 

server or InfluxDB and includes a set of internal interfaces for storing and reading data 

for the other components. 

At this point, the channels on which the events flow are created. Thus, facilities have 

been developed for managing the amount of data that this infrastructure may receive 

and the possibility to categorize data among them: i.e., address it to a specific CEP, 

manage load balancing between multiple instances of Complex Event Processor, or 

simply separate notification from requests or simple events.  

The EventListener and the ServiceListener components expose a pool of threads. Each 

thread generated by those components is opening a channel listening for a specific kind 

of event. The EventListener will receive and manage events related to the execution of 

a System Under Audit (events generated by probes); the ServiceListener will generate 

channels dedicated to the evaluation requests (loading of rules by an external 

component). 

Following the same paradigm, another component has been developed to avoid 

confusion between Framework and notifications: the NotificationManager, in charge of 

dispatching the notification sent from the CEP to the correct recipient/channel. 

The last component that can be executed in single or multiple instances is the 

ComplexEventProcessor. The instances can rely on Drools engine or Esper engine. The 
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information about the channel used for CEPs execution is stored in the Register 

component. 

Runtime Monitoring is ready to receive events or evaluation requests on the exposed 

channels. 

 

3.2.2. Communication Flows Inter Artifacts 

Within the Runtime Monitoring, the components exchange data related to the events 

notified by external entities or rules: received or generated during the execution. The 

database can be instantiated within the Runtime Monitoring or can be an external entity. 

It receives data managed by the StorageController component, converts the execution 

to information, and stores it. 

 

3.2.3. Exposed Interfaces 

Runtime Monitoring exposes different interfaces: JMS, REST, and MQTT. 

Figure 10: Elements of the exposed REST interface 
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● REST interfaces are provided for interacting with the BIECO Platform to manage 

the lifecycle of the Runtime Monitoring node. An example is reported in Figure 

10. More details are provided at the following link: 

https://app.swaggerhub.com/apis/acalabro/Auditing_Framework/1.0.2. 

● MQTT interfaces expose an open channel on which the JSON messages can be 

sent according to a schema that reflects the Event message described in Section 

3.2.4. An example of a message is reported in  Figure 11. 

● JMS interface is exposed using ActiveMQ Broker. It is a set of Topics and 

channels on which asynchronous messages can be sent to the Runtime 

Monitoring (see Section 3.2.4). 

 

Figure 11 Elements of the exposed REST interface 

 

3.2.4. Exchanged Data Structure 

Runtime Monitoring is based on event messages. The payload of those messages 

contains valuable information for identifying the event that occurred in the system under 

audit and executing the complex event processing operation against rules and 

properties to be verified.  

An event is an immutable statement of fact, reporting something that happened in the 

system under auditing. Probes generate events and mark them with a timestamp related 

to the last occurrence (see Section 3.2.6.1). Figure 12 provides the Runtime Monitor 

event customization inside BIECO Project Architecture. 

Figure 12 Class diagram of Event Structure 

https://app.swaggerhub.com/apis/acalabro/Auditing_Framework/1.0.2
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As in the Figure, the main parameters of the Event<T> interface class are: 

● Timestamp refers to the time an event has been generated (when it occurs in the 

system under audit). 

● SenderID, the identification of the entity generating and sending the event. 

● DestinationID, the identifier of the CEP that should manage this event. 

● Name is a String that contains the name or parameter name the event is referring to. 

● Data<T>, a variable type that contains the value of the event that occurred; for 

example, an event with Name = “Temperature” and Data = 35.0f. 

● Consumed, a Boolean value that indicates if the event has been already managed or 

not. The CEP can use this parameter to mark an event already managed (in case it 

remains inside the event cloud or stream). 

As shown in Figure 12, the generic implementation of the interface Event<T> interface is 

proposed in the abstract class ConcernAbstractEvent<T>. 

An extension of this class is represented by the ConcernBaseEvent<T> that includes an 

extra parameter called Property.  

Using the same pattern, two specific types of events are generated for the correct 

analysis of events generated in BIECO. 

The first is the ConcernEvaluationRequest<T> class. It contains the basic structure of 

the ConcernAbstractEvent<T> extended with two specific parameters: 

PropertyRequested and EvaluationRuleName. 

The PropertyRequested object refers to the message properties as detailed in Section 

3.2.1.5. The rule can be routed to the correct Complex Event Processor using this 

parameter. 

The ConcernDTForecast<T> is also an extension of ConcernAbstractEvent<T>. It 

contains the forecast generated by the Digital Twin that will enact the self-rule 

generation process. 

This object contains extra fields: 

● TrustedInterval: the amount of time-related to the validity of the forecast. 

● ForecastedProbeName: the name of the Probe in the SUA to which the forecasted 

property is referring. 

● ForecastedProperty: the property forecasted (ex: latency, connectivity). 

● ThresholdValue: a threshold value used, for example, in case the property is related 

to latency or a scalar value. 

 

3.2.5. Produced Data  

The output data are represented by: 

● Events, in terms of storing the data flowing into the Monitoring Engine for being 

analysed. 

● Complex Events are events created by the Monitoring Engine by correlating 

simple Events according to the rules loaded into the CEP. 

● Notifications/Violations that represent the action executed after the triggering of  
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3.2.6. Technologies Used  

The software has been developed in Java, version 17, using OpenJDK. 

The project is available on GitHub, and dependencies are solved through the Maven 

framework.  

The communications are managed using JMS or JSON messages transmitted on top of 
ActiveMQ or Mosquitto broker.  

The interfaces exposed are realized using REST running on Grizzly Server.  

Storage is realized using MySQL Server or InfluxDB time-series database.  

The first version of the Complex Event Processor engine has been developed using 
Drools. Another version is ongoing and relies on the Esper engine. 

The overall Runtime Monitoring is going to be dockerized for the second release of the 
overall platform. 

 

3.2.6.1. Probes 

As described in Deliverable D5.1 [11], tools for instrumenting code are currently 

available. Details related to the instrumentation procedures and probes injection are 

reported in Appendix A.  

 

3.2.7. User Installation Guidelines  

1) svn checkout https://github.com/acalabro/ConcernMonitoringRest.git 

2) import the project into Eclipse 

3) Create a configuration that executes as the main class: 

a) the it.cnr.isti.labsedc.concern.rest.Main class OR 

b) the it.cnr.isti.labsedc.concern.ConcernApP 

4) export the project as a Runnable Jar File and select “Extract required libraries into 

the generated JAR.” 

5) execute the exported jar simply by running “java -jar exportedjarfile.jar.” 

 

3.2.7.1. Hw/Sw Requirements 
For being executed, as a Jar file, the Runtime Monitoring requires: 

● OpenJDK Runtime 17. 

● no restriction on port 61616 for ActiveMQ. 

● no restriction on port 8181 (if the Rest component is needed). 

● no restriction on port 1883 for Mosquitto (if needed). 

Required libraries have been included within the jar file. 

 

3.2.7.2. Licenses 

The code developed for the Runtime Monitoring has been released following GPL320. 

 
20 https://www.gnu.org/licenses/gpl-3.0.html 

https://github.com/acalabro/ConcernMonitoringRest.git
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The libraries involved (listed below) are open source and will follow their respective 

licensing: 

● drools-*. 

● javax.jms-api. 

● activemq-broker. 

● mysql-connector-java. 

● log4j-core. 

● org.eclipse.paho.client.mqttv3. 

● jersey-container-grizzly2-http. 

●  any other minor library included within the pom. 

 

3.2.7.3. Github and DockerHub Repository  

The monitoring project is available on Github at the following link: 

https://github.com/acalabro/ConcernMonitoringRest 

 

  Predictive Simulation 

This section details the Predictive Simulation internal structure, its artifacts, and 

implementation details. 

 

3.3.1. Internal Artifacts Structure 

Figure 13 depicts the internal structure of the Predictive Simulation components. The 

Predictive Simulation consists of jar files executed within the BIECO framework that 

works on a Publish Subscriber basis. Specifically, it contains an amq Consumer that 

consumes real-time data received via a specialized message defined for the Auditing 

Framework. 

Figure 13 Internal structure of the Predictive Simulation components 

https://github.com/acalabro/ConcernMonitoringRest
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The Predictive Simulation module also contains an amq Producer that sends the Trusted 

behaviour Signature back on the auditing bus.  

The triggering of the simulation is performed by receiving specialized commands from 

the REST interface. The models that the Predictive Simulation executes are abstract 

models which are outputted by the Domain Specific Language (DSL). When fed with 

Real-Time Data, these abstract models become specialized Digital Twins. 

 

3.3.2. Communication Flows Inter Artifacts 

The figure below depicts the flow between the internal artefacts of Predictive Simulation: 

The Rest Interface that connects the Predictive Simulation and the BIECO Orchestrator 

triggers the execution of the jars that incorporate the abstract models and the amq 
Consumer that enables the collection of the real-time data. Once these two parts are put 

together (abstract models and real-time data), specialized Digital Twins are created and 

executed. For sending the resulting Trusted Behaviour Signature to the auditing bus, the 

Predictive Simulation triggers the execution of an amq Producer. 

 

Figure 14 Flow between the internal artefacts of the Predictive Simulation 

 

3.3.3. Exposed Interfaces 

The Predictive Simulation provides a rest interface to communicate with the BIECO 

orchestrator. The interface is a stand-alone application implemented in Java. Its goals 

are to receive BIECO messages and to process them for the Predictive Simulation. The 

interface manages especially the control and monitoring messages. The Predictive 

Simulation is another standalone application, which is started, stopped, and halted by 

the rest interface. 

The structure of the Predictive Simulation Rest Interface is shown in Figure 15. The rest 

interface component allows a decoupling of the Predictive Simulation from the 

orchestrator to allow reuse of the Predictive Simulation in other projects and increase 

the maintainability. The component is structured into the four sub-components: 

AppController, OrechstratorSendMessage, AppRegistry, and PSBridge. The first three 

sub-components are generic for each BIECO application and require adaption to the 
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specific application. The sub-component PSBridge is introduced to consider the specific 

requirements for the Predictive Simulation. 

The first sub-component is the AppConroller, which provides the rest interface and maps 

HTTP post requests on the sub-URL “/BIECOinterface” to the function processMessage. 

Each HTTP post message on this interface is checked for the correct token. The HTTP 

post requests are answered either by “401 Unauthorized” or “200 OK”. A reaction to the 

BIECO message content is not foreseen, as separating the HTTP rest interface layer with 

the technical implementation and the BIECO messaging layer is wanted. In the case of 

authorized BIECO messages, the AppController processes the messages based on their 

type. The possible types and reactions are:   

• GETSTATUS: the state of the AppRegistrySerive is sent, which is 

BIECOToolStatuses.ONLINE 

• HEARTBEAT: the tool id is set by the heartbeat 

• CONFIGURE: no specific configurations for the Predictive Simulation are 

foreseen. 

• DATA, EVENT:  an infrastructure with a queue to provide messages to 

Predictive Simulation is created. The DATA/ EVENT message is added to a 

queue of the PSBridge class. 

• START, STOP, HALT: The respective PSBridge class functions are called. 

The AppController uses the class AppRegistry to store the state of the communication. 

The attributes orchestratorURL, orchestratorToken, and the token of the Predictive 

Simulation are statically defined in the program code of the class AppRegistry. 

As the AppController also sends the response messages to the Orchestrator, it uses the 

class OrchestratorSendMessage to encapsulate the communication. This encompasses 

transforming messages to JSON objects, calculating the Cyclic Redundancy Check, and 

sending the respective HTTP post request. 

The PSBridge sub-component processes the START, STOP and HALT messages. The 

START message causes the start of the process by using the JAR file of the Predictive 

Simulation. A STOP message is interpreted to use the Java process interface to call the 

destroy () function. After termination of the process, a FINISHED message is sent to 

Orchestrator. In contrast, the HALT message calls the function destroyForcibly(). 

Furthermore, the PSBridge class provides a queue of DATA and EVENT messages, which 

the Predictive Simulation may access.  
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Figure 15 Structure of Predictive Simulation Rest Interface 

 

3.3.4. Exchanged Data Structure 

The structure of the data sent to the auditing bus is exemplified below and consists of: 

1) Definition of the timing interval of the behaviour for which the prediction is being 

performed “Trusted Interval.” 

2) Definition of the timing interval in which the behaviour is expected: Prediction 

Window 

3) Trusted order of events 

4) Trusted type of events  

{"Trusted Interval":"1s","Prediction Window":"5s","Trusted Order“: {"1":"Velocity 

Command","2":"Velocity Command","3":"Velocity Command","4":"Score Event","5":"Velocity 

Command","6":"Velocity Command"},"Trusted Type":{"Trusted type":"Score Event"}}  

 

3.3.5. Produces data 

One data point within the signature contains information about the behavior interval for 

prediction, the window of prediction, and the Trusted Behavior Signature having the 

order, the name, and the type of events. 

Trusted Interval: in terms of seconds, for example: 1s 

Prediction Window: in terms of seconds, for example: 5s, 

Trusted Order: of events, including the number of events, for example: 

1 Velocity Command, 4 Score Events, 5 Velocity Commands 

AppRegistry OrchestratorSendMessageAppController

BIECO Orchestrator

PSBridge

Predictive Simulation

Predictive Simulation Rest Interface 
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Trusted Type: Score Event, Velocity Command 

3.3.6. Technologies Used 

Java and RESTful Web Service have been used to define the REST interface.  

The definition of the abstract model has been performed using the Xtext framework21 

(as presented in D5.1 [11]). For the implementation of the producer and the consumer, 

amq has been used. 

 

3.3.7. User Installation Guidelines 

The .jar for the Predictive Simulation connection to the BIECO orchestrator is already 

provided. For keeping a loose coupling of artifacts and enabling their exchangeability, 

this .jar calls another jar that contains the definition of the abstract models and the 

internal amq producer and consumer. The current version of the DSL holds the definition 

of an entity as a list of entities and a list of features. Consequently, we require that all 

entities need to be declared before dealing with the features of the entity.  

For creating Models of the twins using the DSL4Twins (see deliverable D4.2 [10]), the 

following configuration is necessary: 

• Xtext v2.24 
• Junit test 5 
• Java 1.8.0 

• And IDE of your preference (for example, Eclipse) 
 

3.3.7.1.  Hw/Sw Requirements  

Java-compliant machine, internet connection  

 

3.3.7.2. Licenses   

Under BIECO licensing. 

 

 Ontology Manager 

Ontology Manager is the component responsible for managing and supporting the 

implementation and the BIECO Ontology. It has been introduced in deliverable D5.1 [11]  

and refined and specialized as described in Section 4. The implementation of the 

Ontology Manager targets the challenges CH2: Separating properties predictions and 
assessment and CH3: Leveraging the existing monitoring solutions presented in Section 

1.1.  

Thus, its architecture is voluntarily conceived as abstract as possible to instantiate its 

components with available tools. In the following, the components of Ontology Manager 

are introduced. 

 
21 https://www.eclipse.org/Xtext/ 
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3.4.1. Internal Artifacts Structure 

Ontology Manager is composed of different components collaborating to achieve a 

common goal, i.e., providing functionalities and means to share information and 

knowledge about SoS and Ecosystem within BIECO. 

Figure 16 illustrates the updated supporting architecture, an enhancement of the one 

introduced in Deliverable D.5.1 [11], in which two new components (Ontology Mapper 

and Ontology Population) have been introduced. They allow the management of the 

BIECO Blueprints and the Data Provider’s data. Unlike the previous proposal, the 

Visualization Component has been removed as an internal component and substituted 

with the external Auditing Framework GUI (described in Section 3.5). It allows the 

Ontology Final User to interact with the Ontology Manager for ontology navigation and 

management. In the following, more details about each component are provided.  

 

 

Figure 16 Ontology Manager Reference Architecture 

 

3.4.1.1. Ontology Mapper  

Ontology Mapper manages the BIECO blueprints contributing to the connection between 

the Design and Runtime Phases. Ontology Mapper has the following responsibilities: 

● It lets the integration of the blueprints that are Extended MUD File and ConSerts 

data with the reference context. 

● It lets the specification of ontology entities and presentation of specific use case 

domain. Figure 16 shows that the Use Cases provider is the primary target end-

user group at this stage.  

 

3.4.1.2. Ontology Population  

It allows the manual definition of values for ontology population by a Data Provider. It is 

composed of a dedicated user interface that lets definition and the insertion of all the 

required individuals for populating the ontology. It is also possible to upload the JSON 
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file directly according to the format defined in Section 3.4.3, which contains the data to 

be transmitted to the Triplifier component.  

 

3.4.1.3. Ontology Tool Builder  

Ontology Tool Builder is used for creating, modifying, and visualizing the ontology 

according to the representation detailed in Section 4. In the BIECO Project, the Ontology 

Tool Builder is instantiated with Protégé because it provides a friendly Graphical User 

Interface (GUI) for the definition of ontologies; it can be adapted to build even complex 

ontology-based applications thanks to its modular architecture. The BIECO 

customization of the Ontology Tool Builder can be used offline as a standalone solution 

and online as a web-based solution called WebProtégé22. This lets a more dynamic 

sharing of ontologies for collaborative viewing and editing. Figure 17 shows a 

screenshot of the adopted WebProtégé. 

 

 

Figure 17 Screenshot of WebProtégé during the development of BIECO Ontology  

 

3.4.1.4. Triplifier  

It is a triplifier based on OWL (Web Ontology Language)23 developed in Java. Triplifier 

takes the ontology data as input, consisting of the individuals, and it is specified in JSON 

or XML format. It also takes the rules the Ontology Builder Tool defines as input to allow 

the reasoning and inference of new knowledge.  

 

 
22 https://webprotege.stanford.edu/ 
23 https://www.w3.org/OWL/ 

https://webprotege.stanford.edu/
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3.4.1.5. Semantic Reasoner  

Semantic Reasoner is used to inferring new knowledge: the reasoning is performed for 

consistency checks and definition of inferences. In the BIECO Project, the 

implementation of the Semantic Reasoner relies on Openllet because: 

● it is Java-based that can be easily integrated with OWL API.  

● is an open-source software actively maintained, providing functionality to check 

the consistency of ontologies, among other functionalities. 

 

3.4.1.6. Triple Store  

In the BIECO Project, GraphDB has been selected as the reference triple store, a free-to-

use graph database and knowledge discovery tool compliant with RDF and SPARQL and 

available as a high-availability cluster. Technically the Auditing Framework GUI interacts 

with the Ontology Manager by employing well-defined SPARQL queries.  

 

3.4.1.7. SPARQL Endpoint  

This component allows specifying and executing specific SPARQL queries to retrieve 

knowledge from the triple store and dynamically update the KB content. In Section 3.4.3, 

details about both Triple Store and SPARQL Endpoint are also provided from the 

behavioural point of view. 

 

3.4.2. Communication Flows and Exposed Interfaces 

The proposed framework to manage the communication between the Auditing 

Framework GUI and the Ontology Manager component is shown in  Figure 18. It provides 

services for querying/interacting with the ontology. The Auditing Framework GUI uses 

the provided information during the user interaction. The server handles GET, POST, PUT 

and DELETE requests, which are addressed with SELECT/CONSTRUCT, INSERT, 

UPDATE and DELETE SPARQL queries, respectively. 

 

 

Figure 18 Overview of Ontology Server RESTful Interface 

 

The model for the specification of the available endpoints follows the OpenAPI 

Specification (OAS)24. Figure 19 shows some examples of the proposed endpoints that 

 
24 https://swagger.io/docs/specification/paths-and-operations/ 
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the Ontology server API exposes, in this case for the SoS module of the developed 

Ontology (see Section 4 for more details). 

Example of Ontology Server API endpoints for the SoS module. 

 

 

Figure 19 Example of Ontology Server API endpoints for the SoS module 

 

The HTTP operations are defined for each endpoint (path) (GET, POST, PUT, and 

DELETE). A single path can support more than one operation, and an operation would 

have one path, except for the GET operation.  

For instance, ‘GET /ontology/sos’ returns all available systems of systems in the 

ontology, whereas ‘GET /ontology/sos/{id} returns information about a particular system 

of systems.  For the POST, PUT and DELETE operations the ‘POST /ontology/sos’, ‘PUT 

/ontology/sos/{id}’ and ‘DELETE /ontology/sos/{id}’, are used respectively.  These last 

operations must be managed carefully, according to the ontology constraints.  

Figure 20 shows the interactions between Auditing Framework GUI (Auditing GUI in the 

Figure) when it performs GET and POST requests for returning a particular system of 

systems and inserting a new one. When the Ontology Server receives the requests, it 

creates the corresponding SPARQL query to retrieve/insert the results from/in the 

knowledge graph database. The results are retrieved in JSON format. 

 

Figure 20 Example of GET and POST requests through the Ontology server 
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3.4.3. Exchanged Data Structure 

Ontology Manager is based on RESTful service and communicates with components by 

exchanging data. To facilitate that communication, there is a specific JSON schema. It 

represents the data exchanged and allows interoperability with the current (and 

additional) components integrated within the BIECO Auditing Framework or Platform. 

Figure 21 reports the conceived JSON data structure schema, and it highlights the 

structure of the SoS JSON object, which has an SoS ID, a UseCaseID that identifies the 

use case the SoS is related to, the SoS Name, a Description of the SoS, and a Justification 

field containing the reason of choosing that SoS. 

Figure 21 Ontology Manager Data Structure JSON Schema  

 

3.4.4. Produces Data 

All the data produced by the Ontology Manager must comply with the schema mentioned 

above. An instance of that schema containing data related to the System of Systems 

associated with the BIECO four use-cases is reported in Figure 22.  
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Figure 22 An instance of SoS data  

 

3.4.5. Technologies Used 

The following provides the technologies for developing the Ontology Manager and 

distinguishing between tools and languages. 

 

3.4.5.1. Tools  

Protégé is a free, open-source platform that provides a suite of tools to construct domain 

models and knowledge-based applications with ontologies. Specifically: 

● Protégé Desktop v.5.5.025, for windows, a platform-independent version that 

requires a Java Runtime Environment.  

● WebProtégé is an online version of Protégé, and It requires an internet 

connection and a browser. After registering to the platform at 

https://webprotege.stanford.edu/, a specific workspace is available where it is 

possible to create  

GraphDB supports: 

● GraphDB uses RDF4J26 as a library and its APIs for storage and querying. 

● It supports the GraphQL, SPARQL, and SeRQL languages and RDF (e.g., RDF/XML, 

N3, Turtle) serialization formats. 

● OWL 2 RL profile is fully supported and QL partially. 

● It integrates OpenRefine for the ingestion of tabular data and provides semantic 

similarity search at the document level 

 

3.4.5.2. Languages  

Java: Java is the primary programming language for developing the Ontology Manager’s 

 
25 https://protege.stanford.edu/products.php#web-protege 
26 https://rdf4j.org/ 

https://webprotege.stanford.edu/
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component.  For the Auditing Framework GUI component, details are in Section 3.5. 

Web Ontology Language (OWL) represents the complex knowledge about the system of 

systems and monitoring concepts and relations between them, i.e., the ontology used in 

the BIECO project. 

SPARQL is used for retrieving and manipulating data stored in GraphDB. 

 

 Auditing Framework GUI 

The Auditing Framework GUI manages the interaction between the user and the 

Ontology Manager component.  

 

3.5.1. Communication Flows Inter Artifacts 

The Auditing Framework GUI exposes a single interface, the actual graphical user 

interface, which presents data/information to the user and collects input. Examples of 

Auditing Framework GUI usage are provided in Section 8.1. 

Communication with the Ontology Manager is done via the REST API that it exposes, so 

for this, the Auditing Framework GUI does not expose any interface. Details of the data 

structure are provided in Section 3.4. 

 

3.5.2. Technologies Used 

The Auditing Framework GUI is implemented in Java, HTML/CSS, and Javascript, using 

the following libraries: 

● Java Spring Boot with Thymeleaf. 

● VueJS. 

● Bootstrap CSS Framework. 

 

3.5.3. User Installation Guidelines 

Considering the installation guidelines, specific details are provided in the following 

sections. 

 

3.5.3.1.  Hw/Sw Requirements  

HW/SW requirements include: 

● Java Runtime Environment 11 

● Access to CDN (Content Delivery Network) resources for frontend components 

like VueJS and Bootstrap CSS. 

● no restriction on port 8080 for the Auditing Framework GUI Component of the 

platform. 

 

3.5.3.2. Licenses   

No licenses are needed for using this component  
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 Advancements in Ontology Manager 

This section reports the evolution of the initial core ontology (i.e., MONTOLOGY- 

MONitoring onTOLOGY), managed by the Ontology Manager introduced in deliverable 

D5.1 [11], to make it more modular, manageable, and comprehensive. In particular, the 

content has been re-organized into five modules, each containing a set of correlated 

concepts and relations between them. Therefore, the conceived enhanced ontology27 is 

related to the challenges CH2 and CH3 by proposing a well-defined Taxonomy used 

along the BIECO lifecycle. It allows Knowledge derivation reasoning and inference of new 

knowledge. 

The core ontology and its evolution aim to help the different SoS stakeholders gather 

functional and non-functional properties related to the various parts of SoS. 

Consequently, that enables the definition of concrete monitoring rules associated with a 

specific property to demonstrate compliance (non-compliance) with the selected 

properties. 

 

Figure 23 Ontology Modules  

The core ontology defined in deliverable D5.1 [11] is composed of two main modules:  

the System of Systems (SoS) Module (containing eight concepts) and the Monitoring 

Module (which includes five concepts), with a total of 13 (thirteen) concepts.  

The advancement consists in adding new concepts and reorganizing the content in a 

more manageable and modular way to enable interoperability and facilitate both 

extensibility and maintainability. More precisely, as reported in Figure 23, the new shape 

of MONTOLOGY is divided into five modules: SoS, Attributes, Skills, Monitoring, and 

Rules. The remainder of this section briefly describes each module and points out the 

new concepts/classes by colouring the shape outline in red.  

 

 

 

 
27 The enhanced ontology is called DAEMON in the joint paper of CNR and UNI BIECO partners, accepted in 
the 5th IFIP International INTERNET OF THINGS (IoT) Conference [8]. 
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 SoS Module 

Differently from MONTOLOGY, the System of Systems is modelled as a composition of 

System, and it is influenced by a specific environment in which it operates and is 

executed. Therefore, a System is a collection of Devices representing the object of the 

monitoring activities. As in MONTOLOGY, each Device is composed of a specific set of 

Components, as shown in the figure below. 

 

 

Figure 24 System of Systems (SoS) module  

 

 Attributes Module 

An Attribute is a functional and non-functional property related to a specific SoS concept 

(see Figure 25). And this module contains all the concepts related to the observable 

properties of the classes in the SoS module. As in Figure 23, this module introduces two 

specific concepts: QualitativeAttribute, and ObservableAttribute, i.e., quantitative 

attributes used to define both the Measure and Metric used to define monitoring rules. 

The Attribute hierarchy is also expanded by adding three sub-classes: 

EnvironmentAttribute, SystemAttribute, and DeviceAttribute, enabling monitoring of their 

behaviour through specific monitoring rules. 

 

 

Figure 25 Attributes Module  
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 Skills Module 

The original concept of Skill has been extended in two ways. Firstly, a skill hierarchy is 

created by leveraging the actual concept of Skill as a super-class of the hierarchy. Two 

specific sub-classes (BasicSkill and ComplexSkill) are connected through the relation 

isComposedBy.  

As shown in  

Figure 26, a ComplexSkill is composed both through a set of BasiSkill, or/and iteratively 

throughout a set of ComplexSkill. Secondly, the concept of ObserableSkill is introduced, 

i.e., the observed ability related to the SoS concept that can be validated through the 

monitoring facilities.  

Differently from the core ontology described in deliverable D5.1 [11], the Requirement 

class is connected directly to ObserableSkill through the isRelatedToSkill association. 

Therefore, each ObserableSkill, specified as a set of Requirements, can be verified 

through a specific Rule. 

 

Figure 26 Skills Module   

 

 Rule Module 

The advancement of the core ontology leverages the concept of Rule by providing a well-

formed hierarchy with the following sub-classes (see Figure 28):  

● AbstractRule points out a generic rule that is not yet instantiated within the 

execution context and gathered from the navigation of the ontology. 

● WellDefinedRule refers to a rule ready for being translated to the destination 

language of the Complex Event Processor and related to the monitoring of a 

specific device. 

● InstantiatedRule is a rule written using the language understandable by a monitor 

engine.  

● Boundary contains specific values that express the applicability ranges of the 

rule. 
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Figure 27 Rule Module   

To better clarify the complexity of the process involved in obtaining a processable rule, 

in Figure 28, a graphical representation of the evolution of the rule: from abstract to 

instantiated one can be found. 

 

Figure 28 Rule Transformation Process  

 

In particular, the abstract rule is a generic natural language description of the objective 

of the auditing activity that is easily understandable by non-expert users, for instance, 

such as the maximum number of established simultaneous connections between two 

components. The abstract rule is then refined into the well-defined rule, a semi-

structured and implementable rule. The users need to add specific details about the 

context, for instance, the maximum number of established simultaneous connections. 

An example of abstract and well-defined rules can be found in Figure 29. 

 

Figure 29 From Abstract to Well-defined rule enrichment process  

 

Finally, the well-defined rule, enriched with the name of the probes used by the user, will 

be automatically translated into an instantiated rule according to the monitoring 

language used. The Runtime Monitoring uses this during the Auditing Framework 

execution. 



 

Page 50 of 82 

Deliverable D5.2 : First version of the simulation environment and monitoring solutions  

A typical structure of an instantiated rule can be summarized as follows: 

Figure 30 Drools Rule Skeleton 

 

It can contain one or more rules that define the rule conditions (when) and actions (then) 

at a minimum. 

 

 Monitoring Module 

The core class of the Monitoring module is the Monitor, which observes rules organized 

in the Calendar, i.e., an ordered set of rules (see Figure 31). Each Calendar can validate 

a specific ObservableSkill at run-time defined in the Skills module. The Monitor has a 

specific EntryPoint used to communicate with the Probe. 

A Probe is a piece of software code that can be injected into an observed/monitored 

component, device, or system, and it can send Events according to a specific format. 

The probes can send events at regular intervals or in a particular situation. The sent 

events contain information related to the occurrence of actions on the observed SoS 

entity. 

The term Event defines the change of a state within a system. This state change is 

generated when a method call is executed, or internal action is enacted. The injected 

Probe will pack this atomic action into an event and notify the Monitor to perform the 

processing action on the event stream. To be correctly managed by a concrete monitor, 

the event should contain several pieces of information needed for analyzing a snapshot 

of what is happening within the System Under Audit. 

Figure 31 Monitoring Module 
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 Advancement of the Auditing Framework Interface  

Considering the Deliverable D5.1 [11], the conceptual structure of the Auditing 

Framework interface has been improved considering the four different steps: 

1. Pre-setup. 

2. Artifacts preparation. 

3. Finalization of the Pre-setup. 

4. Execution.  

The following describes the steps and their interaction.  

 

Pre-Setup 

Once the Design Phase concludes, and BIECO’s Runtime Phase is due to start, the user 

sends a notification to trigger the Pre-setup phase. Then retrieval of the domain-specific 

language for the specification of the Digital Twins takes place and includes the creation 

of the Digital Twins and the instrumentation of the CE/SUA with the probes. 

For this reason, the Auditing Framework Interface needs to support the 

freezing/resuming of the ongoing setup session. The initial auditing rules refinement 

occurs, and the components' execution starts.  

After starting the Runtime Phase, the execution pattern requires the Auditing Framework 

Setup to be enabled.  This process is exemplified in Section 8. 

Through the Auditing Framework Interface exposed within the BIECO Orchestrator, the 

user may execute the operations needed for the Auditing Framework Pre-setup. They 

include browsing the ontology data for classifying the type of CE and SUA to get the 

subset of the relative rules to be assessed during the Auditing Framework execution.  

 

Artifacts Preparation 

This phase includes getting probes information or artifacts for instrumenting CE, SUA, 

and DT. It also gets DSL related to the Digital Twin that the user needs to instantiate.  

The information acquired through Ontology Navigation can be saved for recovery in the 

future, and guidelines about instrumentation with probes of the CE/SUA and the setup 

of the DT through the DSL development are provided to the user.  

 

Finalization of the Pre-setup 

The auditing activity can be restarted as soon as the instrumentation and the DT 

definition are completed. After completing this process, the session previously saved 

can be recovered and the abstract rules refined or completed. 

In this case, the user can modify or confirm the subset of rules selected for the 

monitoring procedures.  

 

Execution 

Once confirmed or updated, those rules can be executed by the monitoring platform 

component of the Auditing Framework. 
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 Advancement of the Predictive Simulation  

This section targets the Challenges CH4 and CH5 introduced in Section 1.1 about 

detecting malicious deviations through specialized Digital Twins. Concerning D5.1 [11], 

the development has been improved by providing a solution based on simplified 

concerns that could prevent an intelligent software component from detecting it is under 

evaluation. Initially designed for achieving a clear understanding of either functional or 

timing behaviour of real-time control systems, this approach enables a concern-directed 

prediction of the trustworthiness of intelligent software behaviour.  

By focusing the scope of the evaluation on either schedule, function interaction, or 

communication protocol between the intelligent software and interacting entities (such 

as software, hardware, or subsystem), specialized and faster evidence of trust can be 

achieved. As depicted in Figure 32, runtime evidence of trust can be provided through 

the execution of horizontal abstractions of a software component or systems behaviour, 

which are directed towards a specific scope of the evaluation and can be executed at 

every level of vertical abstraction.  

From top to bottom, vertical abstractions can be defined with a range of details varying 

from a very high level where they take the shape of input/output tables or state charts to 

very concrete levels when fully implemented. The horizontal abstraction of the intelligent 

software behaviour can be executed to provide specialized evidence of trust. Further on, 

vertical abstractions can propagate evidence of trust between different horizontal levels 

for assuring the satisfaction of specific system-level goals and ongoing coalitions. 

Figure 32 Execution of parallel abstraction 

 

 Derivation of Specialized Digital Twins 

The provided approach leverages the principle of simplification in the design of software 

functions, creating more superficial behavioural structures capable of avoiding 

uncontrolled feature interaction. Concretely, the process of simplifying concerns to 

define concern-oriented abstract models has been redirected. In deriving abstract 

models, it is essential to identify the main concerns and leave the ones subordinated to 

them apart. The model derivation process needs to capture the characteristics of a 
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system and the behaviour of its components at a specific level of abstraction. This 

process varies in complexity by the nature of the system to be abstracted.  

The approach that enables runtime detection of malicious deviations based on 

Predictive Simulation requires a Design Phase for engineering systems artefacts that 

support the later runtime prediction and conformity monitoring.  

In this phase, different models of the system behaviour are created, including functional 

models that enable runtime evaluation of functional interaction, temporal models that 

enable timing predictions used in evaluating a software smart agent’s synchronization 

capability, and models that will allow the runtime evaluation of the communication 

protocol. 

As discussed in Deliverable D4.2 [10], for enabling the runtime prediction of timing 

behaviour, in the pure Predictive Simulation phase, the temporal logic model is used to 

validate the accuracy of the Digital Twins that provide the timing abstractions. 

The development of the two artifacts: the temporal model and the software smart agent, 

can lead to a set of situations, namely:  

1)  No faults in either of the artifacts: Ideal situation  

2)  Same fault in both artefacts: Fair prediction  

3)  Different faults between artifacts: a situation that leads to dishonest trust  

 

6.1.1. The Process 

To address these deviations, during pure Predictive Simulation, the behaviour of a smart 

software agent, subject to trust evaluation and the corresponding temporal logic model, 

is evaluated for consistency before being deployed. Then, during runtime within a 

simulation environment, before the execution of the smart software agent, the 

corresponding temporal model is fed with real-time data and executed much faster. 

During this phase, the specialized Temporal Digital Twins are executed with other 

interacting components of the software. Smart software can be either other software 

components, hardware resources, or system platforms. 

 

6.1.2.  Derivation of Specialized Timing Digital Twins 

The model is specifically targeted toward capturing untrusted deviations from the 

minimum and maximum delay of execution. For the experienced reader, it is evident that 

the model is based on a fragment of Linear Temporal Logic, but with a refined validation 

clause regarding the temporal connective. These models traditionally provide means for 

formally checking events' occurrence over time captured in traditional connectives of 

until and since; our models differ from general Linear Temporal Logic models in the 

sense that the temporal connective is limited in its future scope, and the validity of 

statements is to be contained in said scope. Besides this restriction for the temporal 

connective, the model provides customized predictive-simulation restrictions that check 

for future events. Overall, the model is highly expressive for timing considerations of 

behaviour evaluated within the Predictive Simulation paradigm. 
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For any simple statements p, q, ..., any complex statements A, B, ..., the unary connectives 

¬ (Negation), ♦ (In the future), and the binary connectives ∧ (Conjunction), ∨ 

(Disjunction), → (Entailment), the following recursive forming rules apply: 

a) For any simple statement p, p is a well-formed statement. Furthermore, if A = p, 

then A is well- formed statement. 

b) If A is a well-formed statement and ∗ is a unary connective, then ∗A is a well-

formed statement. 

c) If A and B are well-formed statements and ∗ a binary connective, then A ∗ B is a 

well-formed statement. 

d) There are no more well-formed statements than those defined by the clauses (a), 

(b) and (c). 

Simple and complex statements refer to any data generated by events. The array of 

connectives excludes any quantifiers connectives (e. g., ∀x, for all x) and focuses on the 

propositional fragment rather than the first or higher order ones. This helps keep the 

forthcoming model to a minimum, making its implementation easy as only simple 

operations would be required. It also reduces the computational complexity and makes 

its implementation in resource-constrained devices much easier. 

A model M is the structure M = 〈K, T, |=〉, where K is for instance a  set of robots a, b, 

c, ...; i. e., K = {a, b, c, ..}; each element of K, each robot, is a set in itself that includes a 

minimum and maximum time delay, m and h respectively, among other optional 

characteristics o1, o2, o3, ...; i.e., a = {m, h, o1, o2, o3, ...}. T is a set of temporal points t1, 

t2, t3, ... ; i. e., T = {t1, t2, t3, ...}. Finally, |= is a relation from K to the set of statements 

such that the following clauses apply: 

(1) a |= A ∧ B if and only if (iff) a |= A and a |= B 

(2) a |= A ∨ B iff a |= A or a |= B 

(3) a |= ¬A iff a 6 |= A 

(4) a |= A → B iff a |= ¬A or a |= B 

(5) a,t |= ♦A iff h = t + d1, m = t + d2 & ∃s, s ∈ T , with t < s, m < s < h, and a, s |= A, and 

∀u, u ∈T , if t < u < s, then a, u |= A. 
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 Advancements of Runtime Monitoring 

Considering the complexity of the ecosystem, problems caused by a single constituent 

(hardware or software) piece could either compromise the entire system or ecosystem 

or expose it to hidden faults, malicious behaviour, or vulnerabilities able to impact or 

propagate to the other interconnected parties.  

Thus, techniques for efficiently and effectively assessing and preventing anomalies and 

dangerous situations are required, especially when a new device, software, or system 

component is integrated into an existing IoT system or ecosystem.  

Among them, focus on using a runtime monitoring approach to detect, trace, and notify 

security and privacy threats during the development of the online execution [21].  

Monitoring approaches have been recognized in the literature as practical solutions that 

provide dynamic mechanisms for analysing functional and non-functional properties 

against well-stated conditions, such as contractual conditions for trust. 

Indeed, a monitor engine can collect events for different goal evaluations (strategic-

tactical-operational) and from various systems and system components (including 

sensors). The collected data are then used for inferring complex patterns, each 

associated with specific functional and non-functional properties. In practice, the 

monitoring activities involve the collection and analysis of different data sources (e.g., 

sensors, software, and hardware components or devices); the assessment of functional 

and non-functional properties relative to components or devices of the system of 

ecosystems, the detection of properties violation; the rising of specific alarms and the 

actuation of countermeasures if necessary. 

At the state of the practice, there are three main trends for detecting or predicting run-

time vulnerabilities or violations [21]. 

Using (previous) knowledge: In this case, previous data collections or past examples of 

failures are used to predict the output’s quality. The proposals are usually based on 

either deep learning approaches as in [23] or rely on a separate system to monitor and 

predict a target model’s failure (as in [19],  or on a perceptions system[20], or methods 

for prediction learning (as in [18]). 

Using input data: This group includes monitoring methods based on the analysis of the 

stream of input data coming from different sources, like, for instance, sensors, 

components, devices, systems, or models (as in [1][2][3]).  

Using confidence estimations: In this case, confidence learning and uncertainty 

estimation are used for the output evaluation (as in [5],[4], and [7]) 

Starting with the proposal provided in deliverable  D5.1 [11], the Runtime Monitoring has 

been refined and finalized as described in Section 3.2 to target the second trend. Indeed, 

Runtime Monitoring uses the input data for violation detection. In particular, the 

proposed infrastructure has been improved by considering aspects such as: 

● possibility of managing the heterogeneity of events producers.  

● possibility of interacting with different contexts and environments. 

● ability to manage multiple CEP (Esper, Drools) instances. 

● ability to deal with Multiple data storage (influxdb, MySQL). 

● possibility to communicate through a Rest interface and JSON messages. 

● mediation of messages through JMS2JSON mediator. 
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● possibility to scale the amount of CEP and events listener channels. 

● optimizing message processing and improving the quality of services by 

executing routing techniques to the most suitable CEP. 

● improving the possibility to scale monitoring instances using docker container 

deployment (ongoing activity). 

All these facilities have been developed according also to the principles specified in the 

Reactive manifesto28:  

● Responsiveness for guaranteeing a consistent quality of services.  

● Resilience: trying to manage all possible exceptions and interruptions that may 

occur during the execution to provide a highly available system. 

● Elasticity: allowing the number of complex event processors and channels 

communication scales to avoid central bottlenecks. 

● Message driven: all the messages are asynchronous and loosely coupled 

between components involved in the evaluation. 

 

  Runtime Monitor Innovation Aspects 

The BIECO project focuses on integrating monitoring facilities that provide a predictive 

engine for functional or non-functional property definitions, dynamic implementation of 

monitoring rules, and an adaptive approach for functional and non-functional property 

verification and assessment. 

As described in Section 3.2, the available monitoring infrastructures have been analysed 

to improve the Runtime Monitoring. In particular, the current implementation of the 

Runtime Monitoring leveraged some of the features proposed by existing solutions such 

as XDR (eXtended Detection and Response), EDR (Endpoint Detection and Response), 

and SIEM (Security Information & Event Management). 

The following details of the improvement concerning each of them are provided. 

 

7.1.1.  Leveraging the XDR 

Considering the XDR, the Runtime Monitoring leveraged the mechanism of the data-lake 

to make it more suitable for prompt analysis and reactions. XDR uses a comprehensive 

approach based on a data-lake paradigm for detection and response. It collects and 

secures data on activities on multiple levels and provides automated analysis of this 

data to detect threats. As a result, security analysts are equipped to conduct deeper 

investigations and adopt more rapid responses. The Runtime Monitoring implemented 

in BIECO leveraged the multiple levels of automated data analysis of the XDR by 

exploiting a federated set of Complex Event Processors (CEPs). Indeed, each CEP is 

dedicated to either a specific threat of functional or non-functional property verification 

or to analysing a particular type of data. The CEPs are strongly interconnected and able 

to exchange complex events. This allows evaluation to be executed faster than XDR to 

speed up the detection of emerging threats and possible malicious behaviour. 

 
28 https://www.reactivemanifesto.org/ 



    

Page 57 of 82 

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies 

7.1.2. Leveraging the EDR 

Considering the EDRs, Runtime Monitoring leveraged their countermeasures 

management by providing a more flexible and customizable mitigation approach. 

Indeed, Runtime Monitoring lets the users define their countermeasures to avoid 

stopping the runtime activities as a unique alternative.  

The customizable countermeasures stored in the BIECO Ontology can be associated 

with the Runtime Monitoring rules and applied during the monitoring activity in case of 

violation detection. 

Various countermeasures have been considered and are currently partially integrated 

into the Runtime Monitoring. The Complex Event Processor component triggers the 

countermeasures. This may involve the endpoint violating the expected behaviour. 

Ordered by increasing complexity, the countermeasure implementation is  

1) Notify a specific message in which logs and data of the detected violation are 

reported. 

2) Stop the execution of the component or device responsible for the violation (the 

SUA or one of the CE elements). 

3) Execute a countermeasure to mitigate the violation and bring the system back 

safely. This includes the possibility of integrating Smart Agents and artifacts into 

the probes. The Smart Agent can get a security issue as a counter effect: it can 

be considered a potential backdoor. Therefore, specific risk mitigation strategies 

should be adopted.  

 

7.1.3. Leveraging the SIEM 

Considering the SIEM solutions, the Runtime Monitoring includes mechanisms for 

gathering all the events generated across the System Under Audit (SUA). However, 

Runtime Monitoring leverages it to manage events not only for storage and post-analysis 

activity and for online validation of possible functional and non-functional property 

violations. Indeed, BIECO Runtime Monitoring exploits the knowledge about the correct 

SUA behaviour for evaluating the ongoing SUA behaviour to detect and notify threats 

promptly.  
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 Auditing Framework Execution  

As part of the BIECO Runtime phase execution, the Auditing Framework targets the 

monitoring of functional and non-functional properties of the System Under Auditing 

(SUA) and the Controlled Environment (CE). It involves the interactions between the 

System of System, the Controlled Environment, and the new component or device (the 

SUA).  

The BIECO Runtime phase lets the execution of the Auditing Framework in three different 

situations: 

a) CE is simulated, i.e., the CE is a simulation model able to represent the real 
environment. In this case: 

i) SUA can be simulated or real 
ii) Models or Stubs can be used to simulate the environment components in 

which SUA is executed. 
b) CE is executed in a testbed environment, i.e., the CE is a representation of the 

real environment but executed in a testbed framework to have the possibility to 
control the internal status of each CE component and to manage violations 
safely. In this case: 

i) The SUA is a real component 
ii) The CE components directly interacting with the SUA can be   

■ real components  
■ simulated models,  
■ executed using stubs.   

c) CE is executed in a real context, i.e., the CE and its components are executed in 
a real (operational) environment. In this case, 

i) The SUA is a real component. 
ii) The CE components directly interacting with the SUA are real 

components. 

As detailed more in deliverable D8.2 [17], the BIECO project provides four Use Cases 

(UCs) to validate the Auditing Framework activity. In particular, the use cases let the 

validation in the a) and b) situations described above. Specifically: 

UC 1 - ICT Gateway: provides an example of the CE being executed in a testbed 

environment (situation b)). In this case, the ICT gateway is the SUA, while the other CE 

components directly interacting with the SUA are executed using stubs. 

UC 2 - AI Investment Platform: provides an example of the CE executed in a testbed 

environment (situation b). In this case, SUA is a real component, and the CE components 

directly interacting with the SUA are real. 

UC 3 - EV Smart Microfactory: provides an example in which the CE is executed in a 

testbed environment (situation b)). In this case, SUA is a real component, and the CE 

components directly interacting with the SUA are real. 

UC 4 Coppelia: provides an example in which the CE is simulated (situation a)). In this 

case, the CE (i.e., the Autonomous Navigation) and the SUA (i.e., a Robot Unit 1) is 

simulated. 

The following sections describe the Auditing Framework execution on the UC 4. It 

focuses on the interaction between the four main components: the Auditing Framework 

GUI, the Ontology Manager, the Runtime Monitoring, and the Predictive Simulation.  
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 UC 4 Coppelia  

In UC 4, the Controlled Environment consists of a CoppeliaSim simulation representing 

the multi-robot navigation scenario for intralogistics as depicted in the overlay (see 

Figure 33). As better specified in deliverable D2.4, the System Under Audit is part of the 

robot, with probes being injected into the local planner component for navigation. Under 

normal conditions, both robots depicted in Figure 33 should follow the computed path 

while avoiding environmental objects and each other. 

 

 

Figure 33 Coppelia Simulator 

 

The user can start the auditing activity by interacting with the Runtime GUI29. As shown 

in  Figure 34, the Auditing Framework begins with selecting the Auditing Framework 
Setup features (see details in Section 3.5). The following sections detail the execution 

of each of them, starting from the first step, i.e., the Pre-setup Phase.  

Figure 34 Runtime GUI: Auditing Framework Setup  

 
29 Note that the Runtime GUI is the BIECO framework interface for the overall Runtime Phase management. 
The Auditing Framework GUI is instead the GUI specifically developed for the management of the Auditing 
Framework activities.  
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8.1.1. Pre-Setup Phase 

As shown in Figure 35, the activity allows the user to explore the classification and 

categorization of the different Systems of Systems, their devices, and components.  The 

Pre-setup Phase involves the collaboration between the Auditing Framework GUI (see 

Section 3.5) and the Ontology Manager (see Section 3.4). 

Figure 35  Auditing Framework GUI: Auditing Framework Pre-Setup  

 

In particular, the Auditing Framework GUI provides the user easy-to-use means for 

navigating the ontology. Indeed, the user selection forces a suitable ontology query to 

guide the definition of the rules to be used during the auditing stage (see Section 3.4). 

 

 

Figure 36 Auditing Framework GUI: SoSs selection  

 

As shown in Figure 36, a list of possible controlled environments is provided. In this case, 

Autonomous Navigation can be selected as the target CE for UC 4. Successively, the list 

of the CE devices is visualized through the Auditing Framework GUI to let the user select 

the target SUA. Figure 37 shows that Robot Unit 1 is chosen as the target SUA for the 

UC4 experiment. 
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Figure 37 Auditing Framework GUI: Device selection  

 

This selection forced the Auditing Framework GUI to query the Ontology Manager with 

the name of the components to be visualized. 

As soon as this data is available, the Auditing Framework GUI visualizes the components 

list to the user to let them select the suitable one. As shown in Figure 38, for UC 4, the 

selected component is Local Planner_1.   

 

 

Figure 38 Auditing Framework GUI: Components selection 
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As before, through the collaboration between the Auditing Framework GUI and the 

Ontology Manager, the visualization of the specific component skills is provided: 

connectivity and movement (see Figure 39). 

 

Figure 39 Auditing Framework GUI: Skills selection 

 

In UC 4, connectivity is the skill considered for experimentation because it is regarded 

as the most critical from the security point of view. 

Again, the collaboration between the Auditing Framework GUI and the Ontology Manager 

provided the user with the lists of the most suitable functional and non-functional 

properties for the selected SUA and CE.  

As shown in Figure 40, the properties are presented as high-level specifications and 

correspond to the ontology abstract rules (see Section 4.4). According to the ontology 

representation, the abstract rules are classified as standard rules, i.e., non-functional 

properties that can be assessed through the Runtime Monitoring, and Pure Predictive 

rules, i.e., functional properties that can be predicted using Digital Twin in the Predictive 

Simulation. 

As shown in Figure 40 in UC 4, one of the standard rules that the user could select is the 

“Maximum number of established simultaneous connections.” The rule targets the 

mutual interaction between Local Planner_1 and Autonomous Navigation. 

 

 

Figure 40 Auditing Framework GUI: Select/adapt abstract rules selection 
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As shown in Figure 41, the rule boundaries can be established either using the Blueprints 

data collected during the design time phase execution or can be provided by the user.  

In both cases, the values are managed through the ontology and remain valid for all 

runtime execution. 

Considering the pure predictive rules instead, in UC 4, one of the properties considered 

is the “Expected communication pattern through an ordered list of message types” (see 

Figure 40). This rule is visualized as an Ontology Manager query and focuses on the 

behavior of the Local Planner_1. It requires that the Digital Twin predicts and forecasts 

to monitor the specific message order.  

The last interaction between the Auditing Framework GUI and the Ontology Manager 

concerns the definition of boundaries. Indeed, if not provided by the Blueprint data 

analysis, the user needs to insert the boundaries for the selected abstract rules as the 

last step. As shown in Figure 41, the value of the “Maximum number” is set to 1  for the 

standard rule selected.  

Figure 41 Auditing Framework GUI: Refine Abstract Ruleset 

This concludes the Pre-Setup phase and starts preparing the following steps described 

in the following sections.  

 

8.1.2. Offline Activities 

When the pre-set-up phase ends, the interaction between the Auditing Framework and 

the Runtime GUI provides the user with downloadable artifacts helpful in preparing for 

the following auditing activities. 
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Figure 42 Auditing Framework GUI: Refine Abstract Ruleset 

 

As shown in Figure 42, the artifacts include   

● A set of guidelines for using the DSL language and deriving the Digital Twin.   

● A jar file of the executable probe. 

● A set of guidelines helpful in instrumenting the code.  

The guidelines for instrumenting both the SUA and CE are provided in Appendix A. 

Using the above information, the user can work offline to prepare the required Digital 

Twin and instrument the Local Panner_1, Controlled Environment, and Digital Twin itself 

with suitable probes.  As an example, Figure 43 shows the probe inserted into Local 

Panner_1.  

Figure 43 Auditing Framework GUI: Probe Injection 

 

The development of the models for the Digital Twins is provided using the DSL (see 

Figure 44). For creating the executable DT, the user creates a file with the extension that 

refers to the language (.nv3). Automatically the pop-out menu enables the usage of pre-
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defined structures like packages and entities. The user then starts to write the behaviour 

by structuring it accordingly.  

In BIECO UC 4, the user defines the behaviour of the Local Planner that guides the 

navigation of the robot. With every build, the code for the executable models is 

generated.  The navigation module interacts with other entities. This interaction needs 

to be specified in the behavioural description.  

Interactions are captured in dedicated constructs that gather information being 

exchanged. This information is later encapsulated within specific events monitored for 

conformity with the execution in the real world or controlled environment. Decision 

events will be those events that cross the architectural boundaries of an internal 

component, whereas events describe normal input/output interaction with components 

within the same architectural structure.  In the end, the complete behaviour is declared, 

and corresponding models are created. These models are then packed as .jar files and 

executed in a Predictive Simulation environment. 

 

 

Figure 44 Digital Twin Eclipse Profile: Digital Twin development 

 

8.1.3. Finish Pre-Setup 

Through Runtime GUI, the user can finalize the auditing activity pre-setup phase. As 

shown in Figure 45, the Auditing Framework continues with the Finish setup phase step.  
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Figure 45 Auditing Framework GUI: Finish Pre-Setup phase 

 

In these steps, the user first uploads the prepared Digital Twin, then finalizes the well-

defined rule. This activity involves the Auditing Framework GUI and the Ontology 

Manager components. It focuses on the identifiers of the probes injected into SUA, 

Digital Twin, and Controlled Environment. 

In Figure 46 and Figure 47, examples taken from the UC4 are shown. In this case, for the 

rule named “Maximum number of established simultaneous connections,” the user 

inserts the identifier “SUA_PROBE”; for the pure predictive rule called “Expected 
communication pattern through an ordered list of message types” (see Figure 40) the 

user inserts  “ DT_PROBE.”  

  

 

Figure 46 Auditing Framework GUI: Standard Well-defined rule refinement 

 

Once finalized, the well-defined rules are translated into instantiated rules and provided 

to the Runtime Monitoring component for execution. 
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Figure 47 Auditing Framework GUI: Pure predictive Well-defined rule refinement 

 

This ends the pre-setup phase, and the control goes back to the Runtime GUI to start the 

core of the Auditing Framework activity. 

 

8.1.4. Start Auditing Framework 

As soon as the user presses the “Start Auditing Framework” button in the Runtime GUI, 

a start command is sent by the Orchestrator to the Auditing Framework to begin the 

collaboration between the Runtime Monitoring and the Predictive Simulation 

Component. The start button caused the Runtime Monitoring to pass from the “online” 

state to “running” status. In this stage, the Predictive Simulation component is activated 

only in case one or more pure predictive rules have been selected. Otherwise, only the 

Runtime Monitor component is started. 

In receiving the start command described in Section3.2, the Runtime Monitoring raises 

the Complex Event Processor and accepts the instantiated rules defined in the Pre-Setup 

phase. Then, it compiles the rules into meta-rules and Instantiated rules.  

At this point, the Runtime Monitoring starts listening to the events sent by the probes on 

a dedicated channel. As examples,  Figure 48 and Figure 49 show the SUA_Probes 

injected in the Local planner_1 to send events related to velocity and score, respectively.  
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Figure 48 Trace of Connection message sent by SUA_Probe 

 

In parallel, listening from the same channel, the Predictive Simulation, if previously 

activated, receives the events useful for fed abstract models.   

These are executed faster than the Controlled Environment and can therefore provide 

predictions about trusted behaviour.  

Considering the “Expected communication pattern through an ordered list of message 
types” rule, Figure 50 provides the DT_probe injected into the Digital Twin. It includes a 

DTForecast event containing a Digital Twin prediction regarding a velocity and score 

events sequence.  

 

 

Figure 49 Trace of Velocity messages sent by SUA_Probe 

 

Using the data of the DTForecast event, the monitor instantiates the meta-rule into a new 

rule and injects it into the CEP.  
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Figure 50 Trace of forecast messages sent by DT_Probe 

 

As shown in  Figure 51, the boundary value for the period validity of the new rule is also 

provided. In this case, the boundary is set to 5 seconds, as established in the DTForecast 

event.  

 

 

Figure 51 Trace of rule self-generated by the Runtime Monitoring   

 

On the Runtime Monitoring side, it continuously receives the SUA_probe events 

containing Score, Velocity, and connection status and checks the set of instantiated 

rules. Predictive Simulator and Runtime Monitoring continue collaboration till the user 

decides to stop the auditing activity or as soon as a rule violation is experienced. 
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8.1.5. Validation Scenario 

In the UC4 execution, a malicious code attack has also been simulated for validation 

purposes. Thus, a malicious code injection has been performed through the UI. As 

shown in Figure 52, this caused an increase in the connections between the Local 
planner_1 and the Global planner.   

 

 

Figure 52 CoppeliaSimulator: Execution of a malicious code attack 

 

Consequently, as in Figure 53, the Runtime Monitoring observed the violation of the 

“Maximum number of established simultaneous connections” rule, immediately notified 

the BIECO platform, and triggered the associate countermeasure. In case the Auditing 

Framework activity was stopped, the system's dynamic configuration performed offline.  

 

 

Figure 53 Runtime Monitoring Logger: Trace of rule violation raised 
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Once the system has been reconfigured, another round of the Auditing Framework 

execution has been performed. As shown in Figure 54, the system returned to a safe and 

trusted condition. 

 

 

Figure 54 Coppelia Simulator: System turns back to a safe condition  
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 Conclusions  

The deliverable reported the Work Package 5 activities performed over the second years 

(M13 to M24) to improve and implement the Auditing Framework. Thus, it provided 

technical details about implementing the overall framework and its components. 

Additionally, it presented the (technological and research) advancements concerning the 

previous deliverable (D5.1 [11]). The validation of the Auditing Framework with the UC 4 

- Coppelia has also been described.  

The deliverable fulfilled all the future works listed in the previous deliverable, focused on 

the improvements of the proposed ontology, the implementation of the Auditing 

Framework and its components, the integration of the Blueprints, and the validation of 

the through the BIECO Use Cases. 

As future general works, the following activities will be considered and reported in 

deliverable D5.3.  

1. Implementation of the final version of the Auditing Framework and its 

components. 

2. Validation of the Auditing Framework with all the BIECO Use cases. 

3. Exploitation and dissemination of the Auditing Framework. 

As specific future works, the following will be considered: 

For the Runtime Monitoring:  include features for using smart agents instead of the 

proposed probes. The new probe should be capable of sending formal events, receiving 

notifications from the CEP, and activating countermeasures. Therefore, the probe could 

be used to change its host's behaviour while running to reduce the risk of the detected 

violation. Solutions to be analysed are lowering a transmission rate to avoid collision or 

congestion; or executing an alternative activity during the system running. 

For the Ontology Manager: Finalize the components' implementation by identifying the 

alternative open-source tools to be used and customized. This activity will also consider 

interoperability and extensibility to improve the overall implementation performance. 

For the Predictive Simulation: explore how autoencoder-based classification of 

situations may be used for training and using models. Specific attention will be 

dedicated to investigating which requirements a learnt model should fulfil to be applied 

for Predictive Simulation and which opportunities and limitations exist.  Additionally, the 

different possibilities for the DT derivation will be considered: (1) in-house, in parallel 

with the source code of the smart software agent by starting from the same 

specifications, (2) from the abstract behaviour of DTs, the source code of the smart 

software agent can be derived, or (3) in house, from the source code, specialized 

abstract models can be derived. In this last case, the possibility of extracting from AST 

(Abstract Syntax Tree) and CFG (Control Flow Graph) the meaningful information to be 

included in the definition of SDT (specialized Digital Twins) will be considered.  
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Appendix A. Runtime Monitoring Instrumentation Guidelines 

 

A. Introduction 

This document provides the methodologies that can be used for instrumenting software 

to be monitored through the Auditing Framework. 

The instrumentation relies on the concept of Probe, which is a library that sends a 

selected set of data (like methods execution, variable value, and execution time values) 

to the Auditing Framework. The Runtime Monitoring receiving this data, and through 

analysis driven by rules, will be able to infer behavioural patterns or check the 

conformance of functional and non-functional properties. 

To enhance compatibility and security, the System Under Audit (SUA) can be 

instrumented with Probes in several ways proposed in the following. A library that 

contains software artifacts for the instrumentation is also provided. 

 

A.1 Overview 

The simpler version of the probe in BIECO is represented by a piece of code capable of 

sending events according to a specific format.  

This probe can send events regularly, or every time a specific situation occurs. An 

example of this probe is described in the Section A.4. 

The following guidelines provide information for executing the Instrumentation process 

depicted in the figure below. 

 

 
Figure 55 Code Instrumentation process  

 

The user can choose among a bouquet of instrumentation mechanisms: 

• Input/Output captured by specific probe: through this approach, the user must 

instrument/adapt its code with a mechanism that will provide the information 

needed for monitoring activities in a particular port/socket/channel. Once 
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offered, on the same port, an artifact capable of converting those raw data to the 

format understandable by the Runtime Monitoring must be configured to 

transform and send the data to the Runtime Monitoring. The artifact capable of 

reading from a stream and converting to Runtime Monitoring format is provided 

within the released library. 

• Message-Based notification (made by the user): another approach lets the user 

instrument their device (or CE) with their mechanism to send messages directly 

to the message broker exposed by Runtime Monitoring. In this case, messages 

should be structured according to a predefined format and protocol. Details are 

provided in the Event Description section. 

• Mentors probe code injection: in this case, the user can use a pre-build artifact 

provided in conjunction with these guidelines. For Java, this is represented by a 

jar library that can be directly used within the device (or CE) code for 

implementing event-message notifications. 

• Automatic instrumentation (ext. service): The latter option is related to the 

possibility of exploiting an external service for device (or CE) instrumentation that 

can wrap components and trigger actions. At the same time, specific methods 

are invoked during the execution. In such a situation, overload risk should be 

evaluated because it could bias performances/communications. However, the 

message’s structure must comply with what was described in Appendix B. 

 

A.2 Input/Output Captured by the Specific Probe 

The Input/output captured by a specific probe mechanism allows instantiating an 

external agent that reads data from a serial port, or a socket exposed by the device or 

system under audit on which it writes data useful for the monitoring activities. 

An example of the data that can be sent on this port is shown in the following example: 

#START#TIMESTAMP:12123;EVENTNAME:theName;EVENTDATA:data#END# 

The external agent receiving a message like this will take care to convert it into the 

format described in the Appendix B and forward it to the monitoring platform. 

This approach has been proposed by considering low-power devices or devices 

developed with software language that does not allow the creation of HTTP connections, 

rest, or MQTT channels for providing information directly to the Runtime Monitoring. 

Depending on the implementation of this approach, some delays in notifications may be 

encountered; for this reason, developers must evaluate the efficiency of this approach. 

The following Section proposes an example of this type of probe. 

We are supposed to have a GPS device that provides data captured on a serial port. 

The probe software will: 

● connect on the GPS device com port. 

● capture the raw data from the GPS device (in NMEA format). 

● filter the part of interest (latitude and longitude). 

● encapsulate it into a ConcernBaseEvent object message. 

● sent it to the monitoring for the analysis. 
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package it.cnr.isti.labsedc.concern; 

 

import java.io.BufferedReader; 

import java.io.IOException; 

import java.io.InputStreamReader; 

import java.io.OutputStream; 

import javax.jms.Connection; 

import javax.jms.ConnectionFactory; 

import javax.jms.JMSException; 

import javax.jms.MessageProducer; 

import javax.jms.ObjectMessage; 

import javax.jms.Session; 

import javax.jms.Topic; 

import org.apache.activemq.ActiveMQConnectionFactory; 

import com.fazecast.jSerialComm.SerialPort; 

import it.cnr.isti.labsedc.concern.cep.CepType; 

import it.cnr.isti.labsedc.concern.event.ConcernBaseEvent; 

 

public class GPSProbe { 

 static String deviceGPS = "ttyACM0"; 

 static SerialPort comPort; 

 static OutputStream out; 

 static String brokerUrl = "tcp://0.0.0.0:61616"; 

 public static String lastGPSpos = null; 

  

 public static void main(String[] args) throws InterruptedException { 

  loopThreadGPS(); 

 } 

 

 private static void loopThreadGPS() { 

 try {  

  Process p = Runtime.getRuntime().exec("cat /dev/" + deviceGPS); 

  new Thread(new Runnable() { 

      public void run() { 

       System.out.println("GPS Probe started");          

          BufferedReader input =  

                           new BufferedReader(new InputStreamReader(p.getInputStream())); 

          String line = null; 

          String[] results; 

          try {   

              while ((line = input.readLine()) != null)  

               if (line != null && line.startsWith("$GPGLL")) { 

               results = line.split(","); 

               if (results[6].compareTo("A") == 0) { //gps signal is valid 

               testProbe(brokerUrl, "DROOLS-InstanceOne", "vera",  

                                 "griselda", "Robot-TWO", results[1]+","+results[3]); 

               } 

                     } 

          } catch (IOException e) { 

              e.printStackTrace(); 

          } 

      } 

  }).start(); 

 

  p.waitFor(); 

  } catch (InterruptedException | IOException e1) { 

   e1.printStackTrace(); 

  } 

 }  

  

 public static void testProbe(String brokerUrl,  

                                     String topicName,  
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                                     String username,  

                                     String password, 

                                     String eventData, 

                                     String eventName) { 

 try { 

      ConnectionFactory = new  

                     ActiveMQConnectionFactory(username, password, brokerUrl); 

      Connection = connectionFactory.createConnection(); 

             Session = connection.createSession(false,Session.AUTO_ACKNOWLEDGE); 

             Topic = session.createTopic(topicName); 

             MessageProducer producer = session.createProducer(topic);      

      ObjectMessage msg = session.createObjectMessage(); 

    

       ConcernBaseEvent<String> event = new ConcernBaseEvent<String>( 

    System.currentTimeMillis(),  

    new Exception().getStackTrace()[1].getClassName(), 

    "AuditingSystem-Monitoring", "sessionA",  

    "checksum", 

    eventName, eventData, CepType.DROOLS, false,"extension"); 

        msg.setObject(event); 

              producer.send(msg); 

 } catch (JMSException e) { 

  e.printStackTrace(); 

 } 

    } 

}  

 

 

Figure 56  Serial port probe example   

 

 A.3 Message-Based Notification (Made by the User) 

The instrumentation based on Message-Based notification made by the user relies on 

the user self-implementation of the message notification mechanism.  

The main constraint that users must respect for executing this approach are: 

● create a secure connection to the message broker, for example, 

tcp://BIECO.holisun.com:61616 using the security credentials provided. 

● create an object Event according to what is described in Appendix B. 

● mark the timestamp of this event once the events in the system under audit 

occurs. 

● send messages using a mechanism that relies on JMS or through JSON format 

to the endpoint on which the monitoring is listening for post messages (see 

Section 3.2) 

To clarify the mechanism of connection/disconnection and sending of a message, the 

developer can look at the code of SUAProbe, DTProbe, or the file ConcernAbstractProbe 

provided in the package. 

 

A.4 Mentors Probe Code Injection 

In conjunction with these guidelines, a jar artifact containing the code of a generic probe 

that can be used for the purpose is provided. 
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Opening the mentorsProbe.jar file as an archive into the folder  

/it/cnr/isti/labsedc/concern, you can find a set of folders that defines the structure of 

the probe, as shown in the figure below. 

 
Figure 57  example folder  

 

Two executable Java classes are reported in the example folder: SUAProbe and 

DTProbe. 

SUAProbe represents an executable probe implementation related to a generic system 

under auditing; it inherits the constructor for the class ConcernAbstractProbe that 

contains the generic behaviour of a probe. 

The usage of the SUAProbe example is shown in the example below: 

 

SUAProbe aGenericProbe = new SUAProbe( 

  ConnectionManager.createProbeSettingsPropertiesObject( 

      "org.apache.activemq.jndi.ActiveMQInitialContextFactory", 

 "tcp://localhost:61616","system", "manager", 

 "TopicCF","DROOLS-InstanceOne", false, "SUA_probe",  

 "it.cnr.isti.labsedc.concern,java.lang,javax.security,java.util", 

 "vera", "griselda")); 

Figure 58  SUA probe example   

 

Once the object is generated, the method inherited from the class 

ConcernAbstractProbe can be invoked for sending a generic ConcernBaseEvent<T>. 

The method is called sendEventMessage contained within ConcernAbstractProbe. 
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protected void sendEventMessage( 

ConcernBaseEvent<?> event, boolean debug)  

throws JMSException,NamingException { 

  if (debug) { 

   DebugMessages.print(System.currentTimeMillis(), 

                              this.getClass().getSimpleName(), 

     "Creating Message "); } 

  try 

  { 

  ObjectMessage messageToSend = 

                        publishSession.createObjectMessage(); 

  messageToSend.setJMSMessageID(String.valueOf(MESSAGEID++)); 

  messageToSend.setObject(event); 

  if (debug) { 

   DebugMessages.ok(); 

   DebugMessages.print(System.currentTimeMillis(),                                                              

this.getClass().getSimpleName(), 

    "Publishing message  "); } 

  mProducer.send(messageToSend); 

  if (debug) { 

   DebugMessages.ok(); 

   DebugMessages.line(); } 

  } catch (JMSException e) { 

   e.printStackTrace(); 

  } 

 }  

Figure 59 ConcernAbstractProbe   

 

Through these facilities, the user may decide to use the generic send events mechanism 

or to implement its own. 

In the rest of the SUAProbe file, some methods have been presented to show the 

possibility of sending a specific type of event directly. In this case, the event Score, 

Velocity, Connection, and Disconnection related to the UC 4 already described have been 

presented:  

● sendVelocityMessage(SUAProbe aGenericProbe, String speed). 

● sendScoreMessage(SUAProbe aGenericProbe, String score). 

● sendConnectionEventMessage(SUAProbe aGenericProbe). 

● sendDisconnectionEventMessage(SUAProbe aGenericProbe). 

Those method calls, or similar ones personalized according to the monitoring needs, 

must be placed in correspondence with the real event occurrence within the System 

Under Auditing. 

The libraries allow the developer to implement all the connection and sending actions by 

itself. Figure below provides an example. 

All the actions needed for establishing the connection are executed manually, creating a 

producer (the object capable of sending the message on a channel) and the sending 

actions. 
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package it.cnr.isti.labsedc.concern; 

 

import javax.jms.Connection; 

import javax.jms.ConnectionFactory; 

import javax.jms.JMSException; 

import javax.jms.MessageProducer; 

import javax.jms.ObjectMessage; 

import javax.jms.Session; 

import javax.jms.Topic; 

import org.apache.activemq.ActiveMQConnectionFactory; 

import it.cnr.isti.labsedc.concern.cep.CepType; 

import it.cnr.isti.labsedc.concern.event.ConcernBaseEvent; 

import it.cnr.isti.labsedc.concern.event.ConcernNetworkEvent; 

 

public class Probe { 

  

   public static void testProbe(String brokerUrl, String topicName,  

  String username, String password,  

  String eventData, String eventName, 

  String extension, String checksum, 

  String sessionID, String sender, 

  String destination) { 

      try { 

 ConnectionFactory = new  

             ActiveMQConnectionFactory(username, password, brokerUrl); 

 Connection = connectionFactory.createConnection(); 

        Session = connection.createSession(false,Session.AUTO_ACKNOWLEDGE); 

        Topic = session.createTopic(topicName); 

       MessageProducer producer = session.createProducer(topic);      

 ObjectMessage msg = session.createObjectMessage(); 

 

 ConcernBaseEvent<String> event = new  

               ConcernBaseEvent<String>( 

   System.currentTimeMillis(),  

   sender, destination, sessionID,  

   checksum, eventName, eventData, 

   CepType.DROOLS,  false,extension); 

        msg.setObject(event); 

 producer.send(msg); 

 } catch (JMSException e) { 

  e.printStackTrace(); 

 } 

    } 

} 

Figure 60 Simple Probe  

 

A.5 Automatic Instrumentation (ext. Service) 

The Automatic instrumentation (ext.service) mechanism relies on an external 

instrumentation service for capturing events occurring in the device (or CE).  

Some (free) services provide features like wrapping components or triggering specific 

calls when a method is called/executed.  Those services will put an overload to the 

Device under test and may bias performances/communications. 

Information captured by probes is then sent to the Runtime Monitoring using the 

mechanism provided in Input/output captured by a specific probe section. In Figure 



    

Page 81 of 82 

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies 

below shows an example of one of the possible tools that can be used to instrument 

your code: JProfiler30. 

 

 

Figure 61 Specific instrumentation tool  

 

B. Event Description  

The figure below details the representation of an event compatible with the complex 

event processor deployed within the BIECO Auditing Framework. 

 
30 https://www.ej-technologies.com/products/jprofiler/overview.html 
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Figure 62 Specific BIECO event  

The interface Event proposes a set of parameters and methods signatures for setting it 

up. 

The ConcernAbstractEvent abstract class represents a usage of the event with the 

minimum subset of parameters needed. 

Those parameters can be extended with the classical extension procedure of the Java 

programming language, allowing users to include more parameters that can be 

interesting for the analysis. In the ConcernBaseEvent example, the property parameter 

has been included to extend the ConcernAbstractEvent. 

Below, more details about each field of the event object are provided. 

● timestamp: the instant the event is generated on the been captured.  

● senderID: the identifier of the sender. 

● destinationID: the identifier of the receiver (for example, monitoring). 

● sessionID: the identifier of the monitoring session. 

● checksum: the computed Cyclic Redundancy Check of the payload. 

● name: the name of the probe that is sending the data. 

● data: the payload to notify, the format can be set up according to the parameter 

T of the ConcernBaseEvent<T>. 

● cepType: the identifier of the Complex Event Processor (CEP) that should 

process this data: possible types are ESPER, DROOLS, and Enum CepType is 

available. 

● consumed: a parameter used by the CEP for analysing the events. 


