

This project has received funding from the European Union´s Horizon 2020 Research and Innovation

Programme under Grand agreement No. 952702.

Deliverable 5.2

First version of the simulation environment and

monitoring solutions

Technical References

Document version : 1.0

Submission Date : 31/08/2022

Dissemination Level

Contribution to

:

:

Public

WP5- Methods and Tools for Auditing ICT Ecosystems

Document Owner : CNR

File Name

Revision

:

:

BIECO_D5.2_31.08.2022_V1.0

3.0

Project Acronym : BIECO

Project Title : Building Trust in Ecosystem and Ecosystem Components

Grant Agreement n. : 952702

Call : H2020-SU-ICT-2018-2020

Project Duration : 36 months, from 01/09/2020 to 31/08/2023

Website : https://www.BIECO .org

Ref. Ares(2022)6052505 - 31/08/2022

Page 2 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Revision History

REVISION DATE
INVOLVED
PARTNERS

DESCRIPTION

0.0 02/02/2022 CNR TOC

0.1 30/03/2022 CNR TOC revision

0.2 27/04/2022 CNR Draft content

0.3 19/05/2022 CNR Revision of the content

0.4 10/06/2022 CNR Sections editor assignment

0.5 22/06/2022 CNR Sections 2, 3.2, and 9.4 first version

0.6 27/06/2022 CNR+UNI Section 3.4 and Section 4 first version

0.7 28/06/2022 IESE Content Added

0.9 29/06/2022 HS GUI content first draft

1.0 29/06/2022 CNR Runtime monitor performance evaluation

1.1 04/07/2022 CNR Section 8

1.2 06/07/2022 UMU Section 2.2

1.3 07/07/2022 GRAD Subsection 6.1

1.4 07/07/2022 CNR
Refinement of sections 1 introduction, 3.4
Ontology Manager, 7 Advancement about
Runtime Monitoring

1.5 08/07/2022 IESE

Description of the Predictive Simulation Rest
Interface (Chapter 3.3.3)
Future Work for Predictive Simulation w.r.t.
simulation models added.

1.6 08/07/2022 CNR Executive Summary

1.7 11/07/2022 UNI
Revision section 3.4. Update sub-section 3.4.3
Update Acronymous list and section 9

1.8 15/07/2022 CNR
Overall check. Revision Section 3.4. Section 4,
Section 8. and Section 9.

1.9 18/07/2022 IESE

Revision of section 1.1 challenges, Section 3.3
Predictive Simulation implementation, Section 6
advancement of the Predictive Simulation
Section 9 Future work

2.0 20/07/2022 CNR Final version for internal review

2.1 22/08/2022 CNR UMU review comments integration.

2.2 22/08/2022 CNR
GRAD review comments integration and
acronyms list finalized

2.3 25/08/2022 UNINOVA Coordinator review and Edition

3.0 31/08/2022 UNINOVA Coordination Finalization and Submission

List of Contributors

Deliverable Creator(s): Antonello Calabrò (CNR), Said Daoudagh (CNR), Felicita Di

Giandomenico (CNR), Eda Marchetti (CNR), Rudolf Erdei (HS), Ana Inês Oliveira (UNI),

Filipa Ferrada (UNI), Sara Matheu (UMU), Emilia Cioroaica (IESE), Ioannis Sorokos (IESE),

Eva Sotos (GRAD).

Reviewers: Adrian Sanchez Cabrera (UMU), Eva Sotos (GRAD), Sanaz Nikghadam-Hojjati

(UNINOVA), José Barata (UNINOVA)

Page 3 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Disclaimer: The information in this document is subject to change without notice.

Company or product names mentioned in this document may be trademarks or

registered trademarks of their respective companies.

All rights reserved.

The document is proprietary of the BIECO consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written

agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not

liable for any use that may be made of the information contained herein.

BIECO project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
952702.

Page 4 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Acronyms
Acronym Term

API Application Programming Interface
BIECO Building Trust in Ecosystems and Ecosystem Components
CE Controlled Environment
CEP Complex Event Processor
ConSert Conditional Safety Certificate
DSL Domain Specific Language
DT Digital Twin
EDR Endpoint Detection and Response
GUI Graphical User Interface
ICT Information and Communications Technology
IETF Internet Engineering Task Force
JMS Java Message Service (JMS)
JSON JavaScript Object Notation
KB Knowledge Base
MENTORS Monitoring ENvironmenT fOR Sos
MONTOLOGY MONitoring onTOLOGY
MQTT Message Queuing Telemetry Transport
MUD Manufacturer Usage Description
OWL Web Ontology Language
POM Project Object Model
RDF Resource Description Framework
REST REpresentational State Transfer
RtE Runtime Evidence
SIEM Security Information & Event Management
SoS System Of Systems
SUA System Under Audit
UC Use Case
XDR eXtended Detection and Response
XML Extensible Markup Language

Page 5 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Executive Summary

Work Package 5 goal is to define and develop techniques, methods, and tools supporting

the audit activity in the BIECO project. Thus, the Auditing Framework has been developed

as a constituent of Work Package 5 and integrated into the BIECO Runtime phase. The

Auditing Framework exploits the field data produced by devices, components, sensors,

services, Systems of Systems (SoS), or ecosystems involved in the auditing activity to

predict and assess functional and non-functional properties and increase the overall

ecosystem's trustworthiness.

This document reports the Work Package 5 activities performed to improve the

Deliverable D5.1 preliminary framework proposal and realizes the current first version of

the Auditing Framework and its main components. Specifically, the deliverable targets:

• The Runtime Monitoring is responsible for collecting on-the-field data events and

assessing an established set of functional and non-functional properties.

• The Predictive Simulation provides the Runtime Monitor with suitable predictions

about future systems or components’ behaviours.

• The Ontology Manager manages the knowledge about the different Ecosystem

entities (such as devices and components) and the specification process of the

monitoring rules.

• The Auditing Framework GUI manages the interaction with the user. It also

provides features for the Auditing Framework setup and execution and data

storage and retrieving.

The deliverable reports also the research advancements performed during the project's

second year (from M13 to M24) regarding the methodologies and features implemented

in Auditing Framework components and its validation through one of BIECO's available

use cases.

Considering the Work Package 5 objectives (as reported in the BIECO DoA), the

deliverable targets the implementation of the first version of the Auditing Framework

that enables:

1. The definition of the executable simulation models and the parameters against

which the behaviour of the ICT systems and their interacting actors are judged

as trustworthy or not.

2. The definition of monitoring methodologies and tools for detecting malicious

behaviours of ICT systems and their interacting actors and assessing the validity

of the simulation models.

3. The definition of monitoring tools able to validate the simulation decisions

through real-time data of systems sensors and actuators.

In addition, to improve the usability of the Auditing Framework and the knowledge

management, the following (extra DoA) objectives have been added and targeted during

the second year of the BIECO project:

4. Definition of a dynamic, user-friendly, and adaptable methodology for specifying

functional and non-functional properties and their management.

5. Definition of holistic support for knowledge management and data sharing within

the overall BIECO Runtime Phase.

6. Definition of the Auditing Framework GUI for improving the usability in

customizing the Auditing Framework and managing its executions.

Page 6 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

The activities reported in this deliverable are strictly connected with Work Packages 3,

4, 6, 7, and 8.

Targeting reviews’ comments, indications, and possible improvements

Considering the BIECO General Project Review Consolidated Report, we provide

clarifications about the Work Package 5 comments in the following.

R.R.#1: Review Report - Section 1. 3. - Auditing System Framework - page 4/17

Concerning Auditing Framework execution, in the Introduction, Section 2.2, and Section

8, the deliverable clarifies that execution of the Auditing Framework can be performed

considering three different situations:

a. using a simulation of the Controlled Environment (CE).

b. using a testing environment (or forensic reconstructions) in which the CE

components can either be executed in a real context, simulated models, or

stubs.

c. using operational systems where the CE components and the SUA are

executed in the operating (real) environment.

R.R.#2: Review Report - Section 1. 3. - Auditing System Framework - page 4/17

Concerning the Use of Extended MUD file, Section 2.2.1 details the use of the Extended

Mud file.

R.R.#3: Review Report - Section 1.5. - 5. (Vulnerability detection and forecasting tool)-
page 5/17

The Introduction, Section 2.2, and Section 8 of the deliverable clarify that the Auditing

Framework can be executed considering different situations (see R.R.#1 above). The

provided implementation can be executed at runtime in the production environment

without adaptations or improvements.,

R.R.#4: Review Report - Annex 1- D5.1- page 13/17

This deliverable provides the technical description of the Auditing Framework and details

about its validation. In particular:

• in Section 2 provides the improved Auditing Framework architecture and details

about the Blueprints management.

• Section 3 presents the Auditing Framework (and its components)

implementation. It also details the GitHub repository, technologies used, and

licenses needed.

• Section 8 presents the Auditing Framework execution on one of the BIECO use

cases.

Page 7 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Project Summary

Nowadays, most ICT solutions companies develop require the integration or

collaboration with other ICT components, which third parties typically create. Even

though these kinds of procedures are essential to maintain productivity and

competitiveness, the fragmentation of the supply chain can pose a high-risk regarding

security, as in most cases, there is no way to verify if these other solutions have

vulnerabilities or if they have been built considering the best security practices.

Companies must change their mindset to deal with these issues, assuming an "untrusted

by default" position. According to a recent study, only 29% of IT businesses know that

their ecosystem partners are compliant and resilient to security. However, cybersecurity

attacks have a high economic impact, and it is not enough to rely only on trust. ICT

components need verifiable guarantees regarding their security and privacy properties.

It is also imperative to detect vulnerabilities from ICT components more accurately and

understand how they can propagate over the supply chain and impact ICT ecosystems.

However, it is well known that most of the vulnerabilities can remain undetected for

years, so it is necessary to provide advanced tools to guarantee resilience and better

mitigation strategies, as cybersecurity incidents will happen. Finally, it is essential to

expand the horizons of the current risk assessment and auditing processes, considering

a much broader threat landscape. BIECO is a holistic framework that will provide these

mechanisms to help companies to understand and manage the cybersecurity risks and

threats they are subject to when they become part of the ICT supply chain. The

framework, composed of tools and methodologies, will address the challenges related

to vulnerability management, resilience, and auditing of complex systems.

Page 8 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Partners

Disclaimer

The publication reflects only the author´s view and the European Commission is

not responsible for any use that may be made of the information it contains.

Page 9 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Table of Contents

Technical References ... 1

Revision History... 2

List of Contributors ... 2

Acronyms ... 4

Executive Summary... 5

Project Summary ... 7

Partners .. 8

Disclaimer .. 8

Table of Contents .. 9

List of Figures .. 12

 Introduction .. 14

 Auditing Framework Challenges 15

 Roadmap 17

 Auditing Framework in the BIECO Runtime Phase .. 18

 Using Inferred knowledge Auditing Framework’s main components 18

 Auditing Framework Blueprints 19

2.2.1. Extended MUD File ... 19

2.2.2. Conditional Safety Certificate (ConSerts) .. 21

 Auditing Framework Implementation .. 23

 Auditing Framework Implementation Details 23

3.1.1. Communication Flows Intra-Nodes/Components 23

3.1.2. Technologies Used ... 23

3.1.3. Licenses .. 23

3.1.4. Github Details Repository .. 23

 Runtime Monitoring 24

3.2.1. Internal Artifact’s Structure ... 24

3.2.2. Communication Flows Inter Artifacts ... 30

3.2.3. Exposed Interfaces .. 30

3.2.4. Exchanged Data Structure ... 31

3.2.5. Produced Data .. 32

3.2.6. Technologies Used ... 33

3.2.7. User Installation Guidelines ... 33

Page 10 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

 Predictive Simulation 34

3.3.1. Internal Artifacts Structure .. 34

3.3.2. Communication Flows Inter Artifacts ... 35

3.3.3. Exposed Interfaces .. 35

3.3.4. Exchanged Data Structure ... 37

3.3.5. Produces data .. 37

3.3.6. Technologies Used ... 38

3.3.7. User Installation Guidelines ... 38

 Ontology Manager 38

3.4.1. Internal Artifacts Structure .. 39

3.4.2. Communication Flows and Exposed Interfaces .. 41

3.4.3. Exchanged Data Structure ... 43

3.4.4. Produces Data .. 43

3.4.5. Technologies Used ... 44

 Auditing Framework GUI 45

3.5.1. Communication Flows Inter Artifacts ... 45

3.5.2. Technologies Used ... 45

3.5.3. User Installation Guidelines ... 45

 Advancements in Ontology Manager ... 46

 SoS Module 47

 Attributes Module 47

 Skills Module 48

 Rule Module 48

 Monitoring Module 50

 Advancement of the Auditing Framework Interface ... 51

 Advancement of the Predictive Simulation ... 52

 Derivation of Specialized Digital Twins 52

6.1.1. The Process .. 53

6.1.2. Derivation of Specialized Timing Digital Twins .. 53

 Advancements of Runtime Monitoring .. 55

 Runtime Monitor Innovation Aspects 56

7.1.1. Leveraging the XDR .. 56

7.1.2. Leveraging the EDR .. 57

7.1.3. Leveraging the SIEM .. 57

Page 11 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

 Auditing Framework Execution... 58

 UC 4 Coppelia 59

8.1.1. Pre-Setup Phase ... 60

8.1.2. Offline Activities ... 63

8.1.3. Finish Pre-Setup ... 65

8.1.4. Start Auditing Framework .. 67

8.1.5. Validation Scenario .. 70

 Conclusions ... 72

References ... 73

Appendix A. Runtime Monitoring Instrumentation Guidelines .. 74

A. Introduction 74

A.1 Overview 74

A.2 Input/Output Captured by the Specific Probe 75

A.3 Message-Based Notification (Made by the User) 77

A.4 Mentors Probe Code Injection 77

A.5 Automatic Instrumentation (ext. Service) 80

B. Event Description 81

Page 12 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

List of Figures

Figure 1: An updated view of the Auditing Framework .. 18

Figure 2: Extended MUD model .. 20

Figure 3: Usage of the MUD file within BIECO ... 21

Figure 4: Threat MUD structure .. 21

Figure 5: Runtime Monitoring Components .. 24

Figure 6: Service Status from the BIECO project .. 25

Figure 7: Service Status from the BIECO project .. 26

Figure 8: Class diagram of the connections Register .. 27

Figure 9: JSON2MQTT Mediator behavior .. 28

Figure 10: Elements of the exposed REST interface .. 30

Figure 11 Elements of the exposed REST interface ... 31

Figure 12 Class diagram of Event Structure ... 31

Figure 13 Internal structure of the Predictive Simulation components 34

Figure 14 Flow between the internal artefacts of the Predictive Simulation 35

Figure 15 Structure of Predictive Simulation Rest Interface .. 37

Figure 16 Ontology Manager Reference Architecture .. 39

Figure 17 Screenshot of WebProtégé during the development of BIECO Ontology 40

Figure 18 Overview of Ontology Server RESTful Interface ... 41

Figure 19 Example of Ontology Server API endpoints for the SoS module 42

Figure 20 Example of GET and POST requests through the Ontology server 42

Figure 21 Ontology Manager Data Structure JSON Schema ... 43

Figure 22 An instance of SoS data ... 44

Figure 23 Ontology Modules .. 46

Figure 24 System of Systems (SoS) module .. 47

Figure 25 Attributes Module ... 47

Figure 26 Skills Module ... 48

Figure 27 Rule Module .. 49

Figure 28 Rule Transformation Process .. 49

Figure 29 From Abstract to Well-defined rule enrichment process 49

Figure 30 Drools Rule Skeleton .. 50

Figure 31 Monitoring Module ... 50

Figure 32 Execution of parallel abstraction .. 52

Figure 33 Coppelia Simulator ... 59

Page 13 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Figure 34 Runtime GUI: Auditing Framework Setup ... 59

Figure 35 Auditing Framework GUI: Auditing Framework Pre-Setup 60

Figure 36 Auditing Framework GUI: SoSs selection ... 60

Figure 37 Auditing Framework GUI: Device selection .. 61

Figure 38 Auditing Framework GUI: Components selection .. 61

Figure 39 Auditing Framework GUI: Skills selection ... 62

Figure 40 Auditing Framework GUI: Select/adapt abstract rules selection 62

Figure 41 Auditing Framework GUI: Refine Abstract Ruleset .. 63

Figure 42 Auditing Framework GUI: Refine Abstract Ruleset .. 64

Figure 43 Auditing Framework GUI: Probe Injection .. 64

Figure 44 Digital Twin Eclipse Profile: Digital Twin development 65

Figure 45 Auditing Framework GUI: Finish Pre-Setup phase ... 66

Figure 46 Auditing Framework GUI: Standard Well-defined rule refinement 66

Figure 47 Auditing Framework GUI: Pure predictive Well-defined rule refinement 67

Figure 48 Trace of Connection message sent by SUA_Probe ... 68

Figure 49 Trace of Velocity messages sent by SUA_Probe ... 68

Figure 50 Trace of forecast messages sent by DT_Probe ... 69

Figure 51 Trace of rule self-generated by the Runtime Monitoring 69

Figure 52 CoppeliaSimulator: Execution of a malicious code attack 70

Figure 53 Runtime Monitoring Logger: Trace of rule violation raised 70

Figure 54 Coppelia Simulator: System turns back to a safe condition 71

Figure 55 Code Instrumentation process .. 74

Figure 56 Serial port probe example ... 77

Figure 57 example folder ... 78

Figure 58 SUA probe example ... 78

Figure 59 ConcernAbstractProbe .. 79

Figure 60 Simple Probe... 80

Figure 61 Specific instrumentation tool .. 81

Figure 62 Specific BIECO event .. 82

Page 14 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

 Introduction

This deliverable focuses on developing techniques, methods, and tools supporting the

audit activity in the BIECO framework. It describes the first version of the simulation

environment and the monitoring solution and details their preliminary implementation

and validation. It also details the additional components, the Ontology Manager and the

Auditing Framework GUI (Graphical User Interface), included in the framework for

making user interaction and knowledge management easier.

Indeed, the Auditing Framework is the BIECO dynamic mechanism for the online analysis

of functional and non-functional properties of an entity against well-stated conditions,

such as contractual conditions for trust. The Auditing Framework collects events at

different specification levels and goals and from heterogeneous sources (such as

applications, components, sensors, or devices). It uses the collected data to infer

complex patterns that indicate specific functional and non-functional properties. Those

patterns represent the observed behaviours and are compared with the trustable ones

of the monitored entities to detect anomalies, vulnerabilities, or problems.

As introduced in the deliverable D5.1 [11], the Auditing Framework can:

a) Collect and analyse data from the different SoS sources (e.g., applications,

sensors, software, and hardware components or devices).

b) Assess the run time behaviour of the SoSs (components or devices) based on

the expected behaviour rules.

c) Promptly raise alarms in case of violations, anomalies, or misbehaviours.

Within the BIECO project, the Auditing Framework leverages the current state of the

practice in diverse ways:

• Providing the implementation of a dynamic, user-friendly, and adaptable

methodology for the specification of functional and non-functional properties. It

is also holistic support for knowledge management and data sharing within the

overall BIECO runtime phase.

• Including a predicting simulation system for anticipating the behaviour of a

trustable ecosystem (components). Working with the monitoring facilities

represents a dynamic oracle defining the trustable patterns.

• Providing an integrated mechanism for assessing the correctness of the run time

executions of the ecosystem and its components against the collected

prediction without knowing the source code structure; and

• Providing a dynamic, user-friendly, and adaptable methodology for managing the

alarms, triggering the corresponding notifications, and executing the associated

countermeasures.

As detailed more in this deliverable, the Auditing Framework is fully integrated into the

BIECO Framework. Indeed, it uses the Runtime Phase mechanism for retrieving and

integrating the Design Phase data (hereafter called Blueprints) into its knowledge base.

It also uses the BIECO framework execution environment for collecting events about the

entities to be audited.

Following the terminology introduced in D5.1[11], in this deliverable, the System Under

Auditing (SUA) indicates the device, the component, or the system that is the target of

the auditing activity, and the Controlled Environment (CE) refers to the environment in

which SUA is executed.

Page 15 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

The Auditing Framework has been developed independently from the realization of the

CE. Therefore, the auditing activity can be performed considering three different

situations:

a) CE executed in a simulation context, i.e., the CE is abstracted as a simulation

model.

b) CE executed in a testing context, i.e., the CE is executed in a testing environment,

and the components, directly interacting with the SUA, are either executed in the

real context or simulated model or executed using stubs.

c) CE executed in a real context, i.e., the CE and its components are executed in a

real environment.

In all the above situations, the required precondition for Auditing Framework execution

is the instrumentation of the CE and SUA with probes, i.e., pieces of code injected in the

entities for sending events about the execution.

 Auditing Framework Challenges

This section provides the main challenges by referring to the deliverable D8.2 [17] for a

detailed list of the Auditing Framework objectives. The remainder of the deliverable

details how these challenges have been targeted inside Work Package 5.

CH1: Whitening the Black-Box Assessment Process

Using probes inside the CE and SUA lets the Auditing Framework collect internal

execution data (white-box data) without knowing their source code structure (black-box

data). Indeed, the implemented methodology makes the CE and the SUA more”

transparent” for functional and non-functional properties assessment and prediction

without revealing their internals. Data is collected through probes preserving the

principles of loose coupling and implementation neutrality.

CH2: Separating Properties Predictions and Assessment

The implementation of the Auditing Framework follows the principle of independence

between the components. All the conceived components have a specific role and

contribute to the overall quality, usability, and effectiveness. However, the Auditing

Framework can work with few adjustments, excluding some of its components:

• Predictive Simulation could be executed independently from the monitoring

activity. In this case, predictions can be used by an external monitoring engine or

for different purposes.

• Monitoring activity could run independently from the Knowledge Management

process and the Predictive Simulation decisions. Indeed, the monitoring

properties could be provided as an external data set, and the properties

assessment executed without having the oracle decision (i.e., as any standard

monitoring engine).

• Knowledge management processes could run independently from monitoring

and Predictive Simulation activities. Indeed, the classification and collection of

the specific peculiarities, properties, and quality attributes of the different

Page 16 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

ecosystems and their components and devices is a starting point for any

development and assessment activity.

CH3: Leveraging the Existing Monitoring Solutions

The Auditing Framework leverages the existing monitoring solutions considering several

aspects. In particular:

• The implemented monitoring solution includes and leverages some of the

features proposed by solutions like XRD (eXtended Detection and Response),

EDR (Endpoint Detection and Response), and SIEM (Security Information & Event

Management).

• The implemented monitoring component is an open-source component that can

collaborate with other available monitoring solutions (like Ganglia1, Zabbix2, and

Netdata3) with required adaptations.

• The implemented monitor solution lets diverse levels of reaction to the detected

violations or misbehaviour. Indeed, notifications, execution termination, and

application of suitable countermeasures to make the auditing execution continue

in a safe mode are all possible.

• The functional and non-functional properties collected through the knowledge

management process and assessed by the monitoring solution can be easily

customized, enriched, or modified. The properties dataset also represents a

shared dataset exploitable for further application or research activity.

• The implemented knowledge management process lets the user customize the

manual/automatic countermeasures based on the risk analysis. This possibility

lets mitigate the vulnerability detection risks and keep the human in the loop.

• The implemented monitoring solution can be easily modified by using smart

agents to automatically apply the possible countermeasures on the CE or SUA in

agreement with the loose coupling principles.

CH4: Leveraging the failure Prediction Methods

Auditing Framework leverages the prediction of malicious attack by implementing the

Predictive Simulation components that enable evaluation of a software behaviour before

it is executed thanks to the use of specialized Digital Twin (DT), i.e., abstract models

representing the executable abstractions of the ecosystem components (ICT systems,

ICT system components, and actors) and their interactions. In case of failure prediction

caused by a malicious attack, the Predictive Simulation methods let discover

performance degrading over time and sporadic and specific situations when a

destruction target impact of an attacker is likely to be achieved.

CH5: Leveraging the Implementation of the Digital Twins

The Auditing Framework leverages the existing approaches for implementing the Digital

Twins by creating a model that can capture the failure in the “pure Predictive Simulation

phase,” where the conformity between the abstract models and the real-world digital

1 http://ganglia.info/
2 https://www.zabbix.com/
3 https://www.netdata.cloud/

Page 17 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

asset is evaluated in a set of conformity testing. Further on, Predictive Simulation

abstracts specifics of the models directed to the scope of the evaluation (timing

synchronization, functional interaction) that needs to be defined before deployment.

 Roadmap

The deliverable is structured as follows:

• Section 2 presents the Auditing framework and details the used Blueprints.

• Section 3 details the implementation of the Auditing Framework and its

components. Specifically, Section 3.1 describes the overall implementation of

the Auditing Framework and the interaction with the Runtime Phase. Sections

3.2, 3.3, 3.4, and 3.5 detail the Runtime Monitoring, the Predictive Simulation, the

Ontology Manager, and the Auditing Framework GUI, respectively.

• In Sections 4, 5, 6, and 7 report advancements in the Ontology Manager, the

Auditing Framework GUI, the Predictive Simulation, and the Runtime Monitoring

specification with respect to deliverable D5.1 [11], respectively.

• Section 8 describes the application of the Auditing Framework to one of the

BIECO use cases, while Section 9 provides discussion and future works.

• Finally, Appendix A provides additional material about the Auditing Framework

implementation.

Page 18 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

 Auditing Framework in the BIECO Runtime Phase

By referring to deliverable D2.4 [9] for a detailed description of the Auditing Framework

architecture, this section provides details about its execution inside the BIECO Runtime

Phase. In particular, Section 2.1 illustrates the updated Auditing Framework architecture,

whereas Section 2.2 discusses the definition and management of BIECO Blueprints.

 Using Inferred knowledge Auditing Framework’s main components

This section summarizes the main components of the Auditing Framework architecture

already introduced deliverables D5.1 [11] and D2.4 [9]. In this deliverable, the interactions

with the BIECO middleware and the additional components of the BIECO Runtime Phase

are omitted to focus on the Auditing Framework activity.

As in Figure 1, the Auditing Framework includes five main components: (1) Runtime

Monitoring, (2) Auditing Framework GUI, (3) Predictive Simulation, (4) Ontology Manager,

and (5) Auditing Framework message BUS.

For each of them, here below, a brief description is provided. We will discuss those

components in detail in the remainder of the deliverable.

Figure 1: An updated view of the Auditing Framework

(1) Runtime Monitoring: It uses SUA and CE events to match a predefined set of

functional and non-functional properties that the CE and the SUA should satisfy. Runtime

Monitoring works in collaboration with the Predictive Simulation component for

assessing specific rules focused on SUA behaviour predictions; Ontology Manager for

receiving the set of properties (rules) to be monitored during the execution; and the

Auditing Framework Message Bus for receiving the events.

(2) GUI: The GUI component, hereafter called Auditing Framework GUI, resides within the

BIECO User Interface. Its primary purpose is to let the user interact with the Framework.

That includes the Auditing Framework setup and settings for the project level. The

Auditing Framework GUI interacts with the Ontology Manager, requesting available setup

Page 19 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

information and providing the user input. The Auditing Framework GUI also manages the

project state, saving the user-provided information for later use.

(3) Predictive Simulation: The Predictive Simulation component resides on the BIECO

server. It targets the definition of the Digital Twin, i.e., abstract models representing the

executable abstractions of the ecosystem components (ICT systems, ICT system

components, and actors) and their interactions. These will be used to predict the future

ecosystem components' behaviour.

(4) Ontology Manager: This component is the manager of the knowledge for the

classification and categorization of the different Systems of Systems, their devices, and

components, as well as the relative skills and functional and non-functional properties.

The ontology manager is responsible for the management of the specification process

of the monitoring rules: from the abstract to well-defined, and finally to instantiated rules.

(5) Auditing Framework Message BUS: This component is the backbone of the Auditing

Framework. It manages all the communication between all the framework parts and

relies on two technologies: Java Message Service (JMS) Messages and

REpresentational State Transfer (REST) interfaces. Those technologies are exploited

using Apache Artemis4 and Java Spring Boot with Thymeleaf5.

 Auditing Framework Blueprints

This section describes the Blueprints provided by the Design Phase and used inside the

Auditing Framework. They are the Extended MUD File and the ConSerts data (detailed in

Sections 2.2.1 and 2.2.2, respectively). The Data Collection Tool (see deliverable D2.4 [1]

for a detailed description) stores the Blueprints, while the Ontology Manager component

(detailed in Sections 3.4 and 4) integrates them into the ontology used by the Auditing

Framework.

2.2.1. Extended MUD File

As detailed in deliverable D6.2 [12], the MUD file is an IETF6 standard that the

manufacturer can use to describe in a homogeneous the expected network behaviour of

a particular device in terms of Access Control Lists. Dealing with its lack of

expressiveness beyond the network layer and communication aspects, the BIECO Task

T6.2 defined an extended MUD model. It can describe more fine-grained aspects beyond

the network layer (see Figure 2), such as cryptographic configuration, the number of

communications allowed, REST services offered and accessed by the device, and even

known vulnerabilities and weaknesses associated with the device (see deliverable D6.2

for more details).

The extended MUD file is created from the standard MUD during the BIECO Design

Phase, using the Resilblockly tool7 [12] (developed inside Work Package 6) for

preliminary risk analysis (see Figure 2). At the end of the security evaluation

methodology developed in BIECO Work Package 7, the extended MUD is updated,

4 https://activemq.apache.org/components/artemis/
5 https://spring.io/projects/spring-boot
6 https://www.ietf.org/
7 https://resilblockly.resiltech.com:8407/#/

Page 20 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

reflecting the actual values and configuration obtained from the security testing. This

updated MUD is intended to be used to deploy the device securely and to detect

suspicious behaviours not reflected by the MUD.

During the auditing phase setup, as depicted in Figure 3, the updated MUD, among

others, can be used as a Blueprint and integrated into the ontology data to define the

functional or non-functional monitoring rules. Indeed, during the Auditing Framework

execution, the Runtime Monitoring can detect deviations or violations of the established

rules. Consequently, it can promptly apply mitigation actions or update the MUD policies

in case of new functionality or configuration deviations.

Figure 2: Extended MUD model

If the security issues detected by the Auditing Framework cannot be mitigated, it may

imply an update of the system and even a re-evaluation of the system security. In this

case, the security evaluation methodology (described in the Work Package 7 D7.2 [15]

and D7.3 [16] deliverables) should be re-executed, focusing on the affected component

and security property, which could also imply an update of the MUD file based on the

test results.

Page 21 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

A further (future) investigation for the Auditing Framework is the possibility to let

vulnerability detection information sharing. Indeed, when the SUA component is

executed in a real context, the Auditing Framework could provide facilities for sharing

information about the affected components with the interested parties. In this sense, a

threat MUD file could be created to define mitigation policies to restrict access to the

compromised component or service. For this purpose, deliverable D6.3 [13] provides

more details about the structure of the threat MUD (see Figure 4), and the architecture

needed to share and obtain it.

Figure 3: Usage of the MUD file within BIECO

Figure 4: Threat MUD structure

2.2.2. Conditional Safety Certificate (ConSerts)

A Conditional Safety Certificate (ConSert) [22], [24] is a modular pre-assured safety

concept. ConSerts are engineered during the safety development lifecycle as models of

reconfiguration, allowing safety-related properties to be guaranteed under variable

systemic and environmental conditions. Generalizing ConSerts to be applied within

BIECO, we consider how safety relates to the more general concept of dependability,

Page 22 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

which simultaneously encompasses security. In doing so, we can specify non-functional

requirements related to safety-related security requirements, which may be dynamically

evaluated at the time of system composition rather than the time of specification.

ConSerts can be engineered during the systems development process (BIECO

deliverable D6.4 [14] provides a more detailed discussion). This engineering process

results in a ConSerts model, which can be exported as a blueprint in a specified file

format (based on YAML8).

ConSerts considers two sources of information: the level of quality available from

demanded external services and evidence collected internally by the system to

determine the quality at which a given service can be provided. Such ‘Runtime Evidence’

(RtE) can be acquired during system operation and trigger updates to the quality of the

provided service. What kind of information is relevant as RtE depends on the safety (or

dependability, e.g., security) concept upon which the ConSert is specified.

ConSerts is flexible in incorporating an open domain of runtime information to ascertain

the operational context and recommend a system adaptation. Inside BIECO, the

following possibilities have been considered:

• Exploiting the vulnerability detection, forecasting, and propagation data collected

inside the Work Package 3. In this case, ConSerts can use the Work Package 3

models to determine the services' acceptable levels of quality and (or) the

vulnerability risks to conceive service reconfiguration or service halt if necessary.

• Exploiting the failure prediction methods developed inside Work Package 4 to

anticipate subsystem/component failures and trigger ConSert re-evaluation

(reconfiguration).

On the technical level, using the approach already described for the extended MUD file

(see the previous section), the ConSerts blueprints can be integrated into the ontology

data. They can provide either the composition and adaptation checking mechanisms to

be used in case of violations or the countermeasures to be activated to force the SUA or

CE reconfiguration functions.

8 https://yaml.org/

https://yaml.org/

Page 23 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

 Auditing Framework Implementation

The implementation of the Auditing Framework architecture presented in Section 2 and

Figure 1 has been provided as a virtual framework component. Therefore, the Runtime

Monitoring, Ontology Manager, Predictive Simulation, and the Auditing Framework GUI

communicate through the Auditing Framework Message BUS for transferring data and

managing the process phases.

In the following, Section 3.1 presents the overall implementation of the Auditing

Framework and the interaction with the Runtime Phase. Sections 3.2, 3.3, 3.4, and 3.5

detail the implementation of the Runtime Monitoring, the Predictive Simulation, the

Ontology Manager, and the Auditing Framework GUI, respectively. Each section has

almost the same structure i) first, it introduces the internal components and their

implementation details; ii) then, it presents the (intra- and inter-) communication details

and the exposed interfaces; iii) successively, the section details the (input and output)

data structures, iv) and finally it focuses on the technologies used and the installation

guidelines.

 Auditing Framework Implementation Details

To satisfy the Section 1.1 challenges and, in particular, “CH2: Separating properties
predictions and assessment”, the Auditing Framework components are not strictly

connected. This also provides the possibility to either deploy them on different machines

or clouds; or replace them with more performant components or services.

The virtual framework has been merged within a typical docker composition using the

technologies that docker-compose described in a yml file. Specifically, the

implementation of the Predictive Simulation was supported by the concept of the triple

modular framework as detailed in deliverable D2.4 [1] .

3.1.1. Communication Flows Intra-Nodes/Components

The entry point for the virtual component is the messageBus. Every component in the

virtual framework exposes its REST interface for communicating directly with the BIECO

platform.

3.1.2. Technologies Used

The technologies used are

• Docker for packaging the framework.

• Apache ActiveMQ or Apache Artemis, or Mosquitto for the communication bus.

3.1.3. Licenses

No licenses are needed.

3.1.4. GitHub Details Repository

Auditing Framework is exposed as a single docker artifact using docker-compose.

Page 24 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

 Runtime Monitoring

The Runtime Monitoring component has been developed to target the challenges

mentioned in Section 1.1 and in particular: CH1: Whitening the black-box assessment
process; CH2: Separating properties predictions and assessment; CH3: Leveraging the
existing monitoring solutions.

The Runtime Monitoring splits functionalities into independent modules that can be

enacted according to the desired configuration/operational profile. The components can

also be instantiated as stand-alone nodes or containers on top of a Docker architecture.

This choice provides a more substantial decoupling and lets the components deploy on

different machines for improving resources management. In particular, the Complex

Event Processor (CEP), the core part of the Runtime Monitoring, can be deployed in

multiple instances on several nodes.

Development relies on Java technologies (OpenJDK9 16 and 17) for the core

functionalities and Drools10 for the principal Complex Event Processor.

The project and the dependencies between libraries are managed: for the JMS through

Maven11, i.e., the message broker embedded into the system is ActiveMQ12 (an open-

source multi-protocol Java-based message broker); for the interface that exposes the

interaction with REST interfaces, through Mosquitto13. More details about technologies

are in Section 3.2.6.

3.2.1. Internal Artifact’s Structure

The core modules of the Runtime Monitoring are depicted in Figure 5 and described

hereafter.

Figure 5: Runtime Monitoring Components

9 https://openjdk.org/
10 https://www.drools.org/
11 https://maven.apache.org/
12 https://activemq.apache.org/
13 https://mosquitto.org/

Page 25 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

3.2.1.1. Main

It is the launcher of the architecture; it oversees executing the components required for

a specific profile in the correct order. The Runtime Monitoring can be performed with or

without a Rest component. This allows managing the Runtime Monitoring lifecycle

according to what is required to interact with the BIECO platform.

3.2.1.2. Rest

This component will start a Glassfish Grizzly Server14 that exposes:

• a basic web page for publishing the status of the Runtime Monitoring.

• a set of POST methods for interacting within the Runtime Monitoring according

to the lifecycle specified inside the BIECO Project and reported in Figure 6.

Figure 6: Service Status from the BIECO project

Moreover, the Rest component provides facilities to authenticate the messages sent or

received by the REST interface. According to the agreed lifecycle, the developed

authentication mechanism is based on two tokens (one for incoming and one for

outcoming messages).

Figure 7 shows the web interface, the logs, and the related activities.

14 https://javaee.github.io/grizzly/

Page 26 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Figure 7: Service Status from the BIECO project

3.2.1.3. Logger

It provides common logging facilities across the Runtime Monitoring components.

Logging is implemented using Log4j15.

3.2.1.4. Broker

The component executes an internal instance of a message broker and provides

facilities for sending messages (events and requests) between the artifacts involved in

a monitoring session. The execution of this component is optional. Depending on the

technology used for the communication, two solutions can be supported (also at the

same time):

1) Using a configuration that runs an ActiveMQ instance. In this case, the JMS

Message Broker is exposed on port 61616. The instance execution is managed

following the pattern Singleton, and the artifact is included using maven

dependencies in the Project Object Model (POM) of the project.

2) Using Mosquitto, i.e., an open-source message broker that implements MQTT

protocol, allows light transmission between low-power devices using

publish/subscribe messaging techniques.

3.2.1.5. Register

This component traces and stores all the information related to the connections

between the internal Runtime Monitoring components and external artifacts involved in

a monitoring session. For instance, the Register collects the list of the Complex Event

Processor instance executed, the channel used for listening for events, and the

parameters they use. This information is collected using the object TopicAndProperties

as detailed in Figure 8.

As in the figure, the class provides the information needed for: connecting to a specific

channel; routing a message or a request to the channel on which a dedicated Complex

Event Processor instance is running.

15 https://logging.apache.org/log4j/2.x/

Page 27 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Figure 8: Class diagram of the connections Register

3.2.1.6. EventListener and ServiceListener

EventListener and ServiceListener components automatically execute the routing. Both

the components execute a thread poll. Each thread listens on a specific channel: the

event messages generated by probes (EventListener Task); the requests for the

evaluation of one or more rules on (generic or specific) Complex Event Processor

(ServiceListener Task).

These two components guarantee the scalability of the Runtime Monitoring: if

necessary, generating more channels or more complex event processor instances for

specific scopes can be generated.

3.2.1.7. Complex Event Processor

The Complex Event Processor manages the automatic rule execution and assessment.

It can be executed considering two different engines in parallel: Drools16 or Esper17.

In particular, Drools is an engine based on the RETE algorithm, based on analysis

executed on forward and backward chains. It can be instructed through a specific

Domain-Rule-Language. Drools guarantee high speed and scalability, thanks to the rule

engine engendered by the RETE algorithm (RETE-OO).

Esper uses the Event Processing Language rule language that implements and extends

the SQL-standard language. Usually, the Esper engine has more performant memory

management than Drools, which relies on a garbage collector that is not performant in

case of millions of events.

3.2.1.8. Rules

This component enacts either the rules generation or the self-injection process when

meta-rules are invoked during the Runtime Monitoring execution.

16 https://www.drools.org/
17 https://www.espertech.com/esper/

Page 28 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

The Rules component is also in charge of routing the messages that contain rules to the

target Complex Event Processor. It uses CepType, the parameter stored on the event,

and the analysis of the ActiveCep list stored in the Register.

3.2.1.9. Mediator

This component guarantees the interoperability between MQTT messages (mostly sent

using JSON - JavaScript Object Notation) and the JMS Messages.

The Mediator uses messages from/to two kinds of brokers: ActiveMQ and Mosquitto.

This component executes two main functions:

1. converting a JSON message into a JMS Message and injecting it into one of the

dedicated channels.

2. converting a JMS message into JSON when a notification needs to be sent to an

entity that does not support the JMS message paradigm.

The high-level behaviour is described in Figure 9.

Figure 9: JSON2MQTT Mediator behavior

3.2.1.10. StorageController

This component manages to store all the events and data generated by the Runtime

Monitoring. The StorageController allows (simultaneously) two implementations:

1) using a generic MySQL18 server deployed outside Runtime Monitor to store

simple events.

2) Using a database structured for time series, such as InfluxDB19, allows for

managing vast amounts of events faster.

18 https://www.mysql.com
19 https://www.influxdata.com/

Page 29 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

3.2.1.11. Notification Manager

This component manages the notification of failure sent by the Complex Event

Processor. It forwards the failure notification to the specific channel gathering the

correct information (channels details) from the ChannelRegistry component.

3.2.1.12. Execution Flow

This section details the basic start-up procedure to clarify the communications between

the Runtime Monitoring artifacts.

Startup: In particular, when the Main component is invoked, it checks if the parameters

related to the execution of the Rest component, ActiveMQ, and Mosquitto broker are set

to true or false. Indeed, according to the parameters set, the Runtime Monitoring Engine

can be executed according to a specific operation profile.

If the Rest component is invoked, a GrizzlyServer is run so that the REST interface for

invocating the Runtime Monitoring by external components is exposed.

At this point, the Main component invokes the execution of one (or more) Broker for the

communication according to the specific message paradigm. The first broker is

ActiveMQ for local instance execution, and the second is Mosquitto. This can be

executed locally within the Runtime Monitoring to raise the backbone on which

messages can flow.

Successively, the Register component can start-up, and the ChannelRegistry be created

to enable the storage of data related to components, Complex Event Processor (CEP),

and the created channels.

In this stage, an instance of the StorageController component is created as a data

structure on which the received events are stored. This is a connection to a MySQL

server or InfluxDB and includes a set of internal interfaces for storing and reading data

for the other components.

At this point, the channels on which the events flow are created. Thus, facilities have

been developed for managing the amount of data that this infrastructure may receive

and the possibility to categorize data among them: i.e., address it to a specific CEP,

manage load balancing between multiple instances of Complex Event Processor, or

simply separate notification from requests or simple events.

The EventListener and the ServiceListener components expose a pool of threads. Each

thread generated by those components is opening a channel listening for a specific kind

of event. The EventListener will receive and manage events related to the execution of

a System Under Audit (events generated by probes); the ServiceListener will generate

channels dedicated to the evaluation requests (loading of rules by an external

component).

Following the same paradigm, another component has been developed to avoid

confusion between Framework and notifications: the NotificationManager, in charge of

dispatching the notification sent from the CEP to the correct recipient/channel.

The last component that can be executed in single or multiple instances is the

ComplexEventProcessor. The instances can rely on Drools engine or Esper engine. The

Page 30 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

information about the channel used for CEPs execution is stored in the Register

component.

Runtime Monitoring is ready to receive events or evaluation requests on the exposed

channels.

3.2.2. Communication Flows Inter Artifacts

Within the Runtime Monitoring, the components exchange data related to the events

notified by external entities or rules: received or generated during the execution. The

database can be instantiated within the Runtime Monitoring or can be an external entity.

It receives data managed by the StorageController component, converts the execution

to information, and stores it.

3.2.3. Exposed Interfaces

Runtime Monitoring exposes different interfaces: JMS, REST, and MQTT.

Figure 10: Elements of the exposed REST interface

Page 31 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

● REST interfaces are provided for interacting with the BIECO Platform to manage

the lifecycle of the Runtime Monitoring node. An example is reported in Figure

10. More details are provided at the following link:

https://app.swaggerhub.com/apis/acalabro/Auditing_Framework/1.0.2.

● MQTT interfaces expose an open channel on which the JSON messages can be

sent according to a schema that reflects the Event message described in Section

3.2.4. An example of a message is reported in Figure 11.

● JMS interface is exposed using ActiveMQ Broker. It is a set of Topics and

channels on which asynchronous messages can be sent to the Runtime

Monitoring (see Section 3.2.4).

Figure 11 Elements of the exposed REST interface

3.2.4. Exchanged Data Structure

Runtime Monitoring is based on event messages. The payload of those messages

contains valuable information for identifying the event that occurred in the system under

audit and executing the complex event processing operation against rules and

properties to be verified.

An event is an immutable statement of fact, reporting something that happened in the

system under auditing. Probes generate events and mark them with a timestamp related

to the last occurrence (see Section 3.2.6.1). Figure 12 provides the Runtime Monitor

event customization inside BIECO Project Architecture.

Figure 12 Class diagram of Event Structure

https://app.swaggerhub.com/apis/acalabro/Auditing_Framework/1.0.2

Page 32 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

As in the Figure, the main parameters of the Event<T> interface class are:

● Timestamp refers to the time an event has been generated (when it occurs in the

system under audit).

● SenderID, the identification of the entity generating and sending the event.

● DestinationID, the identifier of the CEP that should manage this event.

● Name is a String that contains the name or parameter name the event is referring to.

● Data<T>, a variable type that contains the value of the event that occurred; for

example, an event with Name = “Temperature” and Data = 35.0f.

● Consumed, a Boolean value that indicates if the event has been already managed or

not. The CEP can use this parameter to mark an event already managed (in case it

remains inside the event cloud or stream).

As shown in Figure 12, the generic implementation of the interface Event<T> interface is

proposed in the abstract class ConcernAbstractEvent<T>.

An extension of this class is represented by the ConcernBaseEvent<T> that includes an

extra parameter called Property.

Using the same pattern, two specific types of events are generated for the correct

analysis of events generated in BIECO.

The first is the ConcernEvaluationRequest<T> class. It contains the basic structure of

the ConcernAbstractEvent<T> extended with two specific parameters:

PropertyRequested and EvaluationRuleName.

The PropertyRequested object refers to the message properties as detailed in Section

3.2.1.5. The rule can be routed to the correct Complex Event Processor using this

parameter.

The ConcernDTForecast<T> is also an extension of ConcernAbstractEvent<T>. It

contains the forecast generated by the Digital Twin that will enact the self-rule

generation process.

This object contains extra fields:

● TrustedInterval: the amount of time-related to the validity of the forecast.

● ForecastedProbeName: the name of the Probe in the SUA to which the forecasted

property is referring.

● ForecastedProperty: the property forecasted (ex: latency, connectivity).

● ThresholdValue: a threshold value used, for example, in case the property is related

to latency or a scalar value.

3.2.5. Produced Data

The output data are represented by:

● Events, in terms of storing the data flowing into the Monitoring Engine for being

analysed.

● Complex Events are events created by the Monitoring Engine by correlating

simple Events according to the rules loaded into the CEP.

● Notifications/Violations that represent the action executed after the triggering of

Page 33 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

3.2.6. Technologies Used

The software has been developed in Java, version 17, using OpenJDK.

The project is available on GitHub, and dependencies are solved through the Maven

framework.

The communications are managed using JMS or JSON messages transmitted on top of
ActiveMQ or Mosquitto broker.

The interfaces exposed are realized using REST running on Grizzly Server.

Storage is realized using MySQL Server or InfluxDB time-series database.

The first version of the Complex Event Processor engine has been developed using
Drools. Another version is ongoing and relies on the Esper engine.

The overall Runtime Monitoring is going to be dockerized for the second release of the
overall platform.

3.2.6.1. Probes

As described in Deliverable D5.1 [11], tools for instrumenting code are currently

available. Details related to the instrumentation procedures and probes injection are

reported in Appendix A.

3.2.7. User Installation Guidelines

1) svn checkout https://github.com/acalabro/ConcernMonitoringRest.git

2) import the project into Eclipse

3) Create a configuration that executes as the main class:

a) the it.cnr.isti.labsedc.concern.rest.Main class OR

b) the it.cnr.isti.labsedc.concern.ConcernApP

4) export the project as a Runnable Jar File and select “Extract required libraries into

the generated JAR.”

5) execute the exported jar simply by running “java -jar exportedjarfile.jar.”

3.2.7.1. Hw/Sw Requirements
For being executed, as a Jar file, the Runtime Monitoring requires:

● OpenJDK Runtime 17.

● no restriction on port 61616 for ActiveMQ.

● no restriction on port 8181 (if the Rest component is needed).

● no restriction on port 1883 for Mosquitto (if needed).

Required libraries have been included within the jar file.

3.2.7.2. Licenses

The code developed for the Runtime Monitoring has been released following GPL320.

20 https://www.gnu.org/licenses/gpl-3.0.html

https://github.com/acalabro/ConcernMonitoringRest.git

Page 34 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

The libraries involved (listed below) are open source and will follow their respective

licensing:

● drools-*.

● javax.jms-api.

● activemq-broker.

● mysql-connector-java.

● log4j-core.

● org.eclipse.paho.client.mqttv3.

● jersey-container-grizzly2-http.

● any other minor library included within the pom.

3.2.7.3. Github and DockerHub Repository

The monitoring project is available on Github at the following link:

https://github.com/acalabro/ConcernMonitoringRest

 Predictive Simulation

This section details the Predictive Simulation internal structure, its artifacts, and

implementation details.

3.3.1. Internal Artifacts Structure

Figure 13 depicts the internal structure of the Predictive Simulation components. The

Predictive Simulation consists of jar files executed within the BIECO framework that

works on a Publish Subscriber basis. Specifically, it contains an amq Consumer that

consumes real-time data received via a specialized message defined for the Auditing

Framework.

Figure 13 Internal structure of the Predictive Simulation components

https://github.com/acalabro/ConcernMonitoringRest

Page 35 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

The Predictive Simulation module also contains an amq Producer that sends the Trusted

behaviour Signature back on the auditing bus.

The triggering of the simulation is performed by receiving specialized commands from

the REST interface. The models that the Predictive Simulation executes are abstract

models which are outputted by the Domain Specific Language (DSL). When fed with

Real-Time Data, these abstract models become specialized Digital Twins.

3.3.2. Communication Flows Inter Artifacts

The figure below depicts the flow between the internal artefacts of Predictive Simulation:

The Rest Interface that connects the Predictive Simulation and the BIECO Orchestrator

triggers the execution of the jars that incorporate the abstract models and the amq
Consumer that enables the collection of the real-time data. Once these two parts are put

together (abstract models and real-time data), specialized Digital Twins are created and

executed. For sending the resulting Trusted Behaviour Signature to the auditing bus, the

Predictive Simulation triggers the execution of an amq Producer.

Figure 14 Flow between the internal artefacts of the Predictive Simulation

3.3.3. Exposed Interfaces

The Predictive Simulation provides a rest interface to communicate with the BIECO

orchestrator. The interface is a stand-alone application implemented in Java. Its goals

are to receive BIECO messages and to process them for the Predictive Simulation. The

interface manages especially the control and monitoring messages. The Predictive

Simulation is another standalone application, which is started, stopped, and halted by

the rest interface.

The structure of the Predictive Simulation Rest Interface is shown in Figure 15. The rest

interface component allows a decoupling of the Predictive Simulation from the

orchestrator to allow reuse of the Predictive Simulation in other projects and increase

the maintainability. The component is structured into the four sub-components:

AppController, OrechstratorSendMessage, AppRegistry, and PSBridge. The first three

sub-components are generic for each BIECO application and require adaption to the

Page 36 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

specific application. The sub-component PSBridge is introduced to consider the specific

requirements for the Predictive Simulation.

The first sub-component is the AppConroller, which provides the rest interface and maps

HTTP post requests on the sub-URL “/BIECOinterface” to the function processMessage.

Each HTTP post message on this interface is checked for the correct token. The HTTP

post requests are answered either by “401 Unauthorized” or “200 OK”. A reaction to the

BIECO message content is not foreseen, as separating the HTTP rest interface layer with

the technical implementation and the BIECO messaging layer is wanted. In the case of

authorized BIECO messages, the AppController processes the messages based on their

type. The possible types and reactions are:

• GETSTATUS: the state of the AppRegistrySerive is sent, which is

BIECOToolStatuses.ONLINE

• HEARTBEAT: the tool id is set by the heartbeat

• CONFIGURE: no specific configurations for the Predictive Simulation are

foreseen.

• DATA, EVENT: an infrastructure with a queue to provide messages to

Predictive Simulation is created. The DATA/ EVENT message is added to a

queue of the PSBridge class.

• START, STOP, HALT: The respective PSBridge class functions are called.

The AppController uses the class AppRegistry to store the state of the communication.

The attributes orchestratorURL, orchestratorToken, and the token of the Predictive

Simulation are statically defined in the program code of the class AppRegistry.

As the AppController also sends the response messages to the Orchestrator, it uses the

class OrchestratorSendMessage to encapsulate the communication. This encompasses

transforming messages to JSON objects, calculating the Cyclic Redundancy Check, and

sending the respective HTTP post request.

The PSBridge sub-component processes the START, STOP and HALT messages. The

START message causes the start of the process by using the JAR file of the Predictive

Simulation. A STOP message is interpreted to use the Java process interface to call the

destroy () function. After termination of the process, a FINISHED message is sent to

Orchestrator. In contrast, the HALT message calls the function destroyForcibly().

Furthermore, the PSBridge class provides a queue of DATA and EVENT messages, which

the Predictive Simulation may access.

Page 37 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Figure 15 Structure of Predictive Simulation Rest Interface

3.3.4. Exchanged Data Structure

The structure of the data sent to the auditing bus is exemplified below and consists of:

1) Definition of the timing interval of the behaviour for which the prediction is being

performed “Trusted Interval.”

2) Definition of the timing interval in which the behaviour is expected: Prediction

Window

3) Trusted order of events

4) Trusted type of events

{"Trusted Interval":"1s","Prediction Window":"5s","Trusted Order“: {"1":"Velocity

Command","2":"Velocity Command","3":"Velocity Command","4":"Score Event","5":"Velocity

Command","6":"Velocity Command"},"Trusted Type":{"Trusted type":"Score Event"}}

3.3.5. Produces data

One data point within the signature contains information about the behavior interval for

prediction, the window of prediction, and the Trusted Behavior Signature having the

order, the name, and the type of events.

Trusted Interval: in terms of seconds, for example: 1s

Prediction Window: in terms of seconds, for example: 5s,

Trusted Order: of events, including the number of events, for example:

1 Velocity Command, 4 Score Events, 5 Velocity Commands

AppRegistry OrchestratorSendMessageAppController

BIECO Orchestrator

PSBridge

Predictive Simulation

Predictive Simulation Rest Interface

Page 38 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Trusted Type: Score Event, Velocity Command

3.3.6. Technologies Used

Java and RESTful Web Service have been used to define the REST interface.

The definition of the abstract model has been performed using the Xtext framework21

(as presented in D5.1 [11]). For the implementation of the producer and the consumer,

amq has been used.

3.3.7. User Installation Guidelines

The .jar for the Predictive Simulation connection to the BIECO orchestrator is already

provided. For keeping a loose coupling of artifacts and enabling their exchangeability,

this .jar calls another jar that contains the definition of the abstract models and the

internal amq producer and consumer. The current version of the DSL holds the definition

of an entity as a list of entities and a list of features. Consequently, we require that all

entities need to be declared before dealing with the features of the entity.

For creating Models of the twins using the DSL4Twins (see deliverable D4.2 [10]), the

following configuration is necessary:

• Xtext v2.24
• Junit test 5
• Java 1.8.0

• And IDE of your preference (for example, Eclipse)

3.3.7.1. Hw/Sw Requirements

Java-compliant machine, internet connection

3.3.7.2. Licenses

Under BIECO licensing.

 Ontology Manager

Ontology Manager is the component responsible for managing and supporting the

implementation and the BIECO Ontology. It has been introduced in deliverable D5.1 [11]

and refined and specialized as described in Section 4. The implementation of the

Ontology Manager targets the challenges CH2: Separating properties predictions and
assessment and CH3: Leveraging the existing monitoring solutions presented in Section

1.1.

Thus, its architecture is voluntarily conceived as abstract as possible to instantiate its

components with available tools. In the following, the components of Ontology Manager

are introduced.

21 https://www.eclipse.org/Xtext/

Page 39 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

3.4.1. Internal Artifacts Structure

Ontology Manager is composed of different components collaborating to achieve a

common goal, i.e., providing functionalities and means to share information and

knowledge about SoS and Ecosystem within BIECO.

Figure 16 illustrates the updated supporting architecture, an enhancement of the one

introduced in Deliverable D.5.1 [11], in which two new components (Ontology Mapper

and Ontology Population) have been introduced. They allow the management of the

BIECO Blueprints and the Data Provider’s data. Unlike the previous proposal, the

Visualization Component has been removed as an internal component and substituted

with the external Auditing Framework GUI (described in Section 3.5). It allows the

Ontology Final User to interact with the Ontology Manager for ontology navigation and

management. In the following, more details about each component are provided.

Figure 16 Ontology Manager Reference Architecture

3.4.1.1. Ontology Mapper

Ontology Mapper manages the BIECO blueprints contributing to the connection between

the Design and Runtime Phases. Ontology Mapper has the following responsibilities:

● It lets the integration of the blueprints that are Extended MUD File and ConSerts

data with the reference context.

● It lets the specification of ontology entities and presentation of specific use case

domain. Figure 16 shows that the Use Cases provider is the primary target end-

user group at this stage.

3.4.1.2. Ontology Population

It allows the manual definition of values for ontology population by a Data Provider. It is

composed of a dedicated user interface that lets definition and the insertion of all the

required individuals for populating the ontology. It is also possible to upload the JSON

Page 40 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

file directly according to the format defined in Section 3.4.3, which contains the data to

be transmitted to the Triplifier component.

3.4.1.3. Ontology Tool Builder

Ontology Tool Builder is used for creating, modifying, and visualizing the ontology

according to the representation detailed in Section 4. In the BIECO Project, the Ontology

Tool Builder is instantiated with Protégé because it provides a friendly Graphical User

Interface (GUI) for the definition of ontologies; it can be adapted to build even complex

ontology-based applications thanks to its modular architecture. The BIECO

customization of the Ontology Tool Builder can be used offline as a standalone solution

and online as a web-based solution called WebProtégé22. This lets a more dynamic

sharing of ontologies for collaborative viewing and editing. Figure 17 shows a

screenshot of the adopted WebProtégé.

Figure 17 Screenshot of WebProtégé during the development of BIECO Ontology

3.4.1.4. Triplifier

It is a triplifier based on OWL (Web Ontology Language)23 developed in Java. Triplifier

takes the ontology data as input, consisting of the individuals, and it is specified in JSON

or XML format. It also takes the rules the Ontology Builder Tool defines as input to allow

the reasoning and inference of new knowledge.

22 https://webprotege.stanford.edu/
23 https://www.w3.org/OWL/

https://webprotege.stanford.edu/

Page 41 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

3.4.1.5. Semantic Reasoner

Semantic Reasoner is used to inferring new knowledge: the reasoning is performed for

consistency checks and definition of inferences. In the BIECO Project, the

implementation of the Semantic Reasoner relies on Openllet because:

● it is Java-based that can be easily integrated with OWL API.

● is an open-source software actively maintained, providing functionality to check

the consistency of ontologies, among other functionalities.

3.4.1.6. Triple Store

In the BIECO Project, GraphDB has been selected as the reference triple store, a free-to-

use graph database and knowledge discovery tool compliant with RDF and SPARQL and

available as a high-availability cluster. Technically the Auditing Framework GUI interacts

with the Ontology Manager by employing well-defined SPARQL queries.

3.4.1.7. SPARQL Endpoint

This component allows specifying and executing specific SPARQL queries to retrieve

knowledge from the triple store and dynamically update the KB content. In Section 3.4.3,

details about both Triple Store and SPARQL Endpoint are also provided from the

behavioural point of view.

3.4.2. Communication Flows and Exposed Interfaces

The proposed framework to manage the communication between the Auditing

Framework GUI and the Ontology Manager component is shown in Figure 18. It provides

services for querying/interacting with the ontology. The Auditing Framework GUI uses

the provided information during the user interaction. The server handles GET, POST, PUT

and DELETE requests, which are addressed with SELECT/CONSTRUCT, INSERT,

UPDATE and DELETE SPARQL queries, respectively.

Figure 18 Overview of Ontology Server RESTful Interface

The model for the specification of the available endpoints follows the OpenAPI

Specification (OAS)24. Figure 19 shows some examples of the proposed endpoints that

24 https://swagger.io/docs/specification/paths-and-operations/

Page 42 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

the Ontology server API exposes, in this case for the SoS module of the developed

Ontology (see Section 4 for more details).

Example of Ontology Server API endpoints for the SoS module.

Figure 19 Example of Ontology Server API endpoints for the SoS module

The HTTP operations are defined for each endpoint (path) (GET, POST, PUT, and

DELETE). A single path can support more than one operation, and an operation would

have one path, except for the GET operation.

For instance, ‘GET /ontology/sos’ returns all available systems of systems in the

ontology, whereas ‘GET /ontology/sos/{id} returns information about a particular system

of systems. For the POST, PUT and DELETE operations the ‘POST /ontology/sos’, ‘PUT

/ontology/sos/{id}’ and ‘DELETE /ontology/sos/{id}’, are used respectively. These last

operations must be managed carefully, according to the ontology constraints.

Figure 20 shows the interactions between Auditing Framework GUI (Auditing GUI in the

Figure) when it performs GET and POST requests for returning a particular system of

systems and inserting a new one. When the Ontology Server receives the requests, it

creates the corresponding SPARQL query to retrieve/insert the results from/in the

knowledge graph database. The results are retrieved in JSON format.

Figure 20 Example of GET and POST requests through the Ontology server

Page 43 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

3.4.3. Exchanged Data Structure

Ontology Manager is based on RESTful service and communicates with components by

exchanging data. To facilitate that communication, there is a specific JSON schema. It

represents the data exchanged and allows interoperability with the current (and

additional) components integrated within the BIECO Auditing Framework or Platform.

Figure 21 reports the conceived JSON data structure schema, and it highlights the

structure of the SoS JSON object, which has an SoS ID, a UseCaseID that identifies the

use case the SoS is related to, the SoS Name, a Description of the SoS, and a Justification

field containing the reason of choosing that SoS.

Figure 21 Ontology Manager Data Structure JSON Schema

3.4.4. Produces Data

All the data produced by the Ontology Manager must comply with the schema mentioned

above. An instance of that schema containing data related to the System of Systems

associated with the BIECO four use-cases is reported in Figure 22.

Page 44 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Figure 22 An instance of SoS data

3.4.5. Technologies Used

The following provides the technologies for developing the Ontology Manager and

distinguishing between tools and languages.

3.4.5.1. Tools

Protégé is a free, open-source platform that provides a suite of tools to construct domain

models and knowledge-based applications with ontologies. Specifically:

● Protégé Desktop v.5.5.025, for windows, a platform-independent version that

requires a Java Runtime Environment.

● WebProtégé is an online version of Protégé, and It requires an internet

connection and a browser. After registering to the platform at

https://webprotege.stanford.edu/, a specific workspace is available where it is

possible to create

GraphDB supports:

● GraphDB uses RDF4J26 as a library and its APIs for storage and querying.

● It supports the GraphQL, SPARQL, and SeRQL languages and RDF (e.g., RDF/XML,

N3, Turtle) serialization formats.

● OWL 2 RL profile is fully supported and QL partially.

● It integrates OpenRefine for the ingestion of tabular data and provides semantic

similarity search at the document level

3.4.5.2. Languages

Java: Java is the primary programming language for developing the Ontology Manager’s

25 https://protege.stanford.edu/products.php#web-protege
26 https://rdf4j.org/

https://webprotege.stanford.edu/

Page 45 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

component. For the Auditing Framework GUI component, details are in Section 3.5.

Web Ontology Language (OWL) represents the complex knowledge about the system of

systems and monitoring concepts and relations between them, i.e., the ontology used in

the BIECO project.

SPARQL is used for retrieving and manipulating data stored in GraphDB.

 Auditing Framework GUI

The Auditing Framework GUI manages the interaction between the user and the

Ontology Manager component.

3.5.1. Communication Flows Inter Artifacts

The Auditing Framework GUI exposes a single interface, the actual graphical user

interface, which presents data/information to the user and collects input. Examples of

Auditing Framework GUI usage are provided in Section 8.1.

Communication with the Ontology Manager is done via the REST API that it exposes, so

for this, the Auditing Framework GUI does not expose any interface. Details of the data

structure are provided in Section 3.4.

3.5.2. Technologies Used

The Auditing Framework GUI is implemented in Java, HTML/CSS, and Javascript, using

the following libraries:

● Java Spring Boot with Thymeleaf.

● VueJS.

● Bootstrap CSS Framework.

3.5.3. User Installation Guidelines

Considering the installation guidelines, specific details are provided in the following

sections.

3.5.3.1. Hw/Sw Requirements

HW/SW requirements include:

● Java Runtime Environment 11

● Access to CDN (Content Delivery Network) resources for frontend components

like VueJS and Bootstrap CSS.

● no restriction on port 8080 for the Auditing Framework GUI Component of the

platform.

3.5.3.2. Licenses

No licenses are needed for using this component

Page 46 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

 Advancements in Ontology Manager

This section reports the evolution of the initial core ontology (i.e., MONTOLOGY-

MONitoring onTOLOGY), managed by the Ontology Manager introduced in deliverable

D5.1 [11], to make it more modular, manageable, and comprehensive. In particular, the

content has been re-organized into five modules, each containing a set of correlated

concepts and relations between them. Therefore, the conceived enhanced ontology27 is

related to the challenges CH2 and CH3 by proposing a well-defined Taxonomy used

along the BIECO lifecycle. It allows Knowledge derivation reasoning and inference of new

knowledge.

The core ontology and its evolution aim to help the different SoS stakeholders gather

functional and non-functional properties related to the various parts of SoS.

Consequently, that enables the definition of concrete monitoring rules associated with a

specific property to demonstrate compliance (non-compliance) with the selected

properties.

Figure 23 Ontology Modules

The core ontology defined in deliverable D5.1 [11] is composed of two main modules:

the System of Systems (SoS) Module (containing eight concepts) and the Monitoring

Module (which includes five concepts), with a total of 13 (thirteen) concepts.

The advancement consists in adding new concepts and reorganizing the content in a

more manageable and modular way to enable interoperability and facilitate both

extensibility and maintainability. More precisely, as reported in Figure 23, the new shape

of MONTOLOGY is divided into five modules: SoS, Attributes, Skills, Monitoring, and

Rules. The remainder of this section briefly describes each module and points out the

new concepts/classes by colouring the shape outline in red.

27 The enhanced ontology is called DAEMON in the joint paper of CNR and UNI BIECO partners, accepted in
the 5th IFIP International INTERNET OF THINGS (IoT) Conference [8].

Page 47 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

 SoS Module

Differently from MONTOLOGY, the System of Systems is modelled as a composition of

System, and it is influenced by a specific environment in which it operates and is

executed. Therefore, a System is a collection of Devices representing the object of the

monitoring activities. As in MONTOLOGY, each Device is composed of a specific set of

Components, as shown in the figure below.

Figure 24 System of Systems (SoS) module

 Attributes Module

An Attribute is a functional and non-functional property related to a specific SoS concept

(see Figure 25). And this module contains all the concepts related to the observable

properties of the classes in the SoS module. As in Figure 23, this module introduces two

specific concepts: QualitativeAttribute, and ObservableAttribute, i.e., quantitative

attributes used to define both the Measure and Metric used to define monitoring rules.

The Attribute hierarchy is also expanded by adding three sub-classes:

EnvironmentAttribute, SystemAttribute, and DeviceAttribute, enabling monitoring of their

behaviour through specific monitoring rules.

Figure 25 Attributes Module

Page 48 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

 Skills Module

The original concept of Skill has been extended in two ways. Firstly, a skill hierarchy is

created by leveraging the actual concept of Skill as a super-class of the hierarchy. Two

specific sub-classes (BasicSkill and ComplexSkill) are connected through the relation

isComposedBy.

As shown in

Figure 26, a ComplexSkill is composed both through a set of BasiSkill, or/and iteratively

throughout a set of ComplexSkill. Secondly, the concept of ObserableSkill is introduced,

i.e., the observed ability related to the SoS concept that can be validated through the

monitoring facilities.

Differently from the core ontology described in deliverable D5.1 [11], the Requirement

class is connected directly to ObserableSkill through the isRelatedToSkill association.

Therefore, each ObserableSkill, specified as a set of Requirements, can be verified

through a specific Rule.

Figure 26 Skills Module

 Rule Module

The advancement of the core ontology leverages the concept of Rule by providing a well-

formed hierarchy with the following sub-classes (see Figure 28):

● AbstractRule points out a generic rule that is not yet instantiated within the

execution context and gathered from the navigation of the ontology.

● WellDefinedRule refers to a rule ready for being translated to the destination

language of the Complex Event Processor and related to the monitoring of a

specific device.

● InstantiatedRule is a rule written using the language understandable by a monitor

engine.

● Boundary contains specific values that express the applicability ranges of the

rule.

Page 49 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Figure 27 Rule Module

To better clarify the complexity of the process involved in obtaining a processable rule,

in Figure 28, a graphical representation of the evolution of the rule: from abstract to

instantiated one can be found.

Figure 28 Rule Transformation Process

In particular, the abstract rule is a generic natural language description of the objective

of the auditing activity that is easily understandable by non-expert users, for instance,

such as the maximum number of established simultaneous connections between two

components. The abstract rule is then refined into the well-defined rule, a semi-

structured and implementable rule. The users need to add specific details about the

context, for instance, the maximum number of established simultaneous connections.

An example of abstract and well-defined rules can be found in Figure 29.

Figure 29 From Abstract to Well-defined rule enrichment process

Finally, the well-defined rule, enriched with the name of the probes used by the user, will

be automatically translated into an instantiated rule according to the monitoring

language used. The Runtime Monitoring uses this during the Auditing Framework

execution.

Page 50 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

A typical structure of an instantiated rule can be summarized as follows:

Figure 30 Drools Rule Skeleton

It can contain one or more rules that define the rule conditions (when) and actions (then)

at a minimum.

 Monitoring Module

The core class of the Monitoring module is the Monitor, which observes rules organized

in the Calendar, i.e., an ordered set of rules (see Figure 31). Each Calendar can validate

a specific ObservableSkill at run-time defined in the Skills module. The Monitor has a

specific EntryPoint used to communicate with the Probe.

A Probe is a piece of software code that can be injected into an observed/monitored

component, device, or system, and it can send Events according to a specific format.

The probes can send events at regular intervals or in a particular situation. The sent

events contain information related to the occurrence of actions on the observed SoS

entity.

The term Event defines the change of a state within a system. This state change is

generated when a method call is executed, or internal action is enacted. The injected

Probe will pack this atomic action into an event and notify the Monitor to perform the

processing action on the event stream. To be correctly managed by a concrete monitor,

the event should contain several pieces of information needed for analyzing a snapshot

of what is happening within the System Under Audit.

Figure 31 Monitoring Module

Page 51 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

 Advancement of the Auditing Framework Interface

Considering the Deliverable D5.1 [11], the conceptual structure of the Auditing

Framework interface has been improved considering the four different steps:

1. Pre-setup.

2. Artifacts preparation.

3. Finalization of the Pre-setup.

4. Execution.

The following describes the steps and their interaction.

Pre-Setup

Once the Design Phase concludes, and BIECO’s Runtime Phase is due to start, the user

sends a notification to trigger the Pre-setup phase. Then retrieval of the domain-specific

language for the specification of the Digital Twins takes place and includes the creation

of the Digital Twins and the instrumentation of the CE/SUA with the probes.

For this reason, the Auditing Framework Interface needs to support the

freezing/resuming of the ongoing setup session. The initial auditing rules refinement

occurs, and the components' execution starts.

After starting the Runtime Phase, the execution pattern requires the Auditing Framework

Setup to be enabled. This process is exemplified in Section 8.

Through the Auditing Framework Interface exposed within the BIECO Orchestrator, the

user may execute the operations needed for the Auditing Framework Pre-setup. They

include browsing the ontology data for classifying the type of CE and SUA to get the

subset of the relative rules to be assessed during the Auditing Framework execution.

Artifacts Preparation

This phase includes getting probes information or artifacts for instrumenting CE, SUA,

and DT. It also gets DSL related to the Digital Twin that the user needs to instantiate.

The information acquired through Ontology Navigation can be saved for recovery in the

future, and guidelines about instrumentation with probes of the CE/SUA and the setup

of the DT through the DSL development are provided to the user.

Finalization of the Pre-setup

The auditing activity can be restarted as soon as the instrumentation and the DT

definition are completed. After completing this process, the session previously saved

can be recovered and the abstract rules refined or completed.

In this case, the user can modify or confirm the subset of rules selected for the

monitoring procedures.

Execution

Once confirmed or updated, those rules can be executed by the monitoring platform

component of the Auditing Framework.

Page 52 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

 Advancement of the Predictive Simulation

This section targets the Challenges CH4 and CH5 introduced in Section 1.1 about

detecting malicious deviations through specialized Digital Twins. Concerning D5.1 [11],

the development has been improved by providing a solution based on simplified

concerns that could prevent an intelligent software component from detecting it is under

evaluation. Initially designed for achieving a clear understanding of either functional or

timing behaviour of real-time control systems, this approach enables a concern-directed

prediction of the trustworthiness of intelligent software behaviour.

By focusing the scope of the evaluation on either schedule, function interaction, or

communication protocol between the intelligent software and interacting entities (such

as software, hardware, or subsystem), specialized and faster evidence of trust can be

achieved. As depicted in Figure 32, runtime evidence of trust can be provided through

the execution of horizontal abstractions of a software component or systems behaviour,

which are directed towards a specific scope of the evaluation and can be executed at

every level of vertical abstraction.

From top to bottom, vertical abstractions can be defined with a range of details varying

from a very high level where they take the shape of input/output tables or state charts to

very concrete levels when fully implemented. The horizontal abstraction of the intelligent

software behaviour can be executed to provide specialized evidence of trust. Further on,

vertical abstractions can propagate evidence of trust between different horizontal levels

for assuring the satisfaction of specific system-level goals and ongoing coalitions.

Figure 32 Execution of parallel abstraction

 Derivation of Specialized Digital Twins

The provided approach leverages the principle of simplification in the design of software

functions, creating more superficial behavioural structures capable of avoiding

uncontrolled feature interaction. Concretely, the process of simplifying concerns to

define concern-oriented abstract models has been redirected. In deriving abstract

models, it is essential to identify the main concerns and leave the ones subordinated to

them apart. The model derivation process needs to capture the characteristics of a

Page 53 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

system and the behaviour of its components at a specific level of abstraction. This

process varies in complexity by the nature of the system to be abstracted.

The approach that enables runtime detection of malicious deviations based on

Predictive Simulation requires a Design Phase for engineering systems artefacts that

support the later runtime prediction and conformity monitoring.

In this phase, different models of the system behaviour are created, including functional

models that enable runtime evaluation of functional interaction, temporal models that

enable timing predictions used in evaluating a software smart agent’s synchronization

capability, and models that will allow the runtime evaluation of the communication

protocol.

As discussed in Deliverable D4.2 [10], for enabling the runtime prediction of timing

behaviour, in the pure Predictive Simulation phase, the temporal logic model is used to

validate the accuracy of the Digital Twins that provide the timing abstractions.

The development of the two artifacts: the temporal model and the software smart agent,

can lead to a set of situations, namely:

1) No faults in either of the artifacts: Ideal situation

2) Same fault in both artefacts: Fair prediction

3) Different faults between artifacts: a situation that leads to dishonest trust

6.1.1. The Process

To address these deviations, during pure Predictive Simulation, the behaviour of a smart

software agent, subject to trust evaluation and the corresponding temporal logic model,

is evaluated for consistency before being deployed. Then, during runtime within a

simulation environment, before the execution of the smart software agent, the

corresponding temporal model is fed with real-time data and executed much faster.

During this phase, the specialized Temporal Digital Twins are executed with other

interacting components of the software. Smart software can be either other software

components, hardware resources, or system platforms.

6.1.2. Derivation of Specialized Timing Digital Twins

The model is specifically targeted toward capturing untrusted deviations from the

minimum and maximum delay of execution. For the experienced reader, it is evident that

the model is based on a fragment of Linear Temporal Logic, but with a refined validation

clause regarding the temporal connective. These models traditionally provide means for

formally checking events' occurrence over time captured in traditional connectives of

until and since; our models differ from general Linear Temporal Logic models in the

sense that the temporal connective is limited in its future scope, and the validity of

statements is to be contained in said scope. Besides this restriction for the temporal

connective, the model provides customized predictive-simulation restrictions that check

for future events. Overall, the model is highly expressive for timing considerations of

behaviour evaluated within the Predictive Simulation paradigm.

Page 54 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

For any simple statements p, q, ..., any complex statements A, B, ..., the unary connectives

¬ (Negation), ♦ (In the future), and the binary connectives ∧ (Conjunction), ∨

(Disjunction), → (Entailment), the following recursive forming rules apply:

a) For any simple statement p, p is a well-formed statement. Furthermore, if A = p,

then A is well- formed statement.

b) If A is a well-formed statement and ∗ is a unary connective, then ∗A is a well-

formed statement.

c) If A and B are well-formed statements and ∗ a binary connective, then A ∗ B is a

well-formed statement.

d) There are no more well-formed statements than those defined by the clauses (a),

(b) and (c).

Simple and complex statements refer to any data generated by events. The array of

connectives excludes any quantifiers connectives (e. g., ∀x, for all x) and focuses on the

propositional fragment rather than the first or higher order ones. This helps keep the

forthcoming model to a minimum, making its implementation easy as only simple

operations would be required. It also reduces the computational complexity and makes

its implementation in resource-constrained devices much easier.

A model M is the structure M = 〈K, T, |=〉, where K is for instance a set of robots a, b,

c, ...; i. e., K = {a, b, c, ..}; each element of K, each robot, is a set in itself that includes a

minimum and maximum time delay, m and h respectively, among other optional

characteristics o1, o2, o3, ...; i.e., a = {m, h, o1, o2, o3, ...}. T is a set of temporal points t1,

t2, t3, ... ; i. e., T = {t1, t2, t3, ...}. Finally, |= is a relation from K to the set of statements

such that the following clauses apply:

(1) a |= A ∧ B if and only if (iff) a |= A and a |= B

(2) a |= A ∨ B iff a |= A or a |= B

(3) a |= ¬A iff a 6 |= A

(4) a |= A → B iff a |= ¬A or a |= B

(5) a,t |= ♦A iff h = t + d1, m = t + d2 & ∃s, s ∈ T , with t < s, m < s < h, and a, s |= A, and

∀u, u ∈T , if t < u < s, then a, u |= A.

Page 55 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

 Advancements of Runtime Monitoring

Considering the complexity of the ecosystem, problems caused by a single constituent

(hardware or software) piece could either compromise the entire system or ecosystem

or expose it to hidden faults, malicious behaviour, or vulnerabilities able to impact or

propagate to the other interconnected parties.

Thus, techniques for efficiently and effectively assessing and preventing anomalies and

dangerous situations are required, especially when a new device, software, or system

component is integrated into an existing IoT system or ecosystem.

Among them, focus on using a runtime monitoring approach to detect, trace, and notify

security and privacy threats during the development of the online execution [21].

Monitoring approaches have been recognized in the literature as practical solutions that

provide dynamic mechanisms for analysing functional and non-functional properties

against well-stated conditions, such as contractual conditions for trust.

Indeed, a monitor engine can collect events for different goal evaluations (strategic-

tactical-operational) and from various systems and system components (including

sensors). The collected data are then used for inferring complex patterns, each

associated with specific functional and non-functional properties. In practice, the

monitoring activities involve the collection and analysis of different data sources (e.g.,

sensors, software, and hardware components or devices); the assessment of functional

and non-functional properties relative to components or devices of the system of

ecosystems, the detection of properties violation; the rising of specific alarms and the

actuation of countermeasures if necessary.

At the state of the practice, there are three main trends for detecting or predicting run-

time vulnerabilities or violations [21].

Using (previous) knowledge: In this case, previous data collections or past examples of

failures are used to predict the output’s quality. The proposals are usually based on

either deep learning approaches as in [23] or rely on a separate system to monitor and

predict a target model’s failure (as in [19], or on a perceptions system[20], or methods

for prediction learning (as in [18]).

Using input data: This group includes monitoring methods based on the analysis of the

stream of input data coming from different sources, like, for instance, sensors,

components, devices, systems, or models (as in [1][2][3]).

Using confidence estimations: In this case, confidence learning and uncertainty

estimation are used for the output evaluation (as in [5],[4], and [7])

Starting with the proposal provided in deliverable D5.1 [11], the Runtime Monitoring has

been refined and finalized as described in Section 3.2 to target the second trend. Indeed,

Runtime Monitoring uses the input data for violation detection. In particular, the

proposed infrastructure has been improved by considering aspects such as:

● possibility of managing the heterogeneity of events producers.

● possibility of interacting with different contexts and environments.

● ability to manage multiple CEP (Esper, Drools) instances.

● ability to deal with Multiple data storage (influxdb, MySQL).

● possibility to communicate through a Rest interface and JSON messages.

● mediation of messages through JMS2JSON mediator.

Page 56 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

● possibility to scale the amount of CEP and events listener channels.

● optimizing message processing and improving the quality of services by

executing routing techniques to the most suitable CEP.

● improving the possibility to scale monitoring instances using docker container

deployment (ongoing activity).

All these facilities have been developed according also to the principles specified in the

Reactive manifesto28:

● Responsiveness for guaranteeing a consistent quality of services.

● Resilience: trying to manage all possible exceptions and interruptions that may

occur during the execution to provide a highly available system.

● Elasticity: allowing the number of complex event processors and channels

communication scales to avoid central bottlenecks.

● Message driven: all the messages are asynchronous and loosely coupled

between components involved in the evaluation.

 Runtime Monitor Innovation Aspects

The BIECO project focuses on integrating monitoring facilities that provide a predictive

engine for functional or non-functional property definitions, dynamic implementation of

monitoring rules, and an adaptive approach for functional and non-functional property

verification and assessment.

As described in Section 3.2, the available monitoring infrastructures have been analysed

to improve the Runtime Monitoring. In particular, the current implementation of the

Runtime Monitoring leveraged some of the features proposed by existing solutions such

as XDR (eXtended Detection and Response), EDR (Endpoint Detection and Response),

and SIEM (Security Information & Event Management).

The following details of the improvement concerning each of them are provided.

7.1.1. Leveraging the XDR

Considering the XDR, the Runtime Monitoring leveraged the mechanism of the data-lake

to make it more suitable for prompt analysis and reactions. XDR uses a comprehensive

approach based on a data-lake paradigm for detection and response. It collects and

secures data on activities on multiple levels and provides automated analysis of this

data to detect threats. As a result, security analysts are equipped to conduct deeper

investigations and adopt more rapid responses. The Runtime Monitoring implemented

in BIECO leveraged the multiple levels of automated data analysis of the XDR by

exploiting a federated set of Complex Event Processors (CEPs). Indeed, each CEP is

dedicated to either a specific threat of functional or non-functional property verification

or to analysing a particular type of data. The CEPs are strongly interconnected and able

to exchange complex events. This allows evaluation to be executed faster than XDR to

speed up the detection of emerging threats and possible malicious behaviour.

28 https://www.reactivemanifesto.org/

Page 57 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

7.1.2. Leveraging the EDR

Considering the EDRs, Runtime Monitoring leveraged their countermeasures

management by providing a more flexible and customizable mitigation approach.

Indeed, Runtime Monitoring lets the users define their countermeasures to avoid

stopping the runtime activities as a unique alternative.

The customizable countermeasures stored in the BIECO Ontology can be associated

with the Runtime Monitoring rules and applied during the monitoring activity in case of

violation detection.

Various countermeasures have been considered and are currently partially integrated

into the Runtime Monitoring. The Complex Event Processor component triggers the

countermeasures. This may involve the endpoint violating the expected behaviour.

Ordered by increasing complexity, the countermeasure implementation is

1) Notify a specific message in which logs and data of the detected violation are

reported.

2) Stop the execution of the component or device responsible for the violation (the

SUA or one of the CE elements).

3) Execute a countermeasure to mitigate the violation and bring the system back

safely. This includes the possibility of integrating Smart Agents and artifacts into

the probes. The Smart Agent can get a security issue as a counter effect: it can

be considered a potential backdoor. Therefore, specific risk mitigation strategies

should be adopted.

7.1.3. Leveraging the SIEM

Considering the SIEM solutions, the Runtime Monitoring includes mechanisms for

gathering all the events generated across the System Under Audit (SUA). However,

Runtime Monitoring leverages it to manage events not only for storage and post-analysis

activity and for online validation of possible functional and non-functional property

violations. Indeed, BIECO Runtime Monitoring exploits the knowledge about the correct

SUA behaviour for evaluating the ongoing SUA behaviour to detect and notify threats

promptly.

Page 58 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

 Auditing Framework Execution

As part of the BIECO Runtime phase execution, the Auditing Framework targets the

monitoring of functional and non-functional properties of the System Under Auditing

(SUA) and the Controlled Environment (CE). It involves the interactions between the

System of System, the Controlled Environment, and the new component or device (the

SUA).

The BIECO Runtime phase lets the execution of the Auditing Framework in three different

situations:

a) CE is simulated, i.e., the CE is a simulation model able to represent the real
environment. In this case:

i) SUA can be simulated or real
ii) Models or Stubs can be used to simulate the environment components in

which SUA is executed.
b) CE is executed in a testbed environment, i.e., the CE is a representation of the

real environment but executed in a testbed framework to have the possibility to
control the internal status of each CE component and to manage violations
safely. In this case:

i) The SUA is a real component
ii) The CE components directly interacting with the SUA can be

■ real components
■ simulated models,
■ executed using stubs.

c) CE is executed in a real context, i.e., the CE and its components are executed in
a real (operational) environment. In this case,

i) The SUA is a real component.
ii) The CE components directly interacting with the SUA are real

components.

As detailed more in deliverable D8.2 [17], the BIECO project provides four Use Cases

(UCs) to validate the Auditing Framework activity. In particular, the use cases let the

validation in the a) and b) situations described above. Specifically:

UC 1 - ICT Gateway: provides an example of the CE being executed in a testbed

environment (situation b)). In this case, the ICT gateway is the SUA, while the other CE

components directly interacting with the SUA are executed using stubs.

UC 2 - AI Investment Platform: provides an example of the CE executed in a testbed

environment (situation b). In this case, SUA is a real component, and the CE components

directly interacting with the SUA are real.

UC 3 - EV Smart Microfactory: provides an example in which the CE is executed in a

testbed environment (situation b)). In this case, SUA is a real component, and the CE

components directly interacting with the SUA are real.

UC 4 Coppelia: provides an example in which the CE is simulated (situation a)). In this

case, the CE (i.e., the Autonomous Navigation) and the SUA (i.e., a Robot Unit 1) is

simulated.

The following sections describe the Auditing Framework execution on the UC 4. It

focuses on the interaction between the four main components: the Auditing Framework

GUI, the Ontology Manager, the Runtime Monitoring, and the Predictive Simulation.

Page 59 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

 UC 4 Coppelia

In UC 4, the Controlled Environment consists of a CoppeliaSim simulation representing

the multi-robot navigation scenario for intralogistics as depicted in the overlay (see

Figure 33). As better specified in deliverable D2.4, the System Under Audit is part of the

robot, with probes being injected into the local planner component for navigation. Under

normal conditions, both robots depicted in Figure 33 should follow the computed path

while avoiding environmental objects and each other.

Figure 33 Coppelia Simulator

The user can start the auditing activity by interacting with the Runtime GUI29. As shown

in Figure 34, the Auditing Framework begins with selecting the Auditing Framework
Setup features (see details in Section 3.5). The following sections detail the execution

of each of them, starting from the first step, i.e., the Pre-setup Phase.

Figure 34 Runtime GUI: Auditing Framework Setup

29 Note that the Runtime GUI is the BIECO framework interface for the overall Runtime Phase management.
The Auditing Framework GUI is instead the GUI specifically developed for the management of the Auditing
Framework activities.

Page 60 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

8.1.1. Pre-Setup Phase

As shown in Figure 35, the activity allows the user to explore the classification and

categorization of the different Systems of Systems, their devices, and components. The

Pre-setup Phase involves the collaboration between the Auditing Framework GUI (see

Section 3.5) and the Ontology Manager (see Section 3.4).

Figure 35 Auditing Framework GUI: Auditing Framework Pre-Setup

In particular, the Auditing Framework GUI provides the user easy-to-use means for

navigating the ontology. Indeed, the user selection forces a suitable ontology query to

guide the definition of the rules to be used during the auditing stage (see Section 3.4).

Figure 36 Auditing Framework GUI: SoSs selection

As shown in Figure 36, a list of possible controlled environments is provided. In this case,

Autonomous Navigation can be selected as the target CE for UC 4. Successively, the list

of the CE devices is visualized through the Auditing Framework GUI to let the user select

the target SUA. Figure 37 shows that Robot Unit 1 is chosen as the target SUA for the

UC4 experiment.

Page 61 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Figure 37 Auditing Framework GUI: Device selection

This selection forced the Auditing Framework GUI to query the Ontology Manager with

the name of the components to be visualized.

As soon as this data is available, the Auditing Framework GUI visualizes the components

list to the user to let them select the suitable one. As shown in Figure 38, for UC 4, the

selected component is Local Planner_1.

Figure 38 Auditing Framework GUI: Components selection

Page 62 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

As before, through the collaboration between the Auditing Framework GUI and the

Ontology Manager, the visualization of the specific component skills is provided:

connectivity and movement (see Figure 39).

Figure 39 Auditing Framework GUI: Skills selection

In UC 4, connectivity is the skill considered for experimentation because it is regarded

as the most critical from the security point of view.

Again, the collaboration between the Auditing Framework GUI and the Ontology Manager

provided the user with the lists of the most suitable functional and non-functional

properties for the selected SUA and CE.

As shown in Figure 40, the properties are presented as high-level specifications and

correspond to the ontology abstract rules (see Section 4.4). According to the ontology

representation, the abstract rules are classified as standard rules, i.e., non-functional

properties that can be assessed through the Runtime Monitoring, and Pure Predictive

rules, i.e., functional properties that can be predicted using Digital Twin in the Predictive

Simulation.

As shown in Figure 40 in UC 4, one of the standard rules that the user could select is the

“Maximum number of established simultaneous connections.” The rule targets the

mutual interaction between Local Planner_1 and Autonomous Navigation.

Figure 40 Auditing Framework GUI: Select/adapt abstract rules selection

Page 63 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

As shown in Figure 41, the rule boundaries can be established either using the Blueprints

data collected during the design time phase execution or can be provided by the user.

In both cases, the values are managed through the ontology and remain valid for all

runtime execution.

Considering the pure predictive rules instead, in UC 4, one of the properties considered

is the “Expected communication pattern through an ordered list of message types” (see

Figure 40). This rule is visualized as an Ontology Manager query and focuses on the

behavior of the Local Planner_1. It requires that the Digital Twin predicts and forecasts

to monitor the specific message order.

The last interaction between the Auditing Framework GUI and the Ontology Manager

concerns the definition of boundaries. Indeed, if not provided by the Blueprint data

analysis, the user needs to insert the boundaries for the selected abstract rules as the

last step. As shown in Figure 41, the value of the “Maximum number” is set to 1  for the

standard rule selected.

Figure 41 Auditing Framework GUI: Refine Abstract Ruleset

This concludes the Pre-Setup phase and starts preparing the following steps described

in the following sections.

8.1.2. Offline Activities

When the pre-set-up phase ends, the interaction between the Auditing Framework and

the Runtime GUI provides the user with downloadable artifacts helpful in preparing for

the following auditing activities.

Page 64 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Figure 42 Auditing Framework GUI: Refine Abstract Ruleset

As shown in Figure 42, the artifacts include

● A set of guidelines for using the DSL language and deriving the Digital Twin.

● A jar file of the executable probe.

● A set of guidelines helpful in instrumenting the code.

The guidelines for instrumenting both the SUA and CE are provided in Appendix A.

Using the above information, the user can work offline to prepare the required Digital

Twin and instrument the Local Panner_1, Controlled Environment, and Digital Twin itself

with suitable probes.  As an example, Figure 43 shows the probe inserted into Local

Panner_1.

Figure 43 Auditing Framework GUI: Probe Injection

The development of the models for the Digital Twins is provided using the DSL (see

Figure 44). For creating the executable DT, the user creates a file with the extension that

refers to the language (.nv3). Automatically the pop-out menu enables the usage of pre-

Page 65 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

defined structures like packages and entities. The user then starts to write the behaviour

by structuring it accordingly.

In BIECO UC 4, the user defines the behaviour of the Local Planner that guides the

navigation of the robot. With every build, the code for the executable models is

generated.  The navigation module interacts with other entities. This interaction needs

to be specified in the behavioural description.

Interactions are captured in dedicated constructs that gather information being

exchanged. This information is later encapsulated within specific events monitored for

conformity with the execution in the real world or controlled environment. Decision

events will be those events that cross the architectural boundaries of an internal

component, whereas events describe normal input/output interaction with components

within the same architectural structure.  In the end, the complete behaviour is declared,

and corresponding models are created. These models are then packed as .jar files and

executed in a Predictive Simulation environment.

Figure 44 Digital Twin Eclipse Profile: Digital Twin development

8.1.3. Finish Pre-Setup

Through Runtime GUI, the user can finalize the auditing activity pre-setup phase. As

shown in Figure 45, the Auditing Framework continues with the Finish setup phase step.

Page 66 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Figure 45 Auditing Framework GUI: Finish Pre-Setup phase

In these steps, the user first uploads the prepared Digital Twin, then finalizes the well-

defined rule. This activity involves the Auditing Framework GUI and the Ontology

Manager components. It focuses on the identifiers of the probes injected into SUA,

Digital Twin, and Controlled Environment.

In Figure 46 and Figure 47, examples taken from the UC4 are shown. In this case, for the

rule named “Maximum number of established simultaneous connections,” the user

inserts the identifier “SUA_PROBE”; for the pure predictive rule called “Expected
communication pattern through an ordered list of message types” (see Figure 40) the

user inserts “ DT_PROBE.” 

Figure 46 Auditing Framework GUI: Standard Well-defined rule refinement

Once finalized, the well-defined rules are translated into instantiated rules and provided

to the Runtime Monitoring component for execution.

Page 67 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Figure 47 Auditing Framework GUI: Pure predictive Well-defined rule refinement

This ends the pre-setup phase, and the control goes back to the Runtime GUI to start the

core of the Auditing Framework activity.

8.1.4. Start Auditing Framework

As soon as the user presses the “Start Auditing Framework” button in the Runtime GUI,

a start command is sent by the Orchestrator to the Auditing Framework to begin the

collaboration between the Runtime Monitoring and the Predictive Simulation

Component. The start button caused the Runtime Monitoring to pass from the “online”

state to “running” status. In this stage, the Predictive Simulation component is activated

only in case one or more pure predictive rules have been selected. Otherwise, only the

Runtime Monitor component is started.

In receiving the start command described in Section3.2, the Runtime Monitoring raises

the Complex Event Processor and accepts the instantiated rules defined in the Pre-Setup

phase. Then, it compiles the rules into meta-rules and Instantiated rules.

At this point, the Runtime Monitoring starts listening to the events sent by the probes on

a dedicated channel. As examples, Figure 48 and Figure 49 show the SUA_Probes

injected in the Local planner_1 to send events related to velocity and score, respectively.

Page 68 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Figure 48 Trace of Connection message sent by SUA_Probe

In parallel, listening from the same channel, the Predictive Simulation, if previously

activated, receives the events useful for fed abstract models.

These are executed faster than the Controlled Environment and can therefore provide

predictions about trusted behaviour.

Considering the “Expected communication pattern through an ordered list of message
types” rule, Figure 50 provides the DT_probe injected into the Digital Twin. It includes a

DTForecast event containing a Digital Twin prediction regarding a velocity and score

events sequence.

Figure 49 Trace of Velocity messages sent by SUA_Probe

Using the data of the DTForecast event, the monitor instantiates the meta-rule into a new

rule and injects it into the CEP.

Page 69 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Figure 50 Trace of forecast messages sent by DT_Probe

As shown in Figure 51, the boundary value for the period validity of the new rule is also

provided. In this case, the boundary is set to 5 seconds, as established in the DTForecast

event.

Figure 51 Trace of rule self-generated by the Runtime Monitoring

On the Runtime Monitoring side, it continuously receives the SUA_probe events

containing Score, Velocity, and connection status and checks the set of instantiated

rules. Predictive Simulator and Runtime Monitoring continue collaboration till the user

decides to stop the auditing activity or as soon as a rule violation is experienced.

Page 70 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

8.1.5. Validation Scenario

In the UC4 execution, a malicious code attack has also been simulated for validation

purposes. Thus, a malicious code injection has been performed through the UI. As

shown in Figure 52, this caused an increase in the connections between the Local
planner_1 and the Global planner.

Figure 52 CoppeliaSimulator: Execution of a malicious code attack

Consequently, as in Figure 53, the Runtime Monitoring observed the violation of the

“Maximum number of established simultaneous connections” rule, immediately notified

the BIECO platform, and triggered the associate countermeasure. In case the Auditing

Framework activity was stopped, the system's dynamic configuration performed offline.

Figure 53 Runtime Monitoring Logger: Trace of rule violation raised

Page 71 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

Once the system has been reconfigured, another round of the Auditing Framework

execution has been performed. As shown in Figure 54, the system returned to a safe and

trusted condition.

Figure 54 Coppelia Simulator: System turns back to a safe condition

Page 72 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

 Conclusions

The deliverable reported the Work Package 5 activities performed over the second years

(M13 to M24) to improve and implement the Auditing Framework. Thus, it provided

technical details about implementing the overall framework and its components.

Additionally, it presented the (technological and research) advancements concerning the

previous deliverable (D5.1 [11]). The validation of the Auditing Framework with the UC 4

- Coppelia has also been described.

The deliverable fulfilled all the future works listed in the previous deliverable, focused on

the improvements of the proposed ontology, the implementation of the Auditing

Framework and its components, the integration of the Blueprints, and the validation of

the through the BIECO Use Cases.

As future general works, the following activities will be considered and reported in

deliverable D5.3.

1. Implementation of the final version of the Auditing Framework and its

components.

2. Validation of the Auditing Framework with all the BIECO Use cases.

3. Exploitation and dissemination of the Auditing Framework.

As specific future works, the following will be considered:

For the Runtime Monitoring: include features for using smart agents instead of the

proposed probes. The new probe should be capable of sending formal events, receiving

notifications from the CEP, and activating countermeasures. Therefore, the probe could

be used to change its host's behaviour while running to reduce the risk of the detected

violation. Solutions to be analysed are lowering a transmission rate to avoid collision or

congestion; or executing an alternative activity during the system running.

For the Ontology Manager: Finalize the components' implementation by identifying the

alternative open-source tools to be used and customized. This activity will also consider

interoperability and extensibility to improve the overall implementation performance.

For the Predictive Simulation: explore how autoencoder-based classification of

situations may be used for training and using models. Specific attention will be

dedicated to investigating which requirements a learnt model should fulfil to be applied

for Predictive Simulation and which opportunities and limitations exist. Additionally, the

different possibilities for the DT derivation will be considered: (1) in-house, in parallel

with the source code of the smart software agent by starting from the same

specifications, (2) from the abstract behaviour of DTs, the source code of the smart

software agent can be derived, or (3) in house, from the source code, specialized

abstract models can be derived. In this last case, the possibility of extracting from AST

(Abstract Syntax Tree) and CFG (Control Flow Graph) the meaningful information to be

included in the definition of SDT (specialized Digital Twins) will be considered.

Page 73 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

References

[1] P. Antonante, D. I. Spivak and L. Carlone, Monitoring and diagnosability of perception

systems, arXiv:2005.11816, 2020, [online] Available: http://arxiv.org/abs/2005.11816.

[2] Paolo Barsocchi, Antonello Calabrò, Antonino Crivello, Said Daoudagh, Francesco Furfari,

Michele Girolami, Eda Marchetti: A Privacy-By-Design Architecture for Indoor Localization

Systems. QUATIC 2020, pp. 358-366.

[3] Paolo Barsocchi, Antonello Calabrò, Erina Ferro, Claudio Gennaro, Eda Marchetti, Claudio

Vairo: Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules.

Sensors 18(6): 1886 (2018).

[4] Antonia Bertolino, Antonello Calabrò, Francesca Lonetti, Eda Marchetti: Towards Business

Process Execution Adequacy Criteria. SWQD 2016, pp. 37-48.

[5] Antonello Calabrò, Francesca Lonetti, Eda Marchetti, Giorgio Oronzo Spagnolo: Enhancing

Business Process Performance Analysis through Coverage-Based Monitoring. QUATIC 2016

pp. 35-43.

[6] Emilia Cioroaica, Said Daoudagh, Eda Marchetti (2022) Predictive Simulation for Building

Trust Within Service-Based Ecosystems. PerCom Workshops 2022, pp. 34-37.

[7] C. Corbière, N. Thome, A. Bar-Hen, M. Cord and P. Pérez, Addressing failure prediction by

learning model confidence, Proc. Adv. Neural Inf. Process. Syst., vol. 32, pp. 2902-2913,

2019.

[8] Said Daoudagh, Eda Marchetti, Antonello Calabrò, Ana Inês Oliveira, Filipa Ferrada, Francisco

Marques, José Barata and Ricardo Peres (2022) An Ontology-based Solution for Monitoring

IoT Cybersecurity. 5th IFIP International INTERNET OF THINGS (IoT) Conference 2022.

[9] Deliverable D2.4, Overall system architecture Update (Final), BIECO project.

[10] Deliverable D4.2, Report on methods and tools for the failure prediction, BIECO project.

[11] Deliverable D5.1, Definition of the Simulation Model and Monitoring Methodologies, BIECO

project.

[12] Deliverable D6.2, Blockly4SoS user guide, BIECO project.

[13] Deliverable D6.3, Risk Assessment, and additional requirements, BIECO project.

[14] Deliverable D6.4, Mitigations identification and their design, BIECO project.

[15] Deliverable D7.2, Security certification methodology definition, BIECO project.

[16] Deliverable D7.3, Security certification methodology development, BIECO project.

[17] Deliverable D8.2, BIECO Assessment methodology, BIECO project.

[18] S. Hecker, D. Dai and L. van Gool, Failure prediction for autonomous driving, Proc. IEEE Intell.

Vehicles Symp. (IV), pp. 1792-1799, Jun. 2018.

[19] S. Mohseni, A. Jagadeesh and Z. Wang, Predicting model failure using saliency maps in

autonomous driving systems, arXiv:1905.07679, 2019, [online] Available:

http://arxiv.org/abs/1905.07679.

[20] S. Rabiee and J. Biswas, IVOA: Introspective vision for obstacle avoidance, arXiv:1903.01028,

2019, [online] Available: http://arxiv.org/abs/1903.01028.

[21] Q. M. Rahman, P. Corke and F. Dayoub, Run-Time Monitoring of Machine Learning for Robotic

Perception: A Survey of Emerging Trends, in IEEE Access, vol. 9, pp. 20067-20075, 2021, doi:

10.1109/ACCESS.2021.3055015.

[22] Reich Jan, Schneider Daniel, Sorokos Ioannis, Papadopoulos Yiannis, Kelly et al. Engineering

of Runtime Safety Monitors for Cyber-Physical Systems with Digital Dependability Identities,

Computer Safety, Reliability, and Security 2020", Springer International Publishing, pp. 3—17.

[23] D. M. Saxena, V. Kurtz and M. Hebert, "Learning robust failure response for autonomous

vision-based flight", Proc. IEEE Int. Conf. Robot. Automat. (ICRA), pp. 5824-5829, May 2017.

[24] Schneider, Daniel, and Trapp, Mario, Conditional Safety Certification of Open Adaptive

Systems, ACM Transactions on Autonomous Adaptive, York, NY, USA July 2013, Vol 8, n.2 .

http://arxiv.org/abs/1905.07679

Page 74 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Appendix A. Runtime Monitoring Instrumentation Guidelines

A. Introduction

This document provides the methodologies that can be used for instrumenting software

to be monitored through the Auditing Framework.

The instrumentation relies on the concept of Probe, which is a library that sends a

selected set of data (like methods execution, variable value, and execution time values)

to the Auditing Framework. The Runtime Monitoring receiving this data, and through

analysis driven by rules, will be able to infer behavioural patterns or check the

conformance of functional and non-functional properties.

To enhance compatibility and security, the System Under Audit (SUA) can be

instrumented with Probes in several ways proposed in the following. A library that

contains software artifacts for the instrumentation is also provided.

A.1 Overview

The simpler version of the probe in BIECO is represented by a piece of code capable of

sending events according to a specific format.

This probe can send events regularly, or every time a specific situation occurs. An

example of this probe is described in the Section A.4.

The following guidelines provide information for executing the Instrumentation process

depicted in the figure below.

Figure 55 Code Instrumentation process

The user can choose among a bouquet of instrumentation mechanisms:

• Input/Output captured by specific probe: through this approach, the user must

instrument/adapt its code with a mechanism that will provide the information

needed for monitoring activities in a particular port/socket/channel. Once

Page 75 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

offered, on the same port, an artifact capable of converting those raw data to the

format understandable by the Runtime Monitoring must be configured to

transform and send the data to the Runtime Monitoring. The artifact capable of

reading from a stream and converting to Runtime Monitoring format is provided

within the released library.

• Message-Based notification (made by the user): another approach lets the user

instrument their device (or CE) with their mechanism to send messages directly

to the message broker exposed by Runtime Monitoring. In this case, messages

should be structured according to a predefined format and protocol. Details are

provided in the Event Description section.

• Mentors probe code injection: in this case, the user can use a pre-build artifact

provided in conjunction with these guidelines. For Java, this is represented by a

jar library that can be directly used within the device (or CE) code for

implementing event-message notifications.

• Automatic instrumentation (ext. service): The latter option is related to the

possibility of exploiting an external service for device (or CE) instrumentation that

can wrap components and trigger actions. At the same time, specific methods

are invoked during the execution. In such a situation, overload risk should be

evaluated because it could bias performances/communications. However, the

message’s structure must comply with what was described in Appendix B.

A.2 Input/Output Captured by the Specific Probe

The Input/output captured by a specific probe mechanism allows instantiating an

external agent that reads data from a serial port, or a socket exposed by the device or

system under audit on which it writes data useful for the monitoring activities.

An example of the data that can be sent on this port is shown in the following example:

#START#TIMESTAMP:12123;EVENTNAME:theName;EVENTDATA:data#END#

The external agent receiving a message like this will take care to convert it into the

format described in the Appendix B and forward it to the monitoring platform.

This approach has been proposed by considering low-power devices or devices

developed with software language that does not allow the creation of HTTP connections,

rest, or MQTT channels for providing information directly to the Runtime Monitoring.

Depending on the implementation of this approach, some delays in notifications may be

encountered; for this reason, developers must evaluate the efficiency of this approach.

The following Section proposes an example of this type of probe.

We are supposed to have a GPS device that provides data captured on a serial port.

The probe software will:

● connect on the GPS device com port.

● capture the raw data from the GPS device (in NMEA format).

● filter the part of interest (latitude and longitude).

● encapsulate it into a ConcernBaseEvent object message.

● sent it to the monitoring for the analysis.

Page 76 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

package it.cnr.isti.labsedc.concern;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStream;

import javax.jms.Connection;

import javax.jms.ConnectionFactory;

import javax.jms.JMSException;

import javax.jms.MessageProducer;

import javax.jms.ObjectMessage;

import javax.jms.Session;

import javax.jms.Topic;

import org.apache.activemq.ActiveMQConnectionFactory;

import com.fazecast.jSerialComm.SerialPort;

import it.cnr.isti.labsedc.concern.cep.CepType;

import it.cnr.isti.labsedc.concern.event.ConcernBaseEvent;

public class GPSProbe {

 static String deviceGPS = "ttyACM0";

 static SerialPort comPort;

 static OutputStream out;

 static String brokerUrl = "tcp://0.0.0.0:61616";

 public static String lastGPSpos = null;

 public static void main(String[] args) throws InterruptedException {

 loopThreadGPS();

 }

 private static void loopThreadGPS() {

 try {

 Process p = Runtime.getRuntime().exec("cat /dev/" + deviceGPS);

 new Thread(new Runnable() {

 public void run() {

 System.out.println("GPS Probe started");

 BufferedReader input =

 new BufferedReader(new InputStreamReader(p.getInputStream()));

 String line = null;

 String[] results;

 try {

 while ((line = input.readLine()) != null)

 if (line != null && line.startsWith("$GPGLL")) {

 results = line.split(",");

 if (results[6].compareTo("A") == 0) { //gps signal is valid

 testProbe(brokerUrl, "DROOLS-InstanceOne", "vera",

 "griselda", "Robot-TWO", results[1]+","+results[3]);

 }

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }).start();

 p.waitFor();

 } catch (InterruptedException | IOException e1) {

 e1.printStackTrace();

 }

 }

 public static void testProbe(String brokerUrl,

 String topicName,

Page 77 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

 String username,

 String password,

 String eventData,

 String eventName) {

 try {

 ConnectionFactory = new

 ActiveMQConnectionFactory(username, password, brokerUrl);

 Connection = connectionFactory.createConnection();

 Session = connection.createSession(false,Session.AUTO_ACKNOWLEDGE);

 Topic = session.createTopic(topicName);

 MessageProducer producer = session.createProducer(topic);

 ObjectMessage msg = session.createObjectMessage();

 ConcernBaseEvent<String> event = new ConcernBaseEvent<String>(

 System.currentTimeMillis(),

 new Exception().getStackTrace()[1].getClassName(),

 "AuditingSystem-Monitoring", "sessionA",

 "checksum",

 eventName, eventData, CepType.DROOLS, false,"extension");

 msg.setObject(event);

 producer.send(msg);

 } catch (JMSException e) {

 e.printStackTrace();

 }

 }

}

Figure 56 Serial port probe example

 A.3 Message-Based Notification (Made by the User)

The instrumentation based on Message-Based notification made by the user relies on

the user self-implementation of the message notification mechanism.

The main constraint that users must respect for executing this approach are:

● create a secure connection to the message broker, for example,

tcp://BIECO.holisun.com:61616 using the security credentials provided.

● create an object Event according to what is described in Appendix B.

● mark the timestamp of this event once the events in the system under audit

occurs.

● send messages using a mechanism that relies on JMS or through JSON format

to the endpoint on which the monitoring is listening for post messages (see

Section 3.2)

To clarify the mechanism of connection/disconnection and sending of a message, the

developer can look at the code of SUAProbe, DTProbe, or the file ConcernAbstractProbe

provided in the package.

A.4 Mentors Probe Code Injection

In conjunction with these guidelines, a jar artifact containing the code of a generic probe

that can be used for the purpose is provided.

Page 78 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Opening the mentorsProbe.jar file as an archive into the folder

/it/cnr/isti/labsedc/concern, you can find a set of folders that defines the structure of

the probe, as shown in the figure below.

Figure 57 example folder

Two executable Java classes are reported in the example folder: SUAProbe and

DTProbe.

SUAProbe represents an executable probe implementation related to a generic system

under auditing; it inherits the constructor for the class ConcernAbstractProbe that

contains the generic behaviour of a probe.

The usage of the SUAProbe example is shown in the example below:

SUAProbe aGenericProbe = new SUAProbe(

 ConnectionManager.createProbeSettingsPropertiesObject(

 "org.apache.activemq.jndi.ActiveMQInitialContextFactory",

 "tcp://localhost:61616","system", "manager",

 "TopicCF","DROOLS-InstanceOne", false, "SUA_probe",

 "it.cnr.isti.labsedc.concern,java.lang,javax.security,java.util",

 "vera", "griselda"));

Figure 58 SUA probe example

Once the object is generated, the method inherited from the class

ConcernAbstractProbe can be invoked for sending a generic ConcernBaseEvent<T>.

The method is called sendEventMessage contained within ConcernAbstractProbe.

Page 79 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

protected void sendEventMessage(

ConcernBaseEvent<?> event, boolean debug)

throws JMSException,NamingException {

 if (debug) {

 DebugMessages.print(System.currentTimeMillis(),

 this.getClass().getSimpleName(),

 "Creating Message "); }

 try

 {

 ObjectMessage messageToSend =

 publishSession.createObjectMessage();

 messageToSend.setJMSMessageID(String.valueOf(MESSAGEID++));

 messageToSend.setObject(event);

 if (debug) {

 DebugMessages.ok();

 DebugMessages.print(System.currentTimeMillis(),

this.getClass().getSimpleName(),

 "Publishing message "); }

 mProducer.send(messageToSend);

 if (debug) {

 DebugMessages.ok();

 DebugMessages.line(); }

 } catch (JMSException e) {

 e.printStackTrace();

 }

 }

Figure 59 ConcernAbstractProbe

Through these facilities, the user may decide to use the generic send events mechanism

or to implement its own.

In the rest of the SUAProbe file, some methods have been presented to show the

possibility of sending a specific type of event directly. In this case, the event Score,

Velocity, Connection, and Disconnection related to the UC 4 already described have been

presented:

● sendVelocityMessage(SUAProbe aGenericProbe, String speed).

● sendScoreMessage(SUAProbe aGenericProbe, String score).

● sendConnectionEventMessage(SUAProbe aGenericProbe).

● sendDisconnectionEventMessage(SUAProbe aGenericProbe).

Those method calls, or similar ones personalized according to the monitoring needs,

must be placed in correspondence with the real event occurrence within the System

Under Auditing.

The libraries allow the developer to implement all the connection and sending actions by

itself. Figure below provides an example.

All the actions needed for establishing the connection are executed manually, creating a

producer (the object capable of sending the message on a channel) and the sending

actions.

Page 80 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

package it.cnr.isti.labsedc.concern;

import javax.jms.Connection;

import javax.jms.ConnectionFactory;

import javax.jms.JMSException;

import javax.jms.MessageProducer;

import javax.jms.ObjectMessage;

import javax.jms.Session;

import javax.jms.Topic;

import org.apache.activemq.ActiveMQConnectionFactory;

import it.cnr.isti.labsedc.concern.cep.CepType;

import it.cnr.isti.labsedc.concern.event.ConcernBaseEvent;

import it.cnr.isti.labsedc.concern.event.ConcernNetworkEvent;

public class Probe {

 public static void testProbe(String brokerUrl, String topicName,

 String username, String password,

 String eventData, String eventName,

 String extension, String checksum,

 String sessionID, String sender,

 String destination) {

 try {

 ConnectionFactory = new

 ActiveMQConnectionFactory(username, password, brokerUrl);

 Connection = connectionFactory.createConnection();

 Session = connection.createSession(false,Session.AUTO_ACKNOWLEDGE);

 Topic = session.createTopic(topicName);

 MessageProducer producer = session.createProducer(topic);

 ObjectMessage msg = session.createObjectMessage();

 ConcernBaseEvent<String> event = new

 ConcernBaseEvent<String>(

 System.currentTimeMillis(),

 sender, destination, sessionID,

 checksum, eventName, eventData,

 CepType.DROOLS, false,extension);

 msg.setObject(event);

 producer.send(msg);

 } catch (JMSException e) {

 e.printStackTrace();

 }

 }

}

Figure 60 Simple Probe

A.5 Automatic Instrumentation (ext. Service)

The Automatic instrumentation (ext.service) mechanism relies on an external

instrumentation service for capturing events occurring in the device (or CE).

Some (free) services provide features like wrapping components or triggering specific

calls when a method is called/executed. Those services will put an overload to the

Device under test and may bias performances/communications.

Information captured by probes is then sent to the Runtime Monitoring using the

mechanism provided in Input/output captured by a specific probe section. In Figure

Page 81 of 82

Deliverable D5.1 : Definition of the Simulation Model and Monitoring Methodologies

below shows an example of one of the possible tools that can be used to instrument

your code: JProfiler30.

Figure 61 Specific instrumentation tool

B. Event Description

The figure below details the representation of an event compatible with the complex

event processor deployed within the BIECO Auditing Framework.

30 https://www.ej-technologies.com/products/jprofiler/overview.html

Page 82 of 82

Deliverable D5.2 : First version of the simulation environment and monitoring solutions

Figure 62 Specific BIECO event

The interface Event proposes a set of parameters and methods signatures for setting it

up.

The ConcernAbstractEvent abstract class represents a usage of the event with the

minimum subset of parameters needed.

Those parameters can be extended with the classical extension procedure of the Java

programming language, allowing users to include more parameters that can be

interesting for the analysis. In the ConcernBaseEvent example, the property parameter

has been included to extend the ConcernAbstractEvent.

Below, more details about each field of the event object are provided.

● timestamp: the instant the event is generated on the been captured.

● senderID: the identifier of the sender.

● destinationID: the identifier of the receiver (for example, monitoring).

● sessionID: the identifier of the monitoring session.

● checksum: the computed Cyclic Redundancy Check of the payload.

● name: the name of the probe that is sending the data.

● data: the payload to notify, the format can be set up according to the parameter

T of the ConcernBaseEvent<T>.

● cepType: the identifier of the Complex Event Processor (CEP) that should

process this data: possible types are ESPER, DROOLS, and Enum CepType is

available.

● consumed: a parameter used by the CEP for analysing the events.

