

Deliverable D6.1

Blockly4SoS Model and Simulator

Technical References

Document version : 1

Submission Date : 30/06/2021

Dissemination Level

Contribution to

:

:

Public

WP6 – Risk Analysis and Mitigation Strategies

Document Owner : RESILTECH

File Name

Revision

:

:

Blockly4SoS Model and Simulator

3.0

Project Acronym : BIECO

Project Title : Building Trust in Ecosystem and Ecosystem

Components

Grant Agreement n. : 952702

Call : H2020-SU-ICT-2018-2020

Project Duration : 36 months, from 01/09/2020 to 31/08/2023

Website : https://www.bieco.org

Ref. Ares(2021)4270882 - 30/06/2021

Page 2 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Revision History

REVISION DATE
INVOLVED
PARTNERS

DESCRIPTION

0.0 30/03/2021 RES Table of Contents

0.1 07/04/2021 ALL Review of the Table of Contents

0.2 16/04/2021 RES Initial contribution to Section 2 and Appendices A, B

0.3 30/04/2021 UMU, IESE Review of the state-of-the-art reports (Sections 2.1-2.4)

0.4 30/04/2021 RES
Updates to Section 2 and 3, contributions to Sections
4 and 6

0.5 21/05/2021 RES Finalization of contribution to Sections 4 and 6

0.6 21/05/2021 UMU Contribution to Section 5 and acronyms table.

0.7 24/05/2021 RES Finalisation and preparation for internal revision

0.8 27/05/2021 RES
Implementation of internal reviewer comments.
Finalisation and preparation for external revision.

0.9 31/05/2021 RES
Updates in Executive Summary, Introduction and
Conclusions sections

1.0 02/06/2021 UMU External Review of the whole deliverable

1.1 11/06/2021 IESE External Review of the whole deliverable

2.0 16/06/2021 RES Implementation of Reviewers Suggestions

2.1 25/06/2021 UNI Review by Coordinator

3.0 30/06/2021 UNI Final Version

List of Contributors

Deliverable Editor and Contributors: Enrico Schiavone (RES), Francesco Brancati (RES),

Diamantea Mongelli (RES), Gabriele Morgante (RES), Andrea Bondavalli (RES), Rosaria

Esposito (RES), Francesco Rossi (RES), Andrea Ceccarelli (RES), Sara N. Matheu (UMU),

Emilia Cioroaica (IESE), Ioannis Sorokos (IESE), Adrián Sánchez (UMU).

Reviewers: Andrea Ceccarelli (RES, internal reviewer), Ioannis Sorokos (IESE, external

reviewer), Sara N. Matheu (UMU, external reviewer), José Barata (UNI, coordinator).

Page 3 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Partners

Disclaimer

The publication reflects only the author´s view and the European Commission is

not responsible for any use that may be made of the information it contains.

Disclaimer: The information in this document is subject to change without notice.

Company or product names mentioned in this document may be trademarks or

registered trademarks of their respective companies.

All rights reserved.

The document is proprietary of the BIECO consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written

agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not

liable for any use that may be made of the information contained herein.

BIECO project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 952702.

Page 4 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Acronyms

Acronym Term

ACL Access Control List

ADVISE ADversary VIew Security Evaluation

AEG Attack Execution Graph

AG Attack Graph

ANSSI Agence Nationale de la Sécurité des Systèmes d’Information

APG Attack Path Graph

APT Attack Path Tree

BDD Block Definition Diagram

CAPEC Common Attack Pattern Enumeration and Classification

CIA Confidentiality, Integrity, Availability

CPE Common Platform Enumeration

CPSoS Cyber-Physical System-of-System

CRS Cybersecurity Requirements Specification

CRUD Creating, Reading, Updating, Deleting

CS Constituent System

CSMS Cyber-Security Management System

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CWRAF Common Weakness Risk Analysis Framework

CWSS Common Weakness Scoring System

DCS Distributed Control Systems

DFD Data Flow Diagram

DoS Denial of Service

DREAD Damage, Reproducibility, Exploitability, Affected users, Discoverability

EMF Eclipse Modelling Framework

ENISA European Union Agency for Cybersecurity

FMEA Failure Mode and Effects Analysis

FMECA Failure Mode, Effects, and Criticality Analysis

FTA Fault Tree Analysis

GUI Graphical User Interface

HARM Hailstorm Application Risk Metric

HAZOP Hazard and Operability study

hTMM hybrid Threat Modelling Method

HWT Hierarchical Weakness Tree

IACS Industrial Automation and Control Systems

Page 5 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

ICT Information and Communication Technology

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

IoI Item of Interest

IR (NIST) Internal or Interagency Report

ISA International Society of Automation

ISA International Society of Automation

ISO International Organization for Standardization

IT Information Technology

ITE Intelligent Threat Engine

JSON JavaScript Object Notation

LINDDUN
Link ability, Identifiability, Nonrepudiation, Detectability, Disclosure of
information, Unawareness, Noncompliance

MDE Model-Driven Engineering

MQTT Message Queuing Telemetry Transport

MUD Manufacturer Usage Description

NIST National Institute of Standards and Technology

NVD (US) National Vulnerability Database

OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation

OEM Original Equipment Manufacturer

OT Operational Technology

OVVL Open Weakness and Vulnerability Modeler

OWASP Open Web Application Security Project

PASTA Process for Attack Simulation and Threat Analysis

PnG Persona non Grata

PyTM Pythonic framework for Threat Modelling

QoS Quality of Service

QTMM Quantitative Threat Modelling Method

RUI Relied Upon Interface

RUMI Relied Upon Message Interface

RUPI Relied Upon Physical Interface

SCADA Supervisory Control and Data Acquisition

SDL Security Development Lifecycle

SDLC Security Development Lifecycle Chain

SEI Software Engineering Institute

SoS System-of-Systems

Page 6 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

SP Special Publication

SQL Structured Query Language

STRIDE
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service
(DoS), Elevation of Privilege

SUC System Under Consideration

SysML Systems Modelling Language

TTP Tactics, Techniques, Procedures

UML Unified Modelling Language

VAST Visual, Agile, and Simple Threat

WCT Weakness Chains Tree

XMI XML Metadata Interchange

XML Extensible Markup Language

YANG Yet Another Next Generation

ZCR Zone and Conduit risk assessment Requirement

Page 7 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Executive Summary

The main goal of this deliverable is to introduce the methodologies behind ResilBlockly,

the Model-Driven Engineering tool that evolves Blockly4SoS, and which evolution has been

devised in the context of BIECO in order to support not only the modelling of the main

cyber-physical systems concepts, but also to perform hazard analysis, to enable threats

modelling, and to address risk assessment from both the safety and security

perspectives. Moreover, the evolved tool enables to graphically represent attack paths

and, thanks to the integration with a simulation engine, to represent interactions between

system components both under normal conditions and during attacks.

The document reports key concepts, and reviews and compares threat modelling

solutions and reference security standards (Section 2, and Appendices A, and B).

It also describes: i) a novel hazard analysis methodology derived from systematic

application of HAZOP to functions and interfaces (Section 3); ii) a threat modelling and

risk assessment process which leverages CWE, CVE and CAPEC catalogues, provides

attack trees/graphs visualization, and whose steps derive the integration of common

steps of the analysed standards (Section 4); iii) introduces the Manufacturer Usage

Description (MUD) standard, and presents how the latter is being extended with

characteristics originated from the modelling and analysis (Sections 5 and 6).

Then, Section 6 also introduces ResilBlockly main features and details how the above-

mentioned methodologies are provided within the tool.

Finally, Section 7 describes the ResilBlockly Simulation Engine, a completely new

simulator which enables to simulate the interactions between components modelled in

ResilBlockly.

Page 8 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Table of Contents

Technical References .. 1

Revision History ... 2

List of Contributors .. 2

Disclaimer .. 3

Acronyms ... 4

Executive Summary ... 7

Table of Contents .. 8

List of Figures .. 11

List of Tables ... 15

1. Introduction .. 17

2. State of the Art on Threat Modelling and Risk Analysis .. 19

2.1. Threat and Attack Paths Modelling Methods and Tools 19

 Attack Tree .. 20

 STRIDE ... 26

 VAST – Visual, Agile, Simple Threat Modelling Method 32

 LINDDUN ... 34

 PASTA - Process for Attack Simulation and Threat Analysis 35

 TRIKE ... 36

 OCTAVE - Operationally Critical Threat, Asset, and Vulnerability Evaluation . 37

 ADVISE - ADversary VIew Security Evaluation ... 38

 Security Cards ... 41

 PnG - Persona non Grata ... 42

 hTMM - hybrid Threat Modelling Method ... 43

 CORAS ... 44

 HAZOP – HAZard and OPerability Study .. 45

 Other Tools ... 47

2.2. Risk Rating and Security Scoring Systems .. 51

 CWSS - Common Weakness Scoring System .. 51

 CVSS - Common Vulnerability Scoring System .. 53

 VERACODE .. 54

 DREAD ... 55

 OWASP Risk Rating .. 56

Page 9 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

 Cenzic HARM - Hailstorm Application Risk Metric .. 56

2.3. Comparison of the Threat Modelling Methodologies and Risk Rating Systems 57

2.4. Reference Security Standards for Threat Analysis and Risk Assessment 59

 Introduction ... 59

 Basic Concepts and Risk Model .. 60

 Overview of the Selected Standards ... 67

 From Standards to BIECO Risk Assessment Process 81

2.5. Modelling of CPSoS .. 83

 SoS Basic Concepts ... 84

 AMADEOS SoS Conceptual Model .. 86

 AMADEOS SoS SySML Profile ... 86

 Blockly4SoS .. 93

3. Definition of a HAZOP-based Risk Assessment Methodology 98

3.1. Functional Hazard Analysis .. 99

3.2. Interface Hazard Analysis ... 101

3.3. THROP: HAZOP for Security Assessment ... 102

4. Definition of a Threat Modelling and Security Risk Assessment Methodology 104

4.1. Preparation .. 105

4.2. Identification of the Assets .. 105

4.3. Identification and Modelling of Threats .. 105

 CWE - Common Weakness Enumeration .. 106

 CVE - Common Vulnerabilities and Exposures Catalogue 110

 CAPEC - Common Attack Pattern Enumeration and Classification 112

 The Weaknesses and Vulnerabilities Identification Process 115

4.4. Graphical Representation and Attack Paths Analysis .. 116

 Hierarchical Weakness Tree .. 117

 Weakness Chains Tree (WCT) ... 117

 Attack Path Tree and Attack Path Graph .. 118

 Other Trees ... 120

4.5. Impact and Severity ... 121

 Vulnerabilities Impact and CVSS Base Score... 121

 Weaknesses Impact and Severity ... 122

4.6. Likelihood determination .. 123

4.7. Risk ... 123

Page 10 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

4.8. Assessment Report ... 124

5. Applicability of MUD Standard in Modelling Systems and Interfaces.................... 125

5.1. The Manufacturer Usage Description Standard .. 125

 The MUD Model .. 126

5.2. Limitations of the MUD standard ... 127

6. Implementation of the Methodologies in ResilBlockly .. 129

6.1. From Blockly4SoS to ResilBlockly .. 129

 General Improvements ... 129

 Introduction of Profiling and Modelling Features .. 130

 Interoperability, Ecore and EMF ... 132

 Conversion of SoS profile and Import of the ecore 134

6.2. Using the MUD standard for modelling.. 135

 Importing the original MUD file in ResilBlockly .. 136

 Exporting the extended MUD file from ResilBlockly 136

6.3. Hazard Analysis in ResilBlockly ... 136

 Functional Hazard Analysis in ResilBlockly .. 137

 Interface Hazard Analysis .. 138

6.4. Identification of Assets and Threat Modelling in ResilBlockly 141

6.5. Attack Paths and retrieval of additional Threats .. 143

6.6. Risk Assessment in ResilBlockly .. 144

7. The ResilBlockly Simulation Engine .. 146

8. Conclusions .. 151

9. References .. 152

Appendix A – Comparison Between Threat Modelling Tools .. 156

Appendix B – Risk Assessment Steps Descriptions and Reference Standards 162

Page 11 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

List of Figures

Figure 1 – Goal-Oriented Attack Tree .. 21

Figure 2 – An ADTree modelled with ADTool representing an attack on a bank account

 .. 22

Figure 3 - An ADTree where quantitative values are expressed .. 23

Figure 4 – Attack Tree modelled with Isograph’s tool, where the path of the minimum

attack cost (on the left, in orange) and the mitigation applied (on the right, in green) are

highlighted ... 24

Figure 5 Overview of RiskTree Designer software ... 25

Figure 6 – An example of prioritized risk table ... 26

Figure 7 Example of application of STRIDE to Commerce Server installation 27

Figure 8 STRIDE Per Element ... 27

Figure 9 A Possible Threat Analysis process based on STRIDE (image inspired by) 28

Figure 10 - Model Diagram Example in Microsoft Threat Modeling Tool 28

Figure 11 An example of threat list provided by Microsoft Threat Modeling Tool 29

Figure 12 Threat Model Report produced with Microsoft Threat Modeling Tool 29

Figure 13 Example of DFD in OVVL ... 30

Figure 14 Threat (on the left) and Vulnerability (on the right) analysis within OVVL........ 30

Figure 15 – Data Flow Diagram with Threat Dragon Tool ... 31

Figure 16 – Example of Attack Tree for tampering category of STRIDE 32

Figure 17 - Example of Tampering Attack Tree with CVSS-based scores and no mitigations

 .. 32

Figure 18 - Example of a Web Application Diagram in ThreatModeler 33

Figure 19 - Example of Dashboard .. 34

Figure 20 - LINDDUN framework ... 35

Figure 21 – Steps of TRIKE Methodology ... 36

Figure 22 Trike Tool [78]: rules tree for intended actions (left); autogenerated attack tree

(right). ... 37

Figure 23 Trike Tool [99]: Risk grid/threat visualization (left); actors view (right). 37

Figure 24 – Phases of OCTAVE methodology .. 38

Figure 25 - The ADversary VIew Security Evaluation (ADVISE) method 39

Figure 26 - An Attack Execution Graph (AEG) represents possible attacks 39

Figure 27 An example of the ADVISE attack execution graph editor page 40

Figure 28 An example of the ADVISE adversary profile editor page in Mobius 41

Figure 29 - Security Card Dimensions ... 42

Figure 30 - Example of Persona non Grata ... 43

file:///C:/Users/RICS/Downloads/BIECO_D6.1_30.06.2021_v3.0.docx%23_Toc75947434
file:///C:/Users/RICS/Downloads/BIECO_D6.1_30.06.2021_v3.0.docx%23_Toc75947435

Page 12 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 31 – Example of Risk modelled with CORAS, from .. 45

Figure 32 - HAZOP Analysis Process .. 46

Figure 33 Sample HAZOP Worksheet ... 46

Figure 34 - Example of Architecture .. 47

Figure 35 Threats view in Irius Risk .. 48

Figure 36 - Example of Critical Path in securiCAD ... 49

Figure 37 – Overview of Results given by securiCAD .. 49

Figure 38 - Example of Diagram realized with PyTM ... 50

Figure 39 - SD Expert Assessment .. 51

Figure 40 - CWSS Metric Groups ... 52

Figure 41 – The groups of CVSS metrics ... 54

Figure 42 - DREAD Mnemonic ... 55

Figure 43 Generic risk model and key risk factors from NIST SP 800-30 61

Figure 44 Risk Assessment Process – Step 2 Conduct Assessment Expanded View 70

Figure 45 Assessment for the interface between control systems and equipment,

including level of impact and security requirements .. 74

Figure 46 Flow diagram of the ISA 62443-3-2 Risk Assessment Process 77

Figure 47 ETSI test-based risk security assessment .. 79

Figure 48 Test based risk identification ... 80

Figure 49 Test-based security risk estimation .. 80

Figure 50 Overview of SoS conceptualization in AMADEOS .. 84

Figure 51 Overview of AMADEOS SysML profile and viewpoint-related packages 88

Figure 52 SoS Architecture Package .. 89

Figure 53 SoS Communication package .. 90

Figure 54 SoS Dependability package .. 91

Figure 55 SoS Security package ... 92

Figure 56 Flow of MDE using the Blockly4SoS .. 94

Figure 57 – Architecture viewpoint related blocks in Blockly4SoS 95

Figure 58 Providing services through a RUMI ... 96

Figure 59 Example of behaviour of a service .. 97

Figure 60 Process view of the HAZOP-based methodology (in blue the steps assisted by

ResilBlockly, in white the ones to be addressed offline) .. 99

Figure 61 Overview of the Methodology (in blue the steps object of this deliverable and

assisted by ResilBlockly, as well as databases or external data integrated within it). ... 104

Figure 62 Symbols for Weaknesses abstractions and types in CWE 107

Page 13 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 63 Example of NVD Severity .. 112

Figure 64 Example of HWT with all the child weaknesses for the “CWE 287: Improper

Authentication” .. 117

Figure 65 Example of WCT having as root the CWE 289: Authentication Bypass by

Alternate Name .. 118

Figure 66 Example of Attack Path Tree for CWE-648 ... 119

Figure 67 Attack Path Graph example related to CWE-648 .. 120

Figure 68 Overview of the (vulnerability) risk determination methodology, integrating CVSS

and the NIST SP 800-30 risk matrix ... 124

Figure 69 MUD standard model of the “mud” container ... 126

Figure 70 The GUI of ResilBlockly for the choice between Profiling and Modelling Features

 .. 130

Figure 71 The ResilBlockly flow and categories of users (to be compared with Blockly4SoS

flow in Figure 56) ... 131

Figure 72 Example of Derivation of Profiles and Models ... 131

Figure 73 Hierarchy of Ecore components .. 133

Figure 74 Types of Relation in EMF .. 133

Figure 75 Key elements in ResilBlockly Profile Designer .. 133

Figure 76 Two of the classes composing the Architecture viewpoint reproduced in EMF

 .. 134

Figure 77 A portion of the SoS Profile imported as ecore into ResilBlockly 134

Figure 78 A portion of the exported ecore XMI showing SoS and CS 135

Figure 79 ResilBlockly user interface to import MUD information 136

Figure 80 The ResilBlockly Profile Designer - Risk designer GUI with the Functions tab

selected and an example of function identified .. 137

Figure 81 The ResilBlockly Model Designer - Risk Assessment GUI with the functional

analysis tab selected and the interface for specifying the template 137

Figure 82 The ResilBlockly Model Designer - Risk Assessment GUI with the functional

analysis tab selected and the result of a functional analysis .. 138

Figure 83 Logical representation of a Sensor Network example with two interfaces 138

Figure 84 Example of profile with the meta-modelling of interfaces 139

Figure 85 The ResilBlockly Profile Designer - Risk Designer GUI with the Interfaces tab

selected and the interfaces definition process ongoing .. 139

Figure 86 Example of model with modelling simple interfaces 140

Figure 87 The ResilBlockly Model Designer - Risk assessment GUI with the Interfaces tab

selected and the result of the analysis .. 140

Figure 88 The ResilBlockly Profile Designer - Risk designer GUI with the Weaknesses tab

selected and some random weaknesses associated to a sample class block 141

Page 14 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 89 The CWE search interface with a sample example .. 141

Figure 90 The CAPEC search interface for the retrieval of attack patterns and association

of related weaknesses .. 142

Figure 91 The ResilBlockly Profile Designer - Risk designer GUI with the Vulnerabilities tab

selected and some random vulnerabilities associated to a sample class block 142

Figure 92 A generic Attack Path Graph .. 144

Figure 93 The ResilBlockly Profile Designer - Risk designer GUI with the Vulnerabilities tab

with the CVSS base score(s) from the NVD integrated .. 145

Figure 94 Overview of the simulation process and integration of ResilBlockly model with

external IDE and simulation engine .. 146

Figure 95 The BaseComponent.java class declaration ... 147

Figure 96 An example of auto-generated Java Class for a specific Model Component

named "DHT11".. 147

Figure 97 An override example of the executeBehaviour() method 148

Figure 98 An example of ResilBlockly model .. 148

Figure 99 An example of auto-generated interface instance ... 149

Figure 100 Example of interfaces between simulated and real systems 149

Figure 101 An example of a real time chart, developed as behaviour of a “Dashboard”

component, with third-party dependencies ... 150

Page 15 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

List of Tables

Table 1 Attack paths for the tree in Figure 4, where the underlined path has the highest

risk of threat occurrence ... 24

Table 2 STRIDE threat model .. 26

Table 3 - Steps and Activities of PASTA Methodology ... 35

Table 4 – Generic HAZOP Guide Words .. 45

Table 5 - Risk rating category-impact... 55

Table 6 – Summary of the Threat Modelling Methods ... 57

Table 7 Summary of the Risk Rating and Scoring Systems ... 59

Table 8 - Taxonomy of Threat Sources ... 64

Table 9 Assessment scales for the level of risk .. 68

Table 10 Assessment scales for the level of risk–Combination of Likelihood and Impact

 .. 69

Table 11 – Steps of Risk Assessment Process from ... 69

Table 12 Categories of Adversaries to Information Systems in NIST.IR 7628 74

Table 13 ISA/IEC 62443 .. 76

Table 14 Security Level and Threat Actors Definition in ISA/IEC 62443-3-3 78

Table 15 Full list of standards analysed in the context of this activity 81

Table 16 – BIECO Risk Assessment Process .. 82

Table 17 Possible HAZOP Keywords and their meaning for the Functional Analysis 99

Table 18 Columns in the HAZOP Functional Analysis Template 100

Table 19 Possible HAZOP Keywords and their meaning for the Interface Analysis 101

Table 20 Columns in the HAZOP Interface Analysis Template .. 101

Table 21 Additional Keywords identified for the THROP functional and interface security

analysis ... 103

Table 22 Status of CVEs ... 110

Table 23 Chains leading to CWE 289: Authentication Bypass by Alternate Name 118

Table 24 Attack Paths represented with APT having CWE-648 as root weakness 119

Table 25 Qualitative and quantitative severity rating scale in CVSS 122

Table 26 Comparison of Profiling and Modelling in Blockly4SoS and ResilBlockly 130

Table 27 Tools based on Attack Tree Methodology ... 156

Table 28 Tools based on STRIDE methodology .. 157

Table 29 The Tool based on VAST methodology .. 158

Table 30 The Framework which includes an implementation of ADVISE 159

Table 31 The tool based on Trike methodology .. 159

Page 16 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Table 32 The CORAS Tool ... 159

Table 33 Other Tools ... 160

Page 17 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

1. Introduction

The cybersecurity of an ICT system or component that is part of an ecosystem - or of a

System-of-Systems (SoS)-, is limited by the weakest element of the chain. This is due to

the fact that an attacker will likely try to target first the weakest component and then

identify the attack path that will let access to the rest of the systems, eventually by

exploiting additional weaknesses and vulnerabilities. This issue has strong implications,

as organizations can be at risk just taking part in an ecosystem, independently on their

security measures. Thus, it is necessary to have an effective management of risks that

includes a detailed view of all the weaknesses and vulnerabilities that can affect the

complete ICT supply chain, as well as each of its components.

Examples of supply chain risks may include insertion of counterfeits, tampering, theft,

insertion of malicious software and hardware, as well as poor development practices that

could impact the whole supply chain and have consequences also on safety. Therefore,

managing the security and safety risks for the whole ecosystem is fundamental.

This deliverable describes a set of methodologies and processes for risk analysis that

have been designed in the context of BIECO in order to address the above-mentioned

challenges of ICT supply chains and ecosystems.

The methodologies are supported by the conception and development of ResilBlockly, a

tool that assists designers in the early prototyping and design-time analysis phases, and

which evolves an existing tool named Blockly4SoS. Blockly4SoS is the supporting facility

proposed as result of AMADEOS project [104]. The design and modelling of complex

ecosystems have to address several challenges, as the time required for early prototyping,

the cost of modelling large and complex SoS due to their intrinsic complexity, as well as

scalability, readability, manageability of the model. Since AMADEOS addressed and solved

the above challenges, we choose Blockly4SoS as the starting point, evolving it especially

for addressing security and risk related concepts.

Along with a wide set of general improvements, ResilBlockly, the new version of this

model-driven engineering software, comes with a list of new features for threat modelling,

hazard analysis, safety and security risk assessment. Moreover, the tool allows to identify

those components, functions and interfaces that are most vulnerable and might cause the

greatest impact if compromised. Furthermore, it allows to graphically represent the attack

paths and patterns that an adversary may follow in order to penetrate the system or

component. In addition, the tool complies with the Manufacturer Usage Description (MUD)

[130] standard for specification of network policies, and extends the MUD with a set of

characteristics originated from the modelling and analysis activities, allowing the user to

generate the extended MUD file. Finally, it also permits to simulate the interactions

between components (e.g., when attacks are exploited) thanks to the integration with a

completely new simulation engine.

The document is structured as follows. Section 2 deals with the introduction of key

concepts and traces the landscape of several existing solutions, tools and methodologies

useful for modelling complex systems-of-systems, identifying and representing their

potential threats, and analysing the intrinsic security risk according to the reference

standards. Comparisons of the tools and further details about the standards are given in

the appendices.

In Section 3, there is the description of a methodology derived from a state-of-the-art

approach called HAZOP, for a systematic application of a hazard analysis and risk

Page 18 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

assessment to specific parts of the system model: functions and interfaces; the

methodology allows users, already in the early prototyping, to automatically identify -

thanks to customizable guidewords and templates-, the potential hazards matched to

these elements of the modelled system.

Then, Section 4 defines a threat identification and modelling methodology that supports

in the phases of a security risk assessment process, from the identification of assets and

threats (potential weaknesses and vulnerabilities affecting system components and

interfaces), to the determination of impact, likelihood and risk, going through the analysis

of attack paths.

Section 5 introduces the Manufacturer Usage Description (MUD) standard, and discusses

its limitations, identifying a set of relevant characteristics that the original MUD file is not

able to represent and that constitute a MUD model extension.

Furthermore, this deliverable provides in Section 6 a description of ResilBlockly,

highlighting the main differences and improvements with regard to its previous version

and how all the above-mentioned methodologies are specifically introduced within the

tool, with the help of some examples.

Finally, Section 7 describes a completely new simulation engine that has been designed

and implemented, and which enables to simulate the models realised with, and exported

from, ResilBlockly.

Page 19 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

2. State of the Art on Threat Modelling and Risk Analysis

This section introduces key concepts and traces the landscape of several existing

solutions, tools and methodologies useful for modelling complex systems-of-systems,

identifying and representing their potential threats and analysing the intrinsic security

risks according to the reference standards. The main purpose of the research described

in this section is to acquire knowledge about the best practices in the above-mentioned

areas, to understand the pros and cons of the existing approaches, and to determine

whether and how it is possible to design an integrated and all-encompassing solution for

addressing this so wide and complex set of activities.

Section 2.1 deals with a brief introduction on threat modelling; describes the most popular

threat modelling methodologies and the related tools typically employed to perform it,

where existing. Section 2.2 presents some of the main risk rating and security scoring

systems; Section 2.3 provides a summary and pros-cons comparison of all the

methodologies presented, while the full comparison between the tools is given in

Appendix A.

Then, Section 2.4 briefly introduces the basic risk related concepts, and provides an

overview of the main reference standards and guidelines considered in the context of task

T6.2, starting from standards related to the BIECO use cases domains (i.e., NIST SP 800-

30 [43], NIST.IR 7628 [87], ISA/IEC 62443 [92]), and extending the analysis to several

others. The result is a 9-step risk assessment process which has been outlined integrating

common steps and similarities in the security life cycles of the standards. Further details

on the association between steps and descriptions with the reference standards are

provided in Appendix B.

Finally, Section 2.5 provides the required background about modelling of complex Cyber-

Physical System-of-Systems (CPSoS), reviews some of the main contributions of

AMADEOS project [104] and introduces Blockly4SoS main distinctive features.

2.1. Threat and Attack Paths Modelling Methods and Tools

Following the definition from NIST SP 800-154: threat modelling is a form of risk

assessment that models aspects of the attack and defense sides of a particular logical

entity, such as a piece of data, an application, a host, a system, or an environment.

Threat modelling methodologies can be used to create an abstraction of a system, in order

to catalogue potential threats that may arise, but often include the outlining of profiles of

potential attackers and their goals. Moreover, it is tightly linked to other security activities

as risk assessment, security testing, and so on, and can provide useful inputs for them.

The main steps to build a scalable and repeatable threat modelling process are:

1. Characterize the system, identify assets and access points;
2. Identify, prioritize, and focus on high-risk threats;
3. Identify mitigation approaches;
4. Identify potential adversaries;
5. Reporting and operationalizing.

Page 20 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Threat modelling helps threat intelligence1 analysts to identify, classify, and prioritize

threats and to ensure effective documentation and reporting. In fact, an effective threat

intelligence report helps the security defence and the security operations team protecting

ICT assets from threats.

While the target of the modelling varies to different domains and levels of abstraction,

e.g., systems, networks, software, hardware devices, business processes, and so on,

typically, threat modelling is implemented following one of three approaches

independently: asset-centric, attacker-centric, and software-centric. This means that the

starting point and main focus of the modelling activity could be respectively: the set of

assets of a system being modelled, the adversary that puts the system at risk, or the

software which underlines the system.

There are several, best practice, threat modelling methodologies that can be applied, and

the collection of tools supporting this activity is very large. In the following, a list of the

most relevant and used ones is provided.

There are different methodologies applicable and multiple enabling software that assist

the threat modelling activity. The purpose of modelling, the domain and characteristics of

the object to be modelled, standards, and many other factors can drive the choice of a

specific methodology or tool. To our knowledge, the following are the most popular ones.

 Attack Tree

Attack tree provides a formal, methodical way of describing the security of systems, based

on varying attacks. Basically, it represents attacks against a system in a tree structure,

consisting of one root, leaves, and children [2]. This is similar to the decision trees [4] used

to help with business decisions or the fault trees [5] used to understand the reliability of

machines and machine-like processes. From the bottom up, child nodes are conditions

which must be satisfied to make the direct parent node true; when the node root is

satisfied, the attack is complete.

In any complex system, there are several root nodes, each representing a different goal.

And there is a number of different strategies to be formulated that could let achieving the

overall goal. These strategies can be expressed as a series of intermediate objectives that

individually, or in combination, realize the root goal. This decomposition process

continues, breaking the intermediate goals into ever finer grained activities. In details, OR

nodes are used to represent alternatives and AND nodes are used to represent different

steps toward achieving the same goal.

Figure 1 shows a generic, goal-oriented, attack tree [3]. The root models the overall goal

and is represented with an OR gate; intermediate goals are modelled with OR and AND

nodes depending on the need of achieving one or all the subgoals, respectively. The

leaves, subgoals, are represented through simple rectangular nodes.

1 Threat intelligence is the analysis of heterogeneous data sources (e.g., open source, social media, human,
technical, etc.) to generate meaningful information about existing or emerging threats and threat actors
targeted at risk management, security posture, decision making.

Page 21 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 1 – Goal-Oriented Attack Tree [3]

The formalism of attack tree may slightly vary depending on the type and shape of nodes

used, or on the additional information represented (equipment required, cost, feasibility,

likelihood, AND/OR gates, countermeasures, etc. [2]). When the countermeasures are

included in the model, the formalism is also referred as attack-defence tree.

By including a priori likelihood with each node, it is also possible to compute likelihood of

higher nodes using Bayes Rule [42]. Since the Bayesian analytic techniques used in fault

tree analysis cannot legitimately be applied to attack trees, analysts instead use other

techniques to determine which attacks will be preferred by a particular attacker. These

may involve comparing the attacker's capabilities (time, money, skills, equipment) with the

resource requirements of the specified attack [2].

Attack trees are used in a variety of applications, e.g.: ICT, in the fields of defence and

aerospace, industrial control systems (e.g., for electric power grid) and in general, also, to

model threats to both cyber-only and cyber-physical systems.

Typically, three conditions must be present in order for a threat agent2 to carry out an

attack against a system [3]:

1. The system must have vulnerabilities or weaknesses;
2. The threat agent must have sufficient capabilities available to exploit the

vulnerabilities.
3. The threat agent must believe they will benefit by performing the attack. The

expectation of benefit (as known as gain) drives motivation.

There are many tools that represent attacks with this formalism and enable threat

modelling according to this methodology.

2.1.1.1. ADTool – Attack-Defense Tree Tool

ADTool (Attack-Defense Tree Tool) [6] is a software that supports security analysis and

risk assessment, allowing users to model and analyse attack-defence scenarios

represented with attack-defense trees (ADTree) [6]. An ADTree [7] is a node-labelled rooted

tree describing the measures an attacker might take in order to attack a system and the

2 often referred as attacker or threat source. Various taxonomies of threat sources have been developed, as
the Appendix D in NIST 800-30 Error! Reference source not found.that it provides an exemplary taxonomy of
threat sources and associated threat characteristics: Adversarial, Accidental, Structural and Environmental.
For other details can refer to document Technical Report 6.2: Analysis and comparison of reference security
standards for threat analysis and risk assessment.
NB: The terminology used in this document mainly refers to NIST SP 800-30.

Page 22 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

measures that a defender can employ to protect the system. It has nodes of two opposite

types: attack nodes and defence nodes.

The two key features of an ADTree are the representation of refinements and

countermeasures. Every node may also have one child of opposite type, representing a

countermeasure. Thus, an attack node may have several children which “refine” the attack

and one child which defends against the attack. The defending child in turn may have

several children which refine the defence and one child that is an attack node and counters

the defence [7]. A shown in Figure 2, refinements are represented below the nodes, and

can be disjunctive (i.e., the corresponding of OR gates), or conjunctive (i.e., AND gates).

The purpose of ADTrees is to analyse an attack–defence scenario. The authors of [7]

define an attack–defence scenario as a game between two players, the proponent and

the opponent. As expected, the root of an ADTree represents the main goal of the

proponent [7].

Figure 2 – An ADTree modelled with ADTool representing an attack on a bank account [7]

The tool includes some main features [6] [7]:

− Creation and editing of attack-defence trees and sequential attack trees;

− Modular display of attack-defence trees, which allows modelling of large real-life

scenarios;

− Quantitative bottom-up analysis of attack-defence scenarios (see Figure 3 as

example). The bottom-up algorithm for evaluation of attributes supports measures

as:

o real values (e.g., time, cost, probability),

o levels (e.g., required skill level, reachability of the goal in less than k units

of time),

o Boolean properties (e.g., satisfiability of a scenario).

− The measures can be computed from the point of view of an attacker (e.g., the

cost of an attack), of a defender (e.g., the cost of defending a system), or relate to

both of them (e.g., overall maximum power consumption, as depicted in Figure 3).

Page 23 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

− Ranking of possible attacks for certain attribute domains. Custom domains can

also be specified by the user;

− Printing, exporting to various formats (i.e., pdf, png/jpg, tex) and saving of attack-

defence tree models;

− Customizable layouts.

Figure 3 - An ADTree where quantitative values are expressed [7]

2.1.1.2. AttackTree+

AttackTree+ is a tool existing since the 1980s which, according to its developer, Isograph

[8], provides an integrated environment for analysing the cybersecurity of automotive

systems in keeping with cybersecurity standards ISO 21434 (Road vehicles —

Cybersecurity engineering) and SAE J3061 (Cybersecurity Guidebook for Cyber-Physical

Vehicle Systems).

It can be considered a suite or toolchain, incorporating different tools for [8]:

o Threat Analysis: provides a graphical interface to construct an asset hierarchy and
identify threats to those assets that may be ranked by likelihood, severity and
controllability. A template is provided for performing threat analyses in compliance
with ISO 26262 (Road vehicles – Functional safety), as well as the HEAVENS
methodologies [44];

o Attack Tree Analysis: provides a framework for the construction and analysis of
attack tree diagrams. With an attack tree, the user can identify all possible paths
to a threat and rank those paths by likelihood. The Attack paths are deduced for
the item or component based on historical knowledge of vulnerabilities in similar
systems and components;

o Mitigation Tree Analysis: allows the user to identify all possible outcomes of a
threat and rank them by their likelihood.

Page 24 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Hence, the tool allows users to model system vulnerability, identify weak spots and

improve security using threat analysis and attack trees. It provides to the user various data

concerning the attacks [9], as: success probability, cost; impact; source of the attack;

attack path; return of Attack.

As shown in Figure 4, the tool allows the user to visualize the path of the minimum attack

cost and compare the same path with the defence applied. The figure describes the attack

tree for the elevation of privileges attack “A1 Run as Administrator”, and, on the right, the

same three with a mitigation “D3 Malware Download Protection” applied. It can be noticed

that in the tree on the right, the defence cost is expressed and the addition of a mitigation

has caused the update of probabilities and other existing data.

Figure 4 – Attack Tree modelled with Isograph’s tool, where the path of the minimum attack cost (on the
left, in orange) and the mitigation applied (on the right, in green) are highlighted [9]

Table 1 Attack paths for the tree in Figure 4, where the underlined path has the highest risk of threat
occurrence

Attack Source Attack Path

D1 D1 -> C1 -> B1 -> A1

D2 D2 -> C1 -> B1 -> A1

C2 C2 -> B2 -> A1

C3 C3 -> B2 -> A1

Page 25 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

RiskTree

The methodology underlying RiskTree [10] tool is a structured approach for risk

management which is adopted by the UK Government [11]. It is based around the concept

of attack trees and it provides a systematic way of capturing and prioritizing the risks to

business and systems. According to the producers of the tool, its results integrate well

with existing business processes, and the risk assessment reports generated can show

risks using a variety of data visualizations [10].

The RiskTree process is based on a typical risk management process and provides a

structured and systematic way of cataloguing the risks to a system or process [11]. The

steps composing the process are:

1. Identification of the risks by means of facilitated workshops and design of the
RiskTree using the RiskTree Designer;

2. Risk Assessment in a consistent way and with consensus from the participants;
3. Prioritization of the risks based on the analysis executed by the RiskTree

Processor;
4. Management and tracking of the risks, which are placed into a risk register.

The above-described process is supported by an online, cloud-hosted software-as-a-

service. The RiskTree software calculates the level for each risk and returns a prioritized

list (it can generate a sorted risk table for review). Countermeasures can then be applied,

and their effects viewed on both the tree and the risk table. As shown in Figure 5, the tool

allows the creation of trees within the browser environment; the progresses can be saved

in XML [11].

Figure 5 Overview of RiskTree Designer software [11]

The tree embeds indicators for parameters as cost, complexity, consequences, reward,

damage or replay. When the tree is built, and those parameters are specified, it can then

be submitted to the on-line service for security assessment. The prioritized table of risks

is then generated; an example of this table, generated from the above tree, is shown in

Figure 6. Risks are sorted on a six-point scale, from Very Low (VL) to Very High (VH).

More details on the process and the tool (e.g., the different type of charts showing risk

levels) are available in [11].

Page 26 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 6 – An example of prioritized risk table [11]

 STRIDE

STRIDE is an acronym and a threat model created by Microsoft engineers, which is meant

to guide the discovery of threats in a system [27]. The meaning of the acronym (i.e., the

type of threats), security properties and description is shown in Table 2.

Table 2 STRIDE threat model
 Type of Threat Security property threatened Description

S Spoofing Authentication
Impersonating something or
someone known and trusted

T Tampering Integrity
Modifying data on disk, memory,
network etc.

R Repudiation Non-repudiation
Claim to not be responsible for an
action

I Information Disclosure Confidentiality
Providing information to someone
who is not authorized

D Denial of Service (DoS) Availability
Denying or obstructing access to
resources required to provide
service

E Elevation of Privilege Authorization
Allowing access to someone
without proper authorization

It is a well-known threat-modelling method used to help reasoning and finding threats to

a system, and it is often used in conjunction with a model-based representation of the

target system that can be constructed in parallel (see the example shown in Figure 7).

STRIDE can be adopted to model not only cyber systems, but also cyber-physical ones.

Microsoft is not maintaining STRIDE anymore [37], however, it is included in their Security

Development Lifecycle (SDL) [153] and in the Threat Modelling Tool [12] described in

Section 2.1.2.1.

The typical steps required for applying the STRIDE model are:

1) identification of the assets,

2) definition of the trust levels of system users,

3) building of the Data Flow Diagram (DFD)3 [46],

3 A Data Flow Diagram provides a graphical representation of the data flow through an information system.
The threat modelling produces key artefacts and uses those diagrams as mappings with STRIDE to identify
threats.

Page 27 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

4) identification of the threats based on the six types of threats considered in the

STRIDE methodology.

An example of the application of STRIDE methodology is shown in Figure 7, where

elements of a commerce server installation are described in terms of threats they are

exposed to. In this case, those threats are represented as bold and underlined letters of

the STRIDE word. The model also integrates possible mitigations.

Several variations of STRIDE have been proposed [64]. One of them, which is known as

STRIDE-per-element (shown in Figure 8), lists generic elements (external entity, process,

data store, dataflow) and depicts them as in data flow diagram notation; the different

threats affecting each type of element are represented with a check symbol. In this case,

the threat modelling process involves the following steps:

1. Retrieve elements from a Data Flow Diagram (DFD)

2. Find threats from element-STRIDE table

3. Check whether the records in the table are appropriate

A different evolution is known as STRIDE-per-interaction and its comparison with STRIDE-

per-element can be found in [64].

Figure 7 Example of application of STRIDE to Commerce Server installation [63]

Figure 8 STRIDE Per Element [47]

Page 28 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Finally, a flow diagram with the steps of threat modelling and possible connections

between STRIDE, attack tree modelling and patterns is shown in Figure 9.

Figure 9 A Possible Threat Analysis process based on STRIDE (image inspired by [64])

Some of the tools that implement STRIDE methodology are described in the following

sections.

2.1.2.1. Threat Modelling Tool

Threat Modelling Tool is a core element of the Microsoft SDL, and its underlying modelling

methodology is based on STRIDE [12]. The tool can be used to identify threats, attacks,

vulnerabilities, and countermeasures that could affect an application. As can be noticed

in the overview of Figure 10, the model is a DFD, a standard notation for visualizing system

components, and security boundaries. It provides templates which include a pre-defined

set of stencils [12].

Figure 10 - Model Diagram Example in Microsoft Threat Modelling Tool [48]

The tool helps threat modelers identifying classes of threats they should consider based

on the structure of their software design; the threat analysis produces a threat list, also

exportable in .xls format, an example of which is provided in Figure 11. Possible

mitigations for the detected threats are also provided.

•1. Visualize
information
flow

DFD

•2. Identify and
enumerate
threats

STRIDE
•3. Refer to

known attack
patterns

Attack Library

•4. Structure
threats and
relations

Attack Tree
•5. Identify and

enumerate
threat causes

Remediation

Page 29 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 11 An example of threat list provided by Microsoft Threat Modelling Tool

Finally, the tool allows to save and print out a threat modelling report, as depicted in Figure

12 Threat Model Report produced with Microsoft Threat Modelling Tool.

Figure 12 Threat Model Report produced with Microsoft Threat Modelling Tool

2.1.2.2. OVVL – Open Weakness and Vulnerability Modeler

Open Weakness and Vulnerability Modeler (OVVL) [21] [52], is a tool based on an extension

of STRIDE which supports threat modelling in the early stages of the software

development lifecycle. The main features of the tool are: model design, threat and

vulnerability analysis [52].

An abstraction of complex software systems can be created based on DFDs, where

different elements - interactors, processes and data-stores – are placed on a drawing

board and connected with data-flows. Figure 13 shows an example of the outcome for the

process.

Based on the information provided by the user, OVVL analyses a data-flow diagram for

threats and software vulnerabilities, as shown in Figure 14.

Built data-flow diagrams can be analysed for threats following a modified STRIDE. Found

threats can be filtered and prioritized. By setting a threats applicable status, a better

overview over a systems potential threats can be gained. Additionally, defining this status

Page 30 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

creates anonymised data for machine learning purposes, further improving the analysis in

the future.

OVVL analyses the data-flow diagram also for searching software vulnerabilities. It

queries existing vulnerability databases to identify Common Vulnerabilities and Exposures

(CVE) [49] entries, i.e., known and reported real-world vulnerabilities (CVE is further

described in Section 4.3.2). The analysis result includes a description of each vulnerability,

the date the vulnerability was found and its impact score. Additionally, possible ways to

mitigate these security risks are linked in each vulnerability. Data regarding software as

Common Platform Enumeration (CPE)4 [50] and their corresponding CVE is provided by

the NIST through the National Vulnerability Database (NVD) [51] [21].

Figure 13 Example of DFD in OVVL [52]

Figure 14 Threat (on the left) and Vulnerability (on the right) analysis within OVVL

4 CPE is a structured naming scheme for information technology systems, software, and packages.

Page 31 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

2.1.2.3. Threat Dragon

Threat Dragon is an open-source threat modelling tool from OWASP. It comes as a web

application or an installable desktop app [20]. The tool allows the users to create a model,

load a sample model, or re-open an existing model from GitHub or from the local

filesystem and modify it.

The model includes elements as processes, data stores, actors, data flows and trust

boundaries. The elements (apart from boundaries) can be marked as out of scope, and

the reason of this marking can be specified as well. An example of model is shown in

Figure 15

Threat Dragon provides STRIDE per Element rules to generate the suggested threats for

an element on the diagram. When elements of the model have open and unmitigated

threats, they are highlighted in red. According to [20], the focus of Threat Dragon is on UX,

on a powerful rule engine and on the alignment with other development lifecycle tools.

The tool allows to generate a summary report of the model, listing the diagrams, elements

and threats; users can customize the report to show or hide out of scope model elements,

mitigated threats or threat model diagrams.

Figure 15 – Data Flow Diagram with Threat Dragon Tool [152]

2.1.2.4. Quantitative Threat Modelling Method

The Quantitative Threat Modelling Method applies a combination of Attack Trees, STRIDE,

and Common Vulnerability Scoring System (CVSS)5. This method has been used in a case

study for a railway communications network [37] [76].

5 A description of CVSS is provided in Section 2.2.2

Page 32 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

First of all, the method requires the modelling of the attack trees for the system

components, one tree for each STRIDE category [27]. Figure 16 shows an example of the

first step for the tampering category [76].

Figure 16 – Example of Attack Tree for tampering category of STRIDE [76]

Then, the QTMM applies CVSS to compute scores for the nodes of the tree, as depicted

in Figure 17; the figure shows the risk of occurrence of a tampering attack as 0.78, which

means that the CVSS score is high, being 7.8 out of 10. The scores are referring to the

situation where mitigations are not in place, and after activating them, the overall risk

value, as expected, is reduced [76].

Figure 17 - Example of Tampering Attack Tree with CVSS-based scores and no mitigations [76]

 VAST – Visual, Agile, Simple Threat Modelling Method

VAST (Visual, Agile, and Simple Threat) is a modelling method based on project

management and agile programming principles, and is the basis for a commercial threat

modelling tool called ThreatModeler [38], [13], which will be presented in Section 2.1.3.1.

It divides threat models and corresponding flow diagrams into two categories [38]:

− Application models: Process flow diagrams (PFD)6 are created that focus on a
specific application and represent the architectural viewpoint;

− Operational models: end-to-end DFDs are created that incorporate application
interactions.

The goal of VAST is to integrate, in a scalable way, threat modelling and risk management
in the context of agile development programs. The underlying idea is that threat modelling

6 A process flow diagram is a flowchart that helps to describe the general flow of a business process. By
extension, a network diagram describes the various components of IT network architecture.

Page 33 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

is useful only if it includes the whole SDLC and incorporates the pillars as automation,
integration and collaboration.

2.1.3.1. ThreatModeler

ThreatModeler is a threat modelling tool that promotes a collaborative threat modelling

process across all SDLC stakeholders. The focus of the tool are web applications, and the

underlying modelling methodology, as already described above, is VAST.

The tool uses a so-called Intelligent Threat Engine (ITE) to identify, classify and prioritize

the threats in order to reduce the overall risk for the web application. It is synchronized

with the threats, security requirements and vulnerabilities, from OWASP, CAPEC7 [54], and

NVD [51] [13]. Figure 18 shows the interface of the tool during the diagram modelling

stage, while Figure 19 shows the dashboard displaying the top threats, listed in

descending priority.

Figure 18 - Example of a Web Application Diagram in ThreatModeler [13]

One of the functionalities of the tool is allowing the user to understand threat information

and to take threat mitigation decisions. A report is then generated, allowing user to consult

information such as Executive Summary, Threats, Security Requirements and Test Cases.

7 CAPEC (Common Attack Pattern Enumeration and Classification) is also described Section 4.3.3

Page 34 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 19 - Example of Dashboard [13]

 LINDDUN

LINDDUN8 supports analysts in systematically eliciting and mitigating privacy threats in

software architectures. As STRIDE, it is a mnemonic for the privacy threat categories

which it supports:

− Linkability: being able to sufficiently distinguish whether 2 items of interest (IoI)
are linked or not, even without knowing the actual identity of the subject of the
linkable IoI.
Not being able to hide the link between two or more actions/identities/pieces of

information;

− Identifiability: being able to sufficiently identify the subject within a set of subjects
(i.e., the anonymity set). Not being able to hide the link between the identity and
the IoI (an action or piece of information);

− Non-repudiation: having irrefutable evidence concerning the occurrence or non-
occurrence of an event or action;

− Detectability: an attacker can sufficiently distinguish whether an IoI exists or not;

− Disclosure of information: exposing information to someone not authorized to see
it;

− Unawareness: not understanding the consequences of sharing personal
information in the past, present, or future;

− Non-compliance: not following the (data protection) legislation, the advertised
policies or the existing user consents [34].

Its main strength is its combination of methodological guidance and privacy knowledge

support.

Figure 20 shows the three steps of LINDDUN methodology [35]:

1. Modelling: A good understanding of the system is required in order to analyse its
privacy. LINDDUN uses, similarly to STRIDE, a DFD as a model to capture the most
relevant system knowledge for the privacy analysis;

8 Linkability, Identifiability, Nonrepudiation, Detectability, Disclosure of information, Unawareness,
Noncompliance

Page 35 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 20 - LINDDUN framework [35]

2. Elicitation: Once the system is described, each DFD element should be
systematically analysed for privacy threats. First a mapping table will be created
to guide this process of systematic privacy threat elicitation;

3. Management: identified threats are tackled. So, prioritize threats, select suitable
mitigation strategy and select privacy enhancing solution.

 PASTA - Process for Attack Simulation and Threat Analysis

PASTA (Process for Attack Simulation and Threat Analysis) is a seven-step, risk-centric

methodology. Each step is divided in multiple activities, described in Table 3 [102] [37].

Table 3 - Steps and Activities of PASTA Methodology (sources: [102][37])

Steps Activities

1. Define Objectives
• Identify Business Objectives

• Identify Security & Compliance Requirements

• Business Impact Analysis

2. Define Technical
Scope

• Capture the Boundaries of the Technical Environment

• Capture Infrastructure | Application | Software Dependencies

3. Application
Decomposition

• Identify Use Cases | Define App. Entry Points & Trust Levels

• Identify Actors | Assets | Services | Roles | Data Sources

• Data Flow Diagramming (DFDs) | Trust Boundaries

4. Threat Analysis
• Probabilistic Attack Scenarios Analysis

• Regression Analysis on Security Events

• Threat Intelligence Correlation & Analytics

5. Vulnerability &
Weaknesses
Analysis

• Queries of Existing Vulnerability Reports & Issues Tracking

• Threat to Existing Vulnerability Mapping Using Threat Trees

• Design Flaw Analysis Using Use & Abuse Cases

• Scorings (CVSS/CWSS) | Enumerations (CWE/CVE)

6. Attack Modelling
• Attack Surface Analysis

• Attack Tree Development | Attack Library Mgt.

• Attack to Vulnerability & Exploit Analysis Using Attack Trees

7. Risk & Impact
Analysis

• Qualify & Quantify Business Impact

• Countermeasure Identification & Residual Risk Analysis

• ID Risk Mitigation Strategies

The objective of this methodology is to identify the threats, enumerate them, and assign

a score to each threat. Once the threat model is completed, security experts can develop

a detailed analysis of the identified threats and can determine the appropriate

Page 36 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

countermeasures that must be deployed to mitigate the risk. This methodology is

intended to provide an attacker-centric view of the application and infrastructure from

which defenders can develop an asset-centric mitigation strategy [1]. It uses a variety of

design and elicitation tools in different stages [37].

 TRIKE

Trike is an open-source threat modelling methodology and tool which has been developed

as part of a framework for security analysis [77],[33]. It can be considered a fusion of two

main models:

− Requirement Model: explains the security characteristics of an IT system and
assigns acceptable levels of risk to each asset;

− Implementations Model: in this model, a DFD is created to illustrate the flow of data
and the user performed actions within a system; threats are analysed to enumerate
and assign a risk value.

In general, there are four steps composing TRIKE methodology (depicted in Figure 21).

Figure 21 – Steps of TRIKE Methodology [55]

The first step is system definition, where an analyst models the requirements, identifies

and lists the system's assets, actors, rules and planned actions. The next step creates a

matrix named actor-asset-action in which the columns correspond to assets and the rows

to actors [37]. The cells of the matrix are then divided into four parts, one for each CRUD9

action. The analyst specifies the values of the cells, selecting among: allowed/disallowed

action, or action with rules. A rule tree (see Figure 22) is then generated and associated to

each cell [37]. Once the requirement model is ready, DFDs are created. In this step, threats

pertaining to elevation of privilege or denial of service are identified. Each threat is then a

root node for an attack tree. Trike also enables the risk assessment for actions (CRUD-

based threats) which are targeting the assets; the assessment leverages a rating, on a

scale from 1 to 5, based on actions probability (see left side of Figure 23). Actors are also

rated, from 1 to 5, according to their potential risks for the asset (where 1 is the highest),

see right side of Figure 23 [37].

9 CRUD: creating, reading, updating, and deleting

Page 37 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 22 Trike Tool [78]: rules tree for intended actions (left); autogenerated attack tree (right).

Figure 23 Trike Tool [99]: Risk grid/threat visualization (left); actors view (right).

 OCTAVE - Operationally Critical Threat, Asset, and Vulnerability Evaluation

OCTAVE10 [65], is a heavyweight and self-directed method for strategic cybersecurity risk

assessment and plan development.

Unlike most other risk assessment methods, the OCTAVE approach is driven by

operational risk and security practices instead of technology [39] [56].

The method is based on eight processes that includes several other processes, but it

usually preceded by an exploratory phase (known as Phase Zero) to determine the criteria

that will be used during the application of the Octave method, and includes evaluating the

extent of an impact in a specific area (health, productivity, financial, etc.).

Apart from phase zero, OCTAVE has three main phases, broken down into processes,

which can be seen in Figure 24 [39][40].

10 Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE)

Page 38 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 24 – Phases of OCTAVE methodology [56]

These phases can be synthesized as [39][40][56]:

• Phase 1: Organizational View and Threats Profiling. The two major functions of

this phase are gathering information from across the organization and defining

threat profiles for critical assets;

• Phase 2: Identification of Vulnerabilities in the Infrastructure. During this phase,

the analysis team evaluates key components of systems supporting the critical

assets for technological vulnerabilities;

• Phase 3: Strategy and Plan Development. The primary purpose of this phase is to

evaluate risks to critical assets and develop an organizational protection strategy

and risk mitigation plans.

All aspects of risk (assets, threats, vulnerabilities, and organizational impact) are factored

into decision making, enabling an organization to match a practice-based protection

strategy to its security risks.

Each process has certain activities that must be completed, and within each of these

activities, different steps must be taken in order to achieve the desired outputs. The final

result is that risk decisions can be based on is the threat profile of different assets. Each

threat profile contains information based on which mitigation decisions can be taken.

However, OCTAVE does not produce a detailed quantitative analysis of security exposure

and although the metrics are defined, the mapping with the impact intervals (low, medium

and high) is open, making difficult the comparison even between devices evaluated with

OCTAVE [65]. In addition, although OCTAVE focuses on speed, since for most businesses

time is money, its 18 volumes make it large and complex, to understand with many

worksheets and practices to implement. In this sense, OCTAVE has another variant,

OCTAVE-S [66] with fewer processes, but still too complex.

 ADVISE - ADversary VIew Security Evaluation

The ADversary VIew Security Evaluation (ADVISE) method provides quantitative security

metrics to system architects. These metrics are used to make informed trade-off

decisions involving system security. System architects can use ADVISE to compare the

Page 39 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

security strength of system architecture variants and analyse the threats posed by

different adversaries [26].

Figure 25 - The ADversary VIew Security Evaluation (ADVISE) method [26]

The ADVISE method, shown in Figure 25, is implemented in a tool (Mobius [74], briefly

described in Section 2.1.8.1) that facilitates user input of system and adversary data and

automatically generates executable models. Attacks against a system can be regarded as

sequences of smaller attack steps.

In Figure 26, there is an ADVISE model with these attack steps that are precisely defined

and organized into an Attack Execution Graph (AEG).

Figure 26 - An Attack Execution Graph (AEG) represents possible attacks [26]

The attack execution graph also contains timing, cost, probabilistic outcomes, and other

information about each attack step. This extra information makes it possible to analyse

ADVISE models using discrete-event simulation [26].

The user can define the adversary profile, which captures a particular adversary’s attack

preferences, attack goals, and attack skills; an example is shown in Figure 28.

Page 40 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

The ADVISE model execution algorithm uses the adversary profile and the attack steps in

the attack execution graph to mimic how the adversary is likely to attack the system. The

adversary selects the best next attack step by evaluating the attractiveness of several

attack steps, considering cost, payoff, and the probability of detection [26].

This methodology is very well defined and is based on a solid scientific background.

However, the threat model must be known a priori by the user, it is not given by the

methodology/tool. Another minor issue is that the results of simulations are only in .csv

and .txt formats, and the user has to interpret and represent them by themselves.

2.1.8.1. Mobius Framework and ADVISE Implementation

The Mobius discrete-event modelling environment is a framework that supports multiple

modelling formalisms and multiple solution techniques and has been often used in

system performance and dependability modelling [79].

The ADVISE atomic model formalism implementation in the Mobius framework provides

a graphical front-end for creating and modifying ADVISE models (as shown in Figure 27).

The model definitions are stored in a textual, XML-based format. Mobius then uses code

from the ADVISE implementation to generate C++ code that compiles and links with

Mobius framework libraries, creating an executable model [79].

Figure 27 An example of the ADVISE attack execution graph editor page [79]

Page 41 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 28 An example of the ADVISE adversary profile editor page in Mobius [79].

 Security Cards

Security Cards is an unformal method, a kind of brainstorming technique, for the

identification of complex and unusual attacks. A security analyst, by using a set of 42

cards, is helped in answering some questions regarding the attack, regarding [32]:

• the adversary;

• the reason why the system can potentially be attacked;

• the assets of interest;

• the way of implementing an attack.

The cards are divided in categories, or dimensions (as shown in Figure 29) [37][41]:

− Human Impact: human impact points to the myriad of ways in which human beings
can be affected in their lives, from intimate relationships and emotional experience to
privacy violations with personal data to widespread societal impacts at the level of the
economy, government, and social structure;

− Adversary's Motivations: emphasizes the variety of reasons an individual or group
might wish to attack a system, from ideological reasons focused on religion, politics,
or diplomacy to more self-oriented motivations such as convenience or self-
promotion;

− Adversary Resources: presents an array of different assets that might be at an
adversary's disposal, from hardware and software tools to the ability to influence the
actions of groups of people, or access to technical or social expertise;

Page 42 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

− Adversary's Methods: explores high-level ways that an adversary might approach
attacking a system, from the familiar technological attack to manipulating or coercing
people, covering up evidence, or leveraging logistical and bureaucratic processes.

In Figure 29 all the options covered in each of the four dimensions are shown.

Figure 29 - Security Card Dimensions [57]

 PnG - Persona non Grata

The Persona non Grata (PnG) is a method based on skills and motivations of the

adversaries, and in particular of the insider attackers. It helps the security expert to

analyse the system from the perspective of an insider attacker, and proposes characters

representing possible users aiming at maliciously use the system for their purpose. This

method can be particularly useful during early prototyping, when a security expert can

analyse possible insiders of the system and their characteristics, such as skill, motivation,

and goal [37].

Modelling PnGs can therefore help to think about the ways in which a system might be

vulnerable to abuse and use this information to specify appropriate mitigating

requirements. The PnG approach makes threat modelling more tractable by asking users

to focus on attackers, their motivations, and abilities [31].

The theory behind this approach is that if engineers can understand what capabilities an

attacker may have and what types of mechanisms, they may use to compromise a system,

the engineers will gain a better understanding of targets or weaknesses within their own

systems and the degree to which they can be compromised.

PnG is suitable for the agile approach, which uses personas to define archetypical users

of a system [80]. In fact, each PnG includes an image of the persona, his or her name, a

description, the assumed role and a moniker, including a set of relevant goals and skills,

and a set of misuse cases that describe specific ways in which the PnG intends to attack

the system, as in the example of Figure 30 .

From this, it is possible to construct a threat model that includes the actor (i.e., the PnG)

and the attack mechanism and target specified in the misuse cases [32].

Page 43 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 30 - Example of Persona non Grata [32]

 hTMM - hybrid Threat Modelling Method

The hTMM11 is a method which combines the afore-mentioned STRIDE (Section 2.1.2),

Security Cards (presented in Section 2.1.9), and PnG (Section 2.1.10). It aims at excluding

false positives, considering all the possible threats, giving cost-effective and repeatable

results, not depending on the modeller.

The method is composed of five steps [32] [37]:

1. System identification: it executes Steps 1-3 of SQUARE12 [58] or a similar security

requirements method, as:

o Agree on definitions;
o Identify a business goal for the system, assets and security goals;
o Gather as many artifacts as feasible;

2. Application of Security Cards:

o Distribute the Security Cards 2.1.9 to participants either in advance or at the
start of the activity;

o Have the participants look over the cards along all four dimensions: Human
Impact, Adversary’s Motivations, Adversary’s Resources, and Adversary’s
Methods;

o Use the cards to support a brainstorming session and consider each
dimension independently and sort the cards within that dimension in order of
how relevant and risky it is for the system overall;

3. Removal of PnGs with low likelihood:

o Itemize their misuse cases;
o This expands on how the adversary attacks the system;

11 hybrid Threat Modelling Method
12 Not to be confused with ISO 25000 "Systems and Software Quality Requirements and Evaluation"
SQuaRE standards

Page 44 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

o The misuse cases provide the supporting detailed information on how the
attack takes place;

4. Tool-supported Result Summarization:

o Actor (PnG): Who or what instigates the attack?
o Purpose: What is the actor’s goal or intent?
o Target: What asset is the target?
o Action: What action does the actor perform or attempt to perform? Here you

should consider both the resources and the skills of the actor;
o Result of the action: What happens as a result of the action? What assets are

compromised? What goal has the actor achieved?
o Impact: What is the severity of the result (high, medium, or low);
o Threat type: e.g., denial of service, spoofing.

5. Formal risk assessment: using these results, and the additional steps of a security

requirements method such as SQUARE [58].

 CORAS

CORAS is a method for conducting security risk analysis which provides a customized

language for threat and risk modelling, and comes with detailed guidelines explaining how

the language should be used to capture and model relevant information during the various

stages of the security analysis [22].

The CORAS methodology integrates aspects from partly complementary risk analysis

techniques, like HAZOP (see Section 2.1.13), FMEA, and FTA, with state-of-the-art system

modelling methodology based on UML 2.0. A graphical UML-based language has been

developed to support documentation and communication of security analysis results [23].

CORAS is a model-driven approach to risk analysis that follows the process defined by the

ISO 31000 risk management standard. The approach consists of three tightly integrated

artifacts, namely the CORAS method, the CORAS language and the CORAS tool [24].

The eight steps of CORAS method for a security risk analysis are:

1. Preparation for the analysis

2. Customer presentation of the target

3. Refining the target description using asset diagrams

4. Approval of the target description

5. Risk identification using threat diagrams

6. Risk estimation using threat diagrams

7. Risk evaluation using risk diagrams

8. Risk treatment using treatment diagrams

2.1.12.1. CORAS Tool

The CORAS method provides a computerized tool designed to support documenting,

maintaining and reporting analysis results through risk modelling [22].

In Figure 31 an example of risk model obtained with CORAS tool and the legend for the

typical model elements.

Page 45 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 31 – Example of Risk modelled with CORAS, from [67]

 HAZOP – HAZard and OPerability Study

HAZard and OPerability study (HAZOP) [81] is a structured and systematic technique for

system examination and risk management. The HAZOP technique is qualitative and aims

to stimulate the imagination of participants to identify potential hazards and operability

problems.

It is based on a theory which assumes that risk events are caused by deviations from

design or operating intentions. Identification of such deviations is facilitated by using sets

of guide words as a systematic list of deviation perspectives. HAZOP guide words are key

supporting elements in the execution of a HAZOP analysis. Figure 33 shows instead a

sample worksheet of an HAZOP study for an automatic train protection system, where in

the fourth column we can see the selected guidewords. Guidewords according to IEC

Standard 61882 (Hazard and operability studies - Application guide), are presented in

Table 4.

Table 4 – Generic HAZOP Guide Words

Guide Word Meaning

NO OR NOT ▪ Complete negation of the design intent
MORE ▪ Quantitative increase

▪ LESS ▪ Quantitative decrease
▪ AS WELL AS ▪ Qualitative modification/increase
▪ PART OF ▪ Qualitative modification/decrease
▪ REVERSE ▪ Logical opposite of the design intent
▪ OTHER THAN/ INSTEAD Complete substitution
▪ EARLY Related to the clock time
▪ LATE Related to the clock time
▪ BEFORE Relating to order or sequence
▪ AFTER Relating to order or sequence

Page 46 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

As represented in Figure 32, the HAZOP analysis process is composed of four phases [25].

A key phase is the Examination, where the system is divided into parts or elements and

each of them is analysed with the help of the guidewords.

Considering the process, the similarities with regard to a risk assessment may be noticed:

this point will be addressed in the following of the document, especially in Sections 3 and

4.

Figure 32 - HAZOP Analysis Process [25]

Figure 33 Sample HAZOP Worksheet [82]

Page 47 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

 Other Tools

2.1.14.1. IriusRisk

IriusRisk is a threat modelling tool which includes templates and risk pattern-based

functionalities that allows the user to quickly create a model of a system or software

architecture [14]. An example of architecture is given in Figure 34.

Figure 34 - Example of Architecture [14]

As the architecture and components are selected, the rules engine calculates a threats

list. Each threat is linked to potential weaknesses and recommended countermeasures

from an extensive application risk database, which includes the CAPEC. In fact, it provides

threats or potential weaknesses (CWE13) and applicable countermeasures [14], as shown

in Figure 35.

Weaknesses are regarded as potentially present, until their presence or absence has been

verified through security testing. Tests can be automatically imported from external test

sources like JUnit, JBehave, Cucumber, OWASP ZAP and Irius Risk’s own BDD-Security

framework. Security test results (e.g., negative testing, such as vulnerability assessments

and penetration tests, or positive security control testing, such as code reviews and audit)

can be recorded against the listed Weaknesses, or Countermeasures. Confirmed

weaknesses are highlighted as vulnerabilities [14].

The user can then make an informed decision about the appropriate risk response:

Mitigate, Avoid or Accept. For example, a countermeasure can be applied to mitigate the

risk, or a risk can be accepted, and the risk decision justified [14].

Security testing is supported both from a control and a vulnerability perspective.

13 Common Weakness Enumeration - A Community-Developed List of Software & Hardware
Weakness Types (CWE), more details are in section 4.3.1 and in [86].

https://continuumsecurity.net/bdd-security/?__hstc=146062699.430bd6f5bac1af334745f9dd84c44ae9.1607678994697.1607678994697.1610966625157.2&__hssc=146062699.2.1610966625157&__hsfp=3810402182
https://continuumsecurity.net/bdd-security/?__hstc=146062699.430bd6f5bac1af334745f9dd84c44ae9.1607678994697.1607678994697.1610966625157.2&__hssc=146062699.2.1610966625157&__hsfp=3810402182

Page 48 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 35 Threats view in Irius Risk

2.1.14.2. securiCAD

The securiCAD tool allows the users to define models of ICT infrastructures, composed

by objects and connections between them, and then enable cyber security analysis with

by simulating potential attacks. The defined objects can represent both real items and

conceptual/representative items (networks, routers, hosts, user accounts, services and so

on) [17].

The tool securiCAD allows to the user to simulate potential attack paths from the attacker

to all the assets in the modelled infrastructure by simply clicking the Simulate button.

The tool highlights the assets risk level with different colours. For each asset, the users

can click on the Critical Path icons, and the tool shows the most likely attack path that

securiCAD has found for that asset [59].

Page 49 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 36 - Example of Critical Path in securiCAD [59]

Simulations can be run both in an online cloud service and locally in the securiCAD

software. As soon as the simulation is ready, the results will be shown in two ways; the

frames of the objects in the model will be given colours based on the attack success rate,

as in the example of Figure 36, and the results will also be presented in an online report

[17]. An overview of these results is given in Figure 37.

Figure 37 – Overview of Results given by securiCAD [59]

Page 50 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

2.1.14.3. PyTM

PyTM is a Pythonic framework and Python-based library for threat modelling that allows

to the users to model a system in Python using the elements and properties described in

the pytm framework. It allows the creation of system models as Python objects, with

properties as annotations [15]. PyTM can generate DFD, Sequence Diagram and threats

to the modelled system, as shown in Figure 38. It allows users to export the report, the

images resulting from the generation of the DFD and the Sequence Diagram, which are

also given in output as Dot and PlantUML.

Figure 38 - Example of Diagram realized with PyTM [15]

PyTM uses CAPEC to inform the rule set with descriptions, mitigation and other

references. In addition, CAPEC entries are translated as rules and can generate properties

for description objects as needed [16].

There is a Threats database that can be set in TM.threatsFile and it is possible to generate

a final report, in which diagrams can be included.

2.1.14.4. SD Elements

SD Elements is a tool and software security requirement management platform that

allows automation of the security process, such as threat modelling, risk assessments,

and implementation of secure coding and deployment guidelines [19]. SD Elements

provides step-by-step test cases to help non-security experts test relevant cases to their

application [18].

The four steps of SD Security Process are:

1. Information Gathering: initiates the secure development process by collecting
information about the applications through an adaptive survey;

2. Expert Assessment: the tool automatically identifies risks or potential weaknesses
of the user’s applications. It then classifies the overall risk according to user’s pre-
defined security and compliance policies, as shown in Figure 39;

Page 51 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 39 - SD Expert Assessment [19]

3. Recommendations: it translates requirements into recommendations and
controls.
In the next step, the tool maps recommendations and controls to the risks
identified for the applications. These controls can be seen directly to DevOps
teams on their issue trackers such as Jira, VersionOne, or Azure Boards;

4. Validation and Reports: automatically tracks the status of security activities
through robust integrations with security testing tools such as Veracode,
Checkmarx, or Fortify; allowing security experts to focus on critical issues. It can
instantly generate reports to view identified risks and their current mitigation
status.

2.2. Risk Rating and Security Scoring Systems

This Section presents some of the main risk rating and security scoring systems which

emerged during the research of threat modelling methodologies and tools. They are

presented in a separate section considering that risk rating and security scoring are

somehow different but still central and tightly related activity with respect to threat

modelling.

 CWSS - Common Weakness Scoring System

The Common Weakness Scoring System (CWSS) provides a mechanism for prioritizing

software weaknesses and assign a numerical risk to them. To do so, CWSS combines

three groups of metrics that are used to calculate the risk: Base Finding, Attack Surface,

and Environmental, (shown in Figure 40 [61]).

Each factor in the metric groups is assigned a value, which is converted to its associate

weight. The metrics of each group is calculated and combined with the other groups

(multiplication) in order to obtain a complete risk measure, which ranges between 0 and

100. The Base Finding sub score is between 0 and 100, whereas the other ones can range

between 0 and 1.

However, metrics such as likelihood are difficult to compute [68].

Page 52 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 40 - CWSS Metric Groups [61]

The Base Finding: is focused on the inherent risk of the weakness, the confidence in the

accuracy of the finding, and strength of controls. It consists of the following factors:

• Technical Impact (TI): is the potential result that can be produced by the weakness,

if it can be successfully reached and exploited. This is expressed in terms of

confidentiality, integrity, and availability (CIA);

• Acquired Privilege (AP): identifies the type of privileges that an attacker can have

when he can successfully exploit the weakness;

• Acquired Privilege Layer (AL): identifies the operational layer where the attacker

gains privileges, if he can successfully exploit the weakness;

• Internal Control Effectiveness (IC): measures the ability of the control that it makes

the weakness unable to be exploited by an attacker. The Internal Control is a

control, protection mechanism, or mitigation that has been explicitly built into the

software;

• Finding Confidence (FC): is the confidence that the reported issue, as weakness

and it can be triggered or utilized by an attacker.

If the set of values proposed for the TI metric, is not precise enough, CWSS users can use

their own quantified methods to derive a sub score. One of the methods uses the Common

Weakness Risk Analysis Framework (CWRAF)14 to define a vignette and a Technical

Impact Scorecard. Here, vignette-specific Importance ratings are used to calculate the

Impact weight. CWRAF and CWSS allow users to rank classes of weaknesses independent

of any particular software package, in order to prioritize them relative to each other (e.g.,

"buffer overflows are higher priority than memory leaks"). This approach, sometimes

referred to as a "Top-N list," is used by the CWE/SANS Top 25 and OWASP Top Ten [69].

The Attack Surface: includes factors representing the barriers that an attacker must

exceed to exploit the weakness. It consists of the following factors:

• Required Privilege (RP): identifies the type of privileges that an attacker must have

to reach the code/functionality that contains the weakness;

• Required Privilege Layer (RL): identifies the operational layer where the attacker

must have privileges to try to attack the weakness;

14 https://cwe.mitre.org/cwraf/

Page 53 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

• Access Vector (AV): identifies the channel thanks to which an attacker must

communicate to reach the code/functionality that contains the weakness (the

value it is similar to the ones in CVSS, but here there is a difference between

physical and local access;

• Authentication Strength (AS): covers the strength of the authentication routine that

protects the code/functionality that contains the weakness;

• Level of Interaction (IN): includes the actions that are required by the human

victim(s) to allow a successful attack;

• Deployment Scope (SC): identifies if the weakness is present in all deployable

instances of the software, or if it is limited to a subset of platforms and/or

configurations.

The Environmental: groups characteristics of the weakness that are specific to a particular

environment or operational context. It consists of the following factors:

• Business Impact (BI): describes the potential impact to the business or mission if

the weakness can be successfully exploited;

• Likelihood of Discovery (DI): represents the likelihood of an attacker that he can

discover the weakness;

• Likelihood of Exploit (EX): represents the likelihood of an attacker with the required

privileges/authentication/access would be able to successfully exploit it, if the

weakness is discovered first by the attacker;

• External Control Effectiveness (EC): is the capability of controls or mitigations

outside of the software that may make the weakness more difficult to reach and/or

trigger by an attacker;

• Prevalence (P): identifies how frequently this type of weakness appears in software

 CVSS - Common Vulnerability Scoring System

The CVSS15 is a widely adopted methodology which helps a user in specifying some of the

main characteristics of a vulnerability and provides a resulting score representing the

severity (of impact) of a vulnerability. This method, which current version (CVSSv3.1) was

released in June 2019, is often combined with other threat modelling methods [36].

Similar to CWSS, it is composed of three groups of metrics (also shown in Figure 41).

The Base metric group: represents the intrinsic characteristics of a vulnerability that are

constant over time and across user environments; the exploitability metrics reflect the

ease and technical means by which the vulnerability can be exploited; the impact metrics

measure how a vulnerability, if exploited, will affect the vulnerable component. Based on

the Base Metric Group, CVSS produces a numerical severity score ranging from 0.0 to

10.0, which can be modified by scoring the optional Temporal and Environmental metrics

(they include a metric value that has no effect on the score).

The Temporal metric group: reflects the characteristics of a vulnerability that may change
over time but not across user environments.

The Environmental metric group: represents the characteristics of a vulnerability that are
relevant and unique to a particular user’s environment [36].

15 Common Vulnerability Scoring System

Page 54 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 41 – The groups of CVSS metrics [36]

Although CVSS is similar to CWSS, some metrics like likelihood have been removed,

leading to simpler to calculate metrics.

CVSS has been widely adopted, especially the use of base scores from the Base metric

group and it represents a widely established approach; for example, it is used in the CVE

and in the National Vulnerability Database (NVD) [51] created by the NIST.

 VERACODE

The Veracode Security Quality Score, is a scoring system based on CWE dictionary of

security flaws, used to map the flaws found in its static and dynamic scans, and on CVSS

for the calculation of severity based on the potential Confidentiality, Integrity and

Availability impact of a flaw CWE if exploited [62]. Each severity level reflects the business

impact if a security breach occurs in these three security aspects.

It is part of the Veracode Platform which uses static and DynamicDS analysis (for web

applications) to inspect executables and identify security flaws in applications.

Veracode assigns a severity level to each flaw type based on [62]:

• Confidentiality Impact: measures the impact on confidentiality if on a system

vulnerability is exploited. At the weakness level, the Confidentiality is measured at

three levels of impact: None, Partial and Complete, in according CVSS;

• Integrity Impact: measures the potential impact on integrity of the application.

Integrity measures are needed to protect data from unauthorized changes. In fact,

when the integrity of a system is solid, it is protected from unauthorized

modifications of its contents.

• Availability Impact: measures the potential impact on availability if an attack is

successful on the vulnerability. The Availability means to the accessibility of

information resources. Typically, in this domain, the vulnerabilities are the Denial

of Service. For example: Attacks that compromise authentication and

authorization for application access, application memory, and administrative

privileges.

The overall Security Quality Score, based on its associated CWE entry, is computed by

aggregating impact levels of all weaknesses within an application. It enumerates the

security weaknesses and their impact levels within the application code, but it does not

predict the potential for vulnerability. It is a single score ranging from 0 to 100, where 0 is

the insecure application and 100 is an application where the flaws have been discovered.

The score calculation includes non-linear factors so that, for instance, a single Severity 5

http://cwe.mitre.org/
http://nvd.nist.gov/cvss.cfm

Page 55 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

flaw is weighted more heavily than five Severity 1 flaws, and so that each additional flaw

at a given severity contributes progressively less to the score.

Weights of the Raw Score formula is exponential and are determined by empirical analysis

by Veracode's application security experts.

The assurance levels follow a three-letter rating system (from A to F). The first letter is

used for the results from binary analysis, the second for automated dynamic analysis, and

the third for human testing. They are used to determine the extension of the testing (e.g.,

higher assurance levels could imply more testing techniques) and the overall acceptance

criteria (e.g., a lower assurance level can be accepted with lower security scores if it does

not pose a high business risk).

 DREAD

DREAD (Damage, Reproducibility, Exploitability, Affected users, Discoverability) is a

methodology which is part of a system for risk-assessment of computer security threats.

It was used at Microsoft and currently it is used by OpenStack16.

It is similar to STRIDE as it provides a mnemonic for risk rating security threats using five

categories [29], as shown in Figure 42:

Figure 42 - DREAD Mnemonic

When a given threat is assessed using DREAD, each category is given a rating. The DREAD

algorithm [70] is then used to compute a risk value, which is an average of all five

categories. The calculation always produces a number between 0 and 10; the higher the

number, the more serious the risk. The risk rating is obtained by adding rating values for

all items and comparing the results with categories shown in Table 5. The sum of all

ratings for a given issue can be used to prioritize among different issues [28].

Table 5 - Risk rating category-impact
Risk rating Result

High 12 – 15
Medium 8 – 11
Low 5 - 7

However, there is not a consensus on how the actual risk point scale should be, since it

all depends on the individuals performing the threat modelling [71]. DREAD requires

scoring each of the five categories on a scale from zero to ten, which leads to discussions

on the fine differences between consecutive numbers, e.g., five and six. This problem is

still bigger in larger organizations with multiple teams. One solution to this problem, as

16 Openstack, «Security/OSSA-Metrics». https://wiki.openstack.org/wiki/Security/OSSA-Metrics#Calibration.

Page 56 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

remarked in [72], is using scores of High, Medium, or Low, that are easy to agree, instead

of using Microsoft’s eleven-valued scale. For example, a simple scheme would be: High

(10 points), Medium (5 points), and Low (0 points) when it comes to Damage potential,

and Hard (0 points), Medium (5 points), Easy (0 points) when it comes to Reproducibility.

The context is not considered itself, but it can be taken into account when assigning the

mark to each category. The same happens with the multilayer and complex systems,

although an aggregation is not directly considered, it can be taken into account in the

scale, as a global value.

 OWASP Risk Rating

The OWASP Risk Rating Methodology [73] is part of the OWASP project, which provides a

basis for testing web application technical security controls. The risk rating methodology

estimates the risk in terms of likelihood and impact following several steps. The first one

consists on identifying a risk to be rated, analysing and gathering information about it. The

second step analyses factors for estimating likelihood. It is not necessary to be over-

precise in this estimate. Generally, identifying whether the likelihood is low, medium, or

high is sufficient. There are a number of factors that can help determine the likelihood,

such as the ease of discovery and exploit or the skills of the attacker. The third step is

about identifying factors for estimating Impact, divided in technical impact on the

application, the data it uses, and the functions it provides and in business impact on the

business and company operating the application. In this sense, the context factor can be

considered through this metric. The fourth step determines the risk severity. The

likelihood and impact estimate are put together to calculate an overall severity for this

risk, obtaining none, low, medium, high or critical. Finally, it is decided what to Fix. It is

also possible to customize the Risk Rating Model, for example adding factors,

customizing options or weighting the factors.

The main limitation of OWASP is that it is only focused on web applications, domain in

which there is no current standard [75]. As in the other schemes, the scale used (low,

medium and high) based only on the consensus of the testers make the result subjective

and variable depending on the person that is measuring the risk, and although it is not

required a high precision on calculating the likelihood, this is one of the metrics more

difficult to calculate based on the discussion of the challenges at the beginning of this

section.

 Cenzic HARM - Hailstorm Application Risk Metric

The Cenzic Hailstorm Application Risk Metric (HARM) [60] is a quantitative metric for the

risk is associated with a web application. It is split into 4 impact areas: Browser, Session,

Application, and Infrastructure (server environment). It also takes into account two

additional factors, a complexity factor and the precision associated with detection of a

given vulnerability and a modifier called weight, which users can use to modify the

obtained risk.

Mathematically, the Base Risk Equation is 10 ∗ 2𝐼 , where I is the impact area value. Any

vulnerability can impact a Web application in up to 4 different ways (4 impact areas).

Within those 4 areas, the degree of the risk can be 1 (“low”) to 5 (“Critical”), represented

as rings inside a circle.

To determine the application risk level (impact value) for a vulnerability, HARM uses

security values with five degrees of risk such as confidentiality or access. The vulnerability

Page 57 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

risk is the sum of the risk score from each of the four impact areas, which can be modified

by the weights from other metrics (i.e., attack complexity, detection precision, asset

value).

The Vulnerability Risk Equation (using α, β, σ, ε for the 4 different impact areas) is [60]:

∑{𝛼, 𝛽, 𝛾, 𝜀}

the final Vulnerability Risk Equation (using χ δ ω for the other three factors respectively

is):

∑{𝛼, 𝛽, 𝛾, 𝜀} ∙ 𝑥 ∙ 𝛿 ∙ 𝜔

Finally, the HARM rating is calculated by multiplying all of the identified vulnerabilities (that

can include different components and layers) within an application by the level of

importance managers give to that application, so it gives the possibility of indirectly

considering the context changing the weights.

However, this method does not account for the relationship of vulnerability properties,

which are also important in the evaluation of the distribution of exploitation, and it is

focused only on web applications [60].

2.3. Comparison of the Threat Modelling Methodologies and Risk Rating

Systems

This document presented several different threat modelling methods and tools, and some

security scoring and risk rating systems. Some are typically used standalone, some other

is usually used in conjunction with others, and some are examples of combination of

different methods.

Table 6 (which is our evolution of what listed in [37]) summarizes the main features of

each threat modelling method, while risk rating and security scoring methods are

summarized and compared in Table 7. Finally, a comparison of the tools is provided in

Appendix A.
Table 6 – Summary of the Threat Modelling Methods

Threat
Modelling

Method
Main Features Main Issues

Attack
Tree

▪ Helps identifying relevant mitigation
techniques

▪ Has consistent results when repeated
▪ Is easy to use if the user already has thorough

understanding of the system architecture, the
threats and their possible combination

• Requires thorough understanding of
the system

• where defensive measures are not
modelled, attacker/defender
interactions and evolutionary aspects
are not considered;

STRIDE

▪ Helps identifying relevant mitigating
techniques

▪ Is the most mature
▪ Is easy to use

• Time Consuming

• No longer maintained

• Using DFDs as the only input to threat
modelling is limiting because it does
not provide a means for representing
security-related architectural
decisions [116]

VAST
Modelling

▪ Helps identify relevant mitigation techniques
▪ Directly contributes to risk management
▪ Contains built-in prioritization of threat

mitigation
▪ Encourages collaboration among

stakeholders
▪ Has consistent results when repeated
▪ Has automated components

• Has little publicly available
documentation

Page 58 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

▪ Is explicitly designed to be scalable

LINDDUN

▪ Helps identify relevant mitigation techniques
▪ Contains built-in prioritization of threat

mitigation

• Can be labour intensive and time
consuming

• Limited to privacy threats

PASTA

▪ Helps identify relevant mitigating techniques
▪ Directly contributes to risk management
▪ Encourages collaboration among

stakeholders
▪ Contains built-in prioritization of threat

mitigation
▪ Has rich documentation

• Is laborious

Trike

▪ Helps identify relevant mitigation techniques
▪ Directly contributes to risk management
▪ Contains built-in prioritization of threat

mitigation
▪ Encourages collaboration among

stakeholders
▪ Has automated components

• Has vague, insufficient
documentation

OCTAVE

▪ Helps identify relevant mitigation techniques
▪ Directly contributes to risk management
▪ Contains built-in prioritization of threat

mitigation
▪ Encourages collaboration among

stakeholders
▪ Has consistent results when repeated
▪ Is explicitly designed to be scalable

• Time Consuming

• Vague, complex and large
documentation

ADVISE

▪ Considers adversaries and their
characteristics

▪ The related tool (Mobius) provides simulation
features

▪ The Atomic Formalism can be used in
conjunction with other formalisms (e.g.,
SANs)

• Time Consuming

• Requires thorough understanding of
the system

• Threat model must be known a priori
by the user

Security
Cards

▪ Encourages collaboration among
stakeholders

▪ Targets out-of-the-ordinary threats
▪

• Leads to many false positives

Persona
non Grata

▪ Helps identify relevant mitigation techniques
▪ Directly contributes to risk management
▪ Has consistent results when repeated
▪ It produces few false positives and has high

consistency
▪ Fits well into the agile approach, which

incorporates personas

• Tends to detect only some subsets of
threats

hTMM

▪ Contains built-in prioritization of threat
mitigation

▪ Encourages collaboration among
stakeholders

▪ Has consistent results when repeated

• Has little documentation

CORAS

▪ Customised language for threat and risk
modelling

▪ UML-like modelling

• The methodology is a result of a
research project, and the related tool
is old and not maintained since
years17

HAZOP
▪ Systematic and comprehensive
▪ Examines the consequences of failures

• Safety-oriented (security-oriented
variant exists and is called THROP)

• Time consuming and expensive

• Requires detailed design drawing to
perform the full study

• Additional guidewords are required
for unusual hazards

17 http://coras.sourceforge.net/coras_tool.html

Page 59 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

• Requires experienced practitioners

• Focuses on one-event causes of
deviation only

Table 7 Summary of the Risk Rating and Scoring Systems

Risk Rating
/ Security
Scoring
System

Features Main Issues

CWSS

▪ Recommended by the ITU-T
▪ Used in several databases (e.g., CWE or

OWASP top ten)
▪ Can be applied early in the process
▪ Built-in support for incomplete information

• Metrics as likelihood are difficult to
compute

CVSS

▪ Widely adopted (e.g., in CVE and NVD)
▪ Contains built-in prioritization of threat

mitigation
▪ Has consistent results when repeated
▪ Automated components
▪ Has score calculations that are not

transparent
▪ Metrics calculation is simpler w.r.t. CWSS

• Assumes that a vulnerability has
already been discovered and verified

• Does not account for incomplete
information

• Large bias towards the impact on the
physical system

VERACODE ▪ Based on VWE and CVSS • Unknown

DREAD

▪ Similar to STRIDE
▪ The context can be taken into account when

assigning the mark to each category

• There is not a consensus on risk point
scale

• Requires scoring each of the
categories

OWASP
Risk Rating

▪ Provides a basis for testing security controls
▪ Multilayer and aggregation can be included

by considering a global mark

• It focuses on web applications only

• Scale is based only on consensus of
the testers

• Result is subjective and variable

• Likelihood is difficult to calculate

Cenzic
HARM

▪ It gives the possibility of indirectly
considering the context changing the weights

• Does not account relationship of
vulnerability properties

• Focused only on web applications

2.4. Reference Security Standards for Threat Analysis and Risk

Assessment

This section reports the results of a research, analysis and comparison of the reference

security standards for threat analysis and risk assessment, which guided the development

of the risk assessment methodology and its application for the threats and hazard

identification within the use cases and the BIECO framework.

 Introduction

Standards are specifications that establish the fitness of a product for a particular use by
guiding the development or assessment of systems and systems components. In some
cases, from a user/operator perspective, standards define the function and performance
of a device or system. On top of providing best practices, standards are key facilitators of
compatibility and interoperability, and define specifications for languages,
communication protocols, data formats, linkages within and across systems, interfaces
between software applications and hardware devices and much more.

The ICT supply chain, in particular, is part of complex dynamic and globally interconnected
ecosystem that encompasses the entire life cycle of ICT hardware, software, and

Page 60 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

managed services together with a wide range of actors (entities, considered ecosystem
components)—including third-party vendors, suppliers, service providers, and contractors.
Certain actors, such as governments and industries purchase products and services and
use them to power and enable critical infrastructure systems. Other actors, such as OEMs
(Original Equipment Manufacturer) integrate different products provided by multiple other
organizations or developers (actors within an ecosystem) in the process of building a final
product for the end-user. However, a supply chain is only as strong as its weakest link.
Foreign adversaries, hackers, and criminals seeking to steal, compromise or alter, and
destroy sensitive information can target their victims at all tiers of the ICT supply chain
[93]. Attacks can be caused by intruders e.g., through direct physical attacks on systems
[97], or cyber-attacks on the digital parts of a system [98], or even insider attacks through
human involved actors, part of the developing ecosystem [99].

Securing the supply chain within a dynamic ecosystem is a complex activity, since
vulnerabilities may be introduced and exploited during any phase of the product life cycle:
from design and development to production, and further on during distribution, acquisition
and deployment, maintenance.

For addressing the vulnerability of systems, there are several, different, security standards,
specific to each phase of the lifecycle, the type of data, or system and user to be protected,
by considering the application domain, the type of protection, and all the important
aspects that need to be considered in case of attack.

Section 2.4 presents an overview of standard concepts and methodologies which will
guide the development and application of a risk assessment process. Based on this, the
use case systems can be analysed for identifying potential threats, vulnerabilities,
weaknesses, starting with the early prototyping stage and until maintenance.

 Basic Concepts and Risk Model

This Section provides a brief overview of the basic concepts that are fundamental for the
definition of risk assessment process and for its application to BIECO use cases. Most of
the definitions are originating from NIST18 SP 800-30 [43], since it is a widely adopted19
guide for risk assessment, even if good alternatives exist, e.g., the ENISA glossary [126].

Figure 43 gives an example of a risk model including the key risk factors which will be
discussed in the following sections. A glossary with a more comprehensive set of
definitions for security terminology can be found in [43].

2.4.2.1. Risk

According to NIST SP 800-30 [43], Risk is: a measure of the extent to which an entity is
threatened by a potential circumstance or event, and is typically a function of: (i) the adverse
impacts that would arise if the circumstance or event occurs; and (ii) the likelihood of
occurrence.

In the context of ICT security, risk arises from to the loss of confidentiality, integrity or
availability of information or of the ICT system. In the NIST 800-30 [43], the Risk
Assessment is defined as a process of identifying, estimating and prioritizing risk.

18 NIST: National Institute of Standards and Technology and it is a government agency of the United States of
America that deals with technology management.
19 several studies and assessments conducted following this guide have been published

https://www.cisa.gov/critical-infrastructure-sectors

Page 61 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 43 Generic risk model and key risk factors from NIST SP 800-30 (source: [43])

Assessing risk requires the careful analysis of threat and vulnerability information to
determine the extent to which circumstances or events could adversely impact an
organization and the likelihood that such circumstances or events will occur.

2.4.2.2. Vulnerabilities and Weaknesses

ICT systems may be prone to cyber-attacks both inside and outside the system network,
boundaries or premises. In order to analyse and discover the vulnerabilities associated
with systems, it is often necessary to have a thorough understanding, e.g., to know the
types of communications and operations associated with the system, and many other
technical, architectural and procedural details. Doing so, it is possible to understand how
attackers may make use of the vulnerabilities of the system, system components,
processes and architecture to their advantage, to carry out intrusions, and achieve
malicious goals.

A vulnerability, as defined by the NIST is [43]: a weakness in an information system, system

security procedures, internal controls, or implementation that could be exploited by a threat

source. For example, hardware vulnerabilities can be exploited by special crafted software

components that take advantages of it into expressing malicious behaviours. In particular,

intended faults can be inserted within software components that during operation can

express in a range of malicious behaviour, ranging from overheating a system through

fast execution or steal information from shared memory locations.

According to the CVE [49] a widely used20 list of publicly known vulnerabilities, a

vulnerability is a flaw resulting from a weakness that can be exploited, causing a negative

impact to the security of impacted components. For example, hardware weaknesses such

as proximity of memory cells can create a vulnerability that can be exploited by software

components specially crafted to take advantage of a device hardware structure.

But most information system vulnerabilities can be associated with security controls

which are meant to protect the threatened CIA security properties (confidentiality, integrity,

20 Among those products and services, the CVE also feeds the NVD (US National Vulnerability
Database) which builds upon the information included in CVE to provide enhanced information
such as fix information, severity scores, impact ratings, and searching features.

Page 62 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

and availability). In this sense, preventive control mechanisms such as the locking out

unauthorized intruders can be applied before an intrusion event. During the intrusion

event, detective controls can identify and characterize the intrusion, and based on its

specifics, trigger notifications alarms. The process of building trust in system operations,

requires triggering of operational fail-over behave. Therefore, within BIECO, following the

runtime detection of malicious intrusions that made their way into the operational phased

of a system, fail-over behaviours are triggered for assuring the ultimate trustworthy

operation of a system. Typically, after an intrusion event has been detected, corrective

controls are put in place for limiting the extent of damage. When security controls are not

applied, or the systems retain some weaknesses, emergent vulnerabilities can arise over

time. For example, system evolution, changes in environment, proliferation of new

technologies and new threats create vulnerabilities along the full lifecycle of a system [43].

In general, risk materializes as a result of a series of threat events, each of which takes

advantage of one or more vulnerabilities. For example, the risk of leading to a physical

crash in a potential hazardous situation, results from hidden undetected malicious

behaviours that made the way from the design through the operational phase of a system.

Generally, the development of threat scenarios is analytically useful, since some

vulnerabilities may not be exposed to exploitation unless and until other vulnerabilities

have been exploited. Within a supply chain, system and system components (including

software components) are shipped sequentially, malicious attacks can manifest based on

strategically introduced faults that coordinate operation of multiple components.

Analysis that illuminates how a set of vulnerabilities, taken together, could be exploited by

one or more threat events w.r.t one component as well as multiple inter-related

components is therefore, in a supply chain, much more useful than the analysis of

individual vulnerabilities.

The severity of a vulnerability is an assessment of the importance of/ the required effort
in/ mitigating or correcting the vulnerability itself. It can be determined by the extent of
the potential adverse impact, if it is exploited by a threat source. Typically, it is context-
dependent. For example, within an ICT supply chain, the severity of leaving a software
(considered vulnerable) not updated is analysed with regard to the importance of having
a wireless channel for delivering a software component or to the required effort of
applying software updates in-house.

The assessment of vulnerabilities is intended as a systematic examination of an
information system or product to determine the adequacy of security measures, identify
security gaps, provide data from which to predict the effectiveness of proposed security
measures and confirm the adequacy of these measures after implementation. The NIST
800-53 [84], and the ISO/IEC 27005 [83] provide guidelines for the assessment of
vulnerabilities. Within BIECO, based on assessed vulnerabilities, safe fail-over behaviour
is triggered. For example, a system considered vulnerable to security attacks, which
manifest into malicious behaviour of software components during runtime operation, is
designed with a failure prediction mechanism in place that is triggered in specific
technical situations. These technical situations describe the scenarios in which systems
operate.

According to the fundamentals of risk assessment from NIST 800-30 [43], an analysis
approach can be vulnerability-oriented when it starts with a set of predisposing conditions
or exploitable weaknesses/deficiencies, and identifies threat events that could exercise
those vulnerabilities together with possible consequences of vulnerabilities being
exercised. Other approaches (i.e., threat-oriented and asset/impact oriented) are

Page 63 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

described in Section 2.4.3.1. Examples of vulnerability-oriented analysis of a system
within BIECO will start with a set of identified architectural and logical weaknesses, based
on which threat events are deduced.

In the perspective of CWE, a community-developed list of common software and hardware
weakness types that have security ramifications, weaknesses are [86]: flaws, faults, bugs,
vulnerabilities, or other errors in software or hardware implementation, code, design, or
architecture that if left unaddressed could result in systems, networks, or hardware being
vulnerable to attack.

The concept of weakness is tightly related to the notion of predisposing condition of NIST
SP 800-30 [43], which meaning is broader: A predisposing condition is a condition that
exists within an organization, a mission or business process, enterprise architecture,
information system, or environment of operation, which affects (i.e., increases or
decreases) the likelihood that threat events, once initiated, result in adverse impacts to
organizational operations and assets, individuals, other organizations.

Vulnerabilities (including those attributed to predisposing conditions) are part of the
overall security posture of organizational information systems and environments of
operation that can affect the likelihood of occurrence of a threat event.

2.4.2.3. Threats

As described by NIST SP 800-30 [43] and 800-82 [85], a threat is: any circumstance or event
with the potential to adversely impact organizational operations and assets […]. For
example, an undetected malicious behaviour of a software component that holds the
control of a system.

Threat Source

A Threat Source is an initiator of an attack, and is characterized by the intent and method
targeted at the exploitation of a vulnerability or by a situation and method that may
accidentally exploit a vulnerability. An example of threat source is a maliciously intended
employee which inserts faults in a software component, endangering the system that
executes the software, as well as the whole ecosystem around it, including other systems,
system components and actors.
Further types of threat sources included in NIST 800-30 [43] are:

1. hostile cyber or physical attacks;
2. human errors of omission or commission;
3. structural failures of organization-controlled resources (e.g., hardware, software,

environmental controls);
4. natural and man-made disasters, accidents, and failures beyond the control of the

organization.
A useful taxonomy of threat sources has been developed by [43], and is shown in Table 8.

Page 64 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Table 8 - Taxonomy of Threat Sources [43]

Type of Threat Source Description Characteristics

ADVERSARIAL
- Individual

o Outsider
o Insider
o Trusted Insider
o Privileged Insider

- Group
o Ad hoc
o Established

- Organization
o Competitor
o Supplier
o Partner
o Customer

- Nation-State

Individuals, groups, organizations, or states that
seek to exploit the organization’s dependence
on cyber resources (i.e., information in
electronic form, information and
communications technologies, and the
communications and information-handling
capabilities provided by those technologies).

Capability,
Intent,
Targeting

ACCIDENTAL
- User
- Privileged User/Administrator

Erroneous actions taken by individuals in the
course of executing their everyday
responsibilities.

Range of
effects

STRUCTURAL
- IT Equipment

o Storage
o Processing
o Communications
o Display
o Sensor
o Controller

- Environmental Controls
o Temperature/Humidity

Controls
o Power Supply

- Software
o Operating System
o Networking
o General-Purpose Application
o Mission-Specific Application

Failures of equipment, environmental controls,
or software due to aging, resource depletion, or
other circumstances which exceed expected
operating parameters

Range of
effects

ENVIRONMENTAL
- Natural or man-made disaster

o Fire
o Flood/Tsunami
o Windstorm/Tornado
o Hurricane
o Earthquake
o Bombing
o Overrun

- Unusual Natural Event (e.g.,
sunspots)

- Infrastructure Failure/Outage
o Telecommunications
o Electrical Power

Natural disasters and failures of critical
infrastructures on which the organization
depends, but which are outside the control of
the organization.
Note: Natural and man-made disasters can also

be characterized in terms of their severity

and/or duration. However, because the threat

source and the threat event are strongly

identified, severity and duration can be included

in the description of the threat event (e.g.,

Category 5 hurricane causes extensive damage

to the facilities housing mission-critical

systems, making those systems unavailable for

three weeks).

Range of
effects

Threat Event and Attack Pattern

Threat events are caused by threat sources, and can be defined as [43]: -single or sets of-
events, actions, or circumstances that can potentially cause undesirable consequences or
impact.

When a set of discrete threat events, attributed to a specific threat source or multiple
threat sources, are partially ordered in time and result in adverse effects, they originate a

Page 65 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

so-called threat scenario. For example, an adversarial threat source in form of a trusted
insider, such as a developer of software components, causes the threat event of hiding a
malicious code within a software component that control an actuator of a cyber-physical
system. Then during, runtime, in specific situations e.g., when it is most likely to reach a
target destruction impact, the malicious behaviour causes an unwanted commission of
the actuator.

Knowing the intent and targeting aspects of a potential attack, helps organizations narrow
the set of threat events that are most relevant to consider. In the previous example, active
considerations of catastrophic events rely on deployment of safety mechanisms that can
trigger fail-over behaviour based on predicted malicious intentions of control software. In
fact, multiple threat sources can initiate or cause the same threat event, e.g., a
provisioning server can be taken off-line by a denial-of-service attack, a deliberate act by
a malicious system administrator, an administrative error, a hardware fault, or a power
failure.

So, when threat events are identified with great specificity, threat scenarios can be
modelled, developed and analysed.
Threat events for cyber or physical attacks are characterized by the Tactics, Techniques,
and Procedures (TTPs) employed by adversaries. Understanding adversary-based threat
events gives organizations insights into the capabilities associated with certain threat
sources.

In this regard, the Appendix E of NIST 800-30 [43], provides representative threat events
initiated by threat sources, and includes:

• a description of potentially useful inputs to the threat event identification task;
• representative examples of adversarial threat events expressed as tactics,

techniques, and procedures (TTPs) and non-adversarial threat events;
• an exemplary assessment scale for the relevance of those threat events;
• templates for summarizing and documenting the results of the threat

identification.

The level of detail of TTPs is established as part of the organizational risk frame and it is
intended to support risk assessments at all three tiers (organization level, business
process level, information system level), and to be tailorable to include additional details,
as necessary. The standard NIST SP 800-30 [43] refers to the CAPEC [54] as a reference
for detailed descriptions of threat events that exploit software. CAPEC is a publicly
available catalogue of common attack patterns that helps users understand how
adversaries exploit weaknesses in applications and other cyber-enabled capabilities.
Examples of well-known attack patterns from CAPEC are: SQL injection, buffer overflow,
http response splitting, etc.

In this catalogue, some attack patterns are defined as descriptions of the common
attributes and approaches employed by adversaries to exploit known weaknesses in
cyber-enabled capabilities. Attack patterns define the challenges that an adversary may
face and how they go about solving it. They derive from the concept of design patterns
applied in a destructive rather than constructive context and are generated from in-depth
analysis of specific real-world exploit examples. Each attack pattern captures knowledge
about how specific parts of an attack are designed and executed, and further on, gives
guidance on ways to mitigate the attack's effectiveness. Attack patterns help the
development of applications, or administrating cyber-enabled capabilities to better
understand the specific elements of an attack and how to stop them from succeeding
[54].

Page 66 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Hazard vs Threat

The various views on safety and security result in different terms being used for similar

concepts or even the same term being used with slightly differing meaning. In the field of

systems with safety-critical functionalities, the term hazard is widely used and often

preferred to threat/threat source terms.

Thus, a methodology for risk assessment aimed at assuring the ultimate trust should be

sufficiently general to be applied not only to the cybersecurity domain but to cyber-

physical-security and safety domains. Therefore, we report here a definition of hazard

concept, a technique for hazard identification and some considerations on its relation with

the threat concept. A hazard is a potential source of harm, and it can be a constituted or

produced by deviations from design or operational intent. It should be noted that a single

hazard could potentially lead to multiple forms of harm.

A threat is a very similar concept from the security domain where the undesirable

consequences will primarily affect the security properties of the system under

consideration [95]. However, security-threats may have consequences that go beyond

security. Security-threats can have adverse impact on safety and dependability in general

and therefore on the ultimate level of trustworthy operation of a system. It is not

surprising, in fact, that one recent safety standard as the EN 50129:2018 [96] explicitly

names security-threats as causes of functional safety hazards, and IT-security as a field

that can affect functional safety. Explicit reference to security standards as, in example,

the ISA/IEC 62443 [89] is given in the context of [96].

In order to identify potential hazards and operability problems, a well-known standard [94]

technique named HAZOP (described in Section 2.1.13) is often adopted.

Among the activities typically performed in the field of systems with safety-critical
functionalities, the hazard analysis enables identification of potentially dangerous
situations that could occur with consequences from a safety point of view. In order to
proceed with the identification of potential hazards, the approach followed in the risk
analysis involves the creation of a functional logical model of the system analysed. This
model divides the system into functional blocks, where a part of the functions performed
by the system are assigned to each block. In addition, the internal and external interfaces
of the system are also defined, identifying the data/signals that the functional blocks
exchange with each other and with external systems.
Typically, starting from the system model, the hazard analysis is carried out by applying
appropriate keywords to the identified functions and interfaces. The use of keywords has
the dual purpose of providing guidance in the analysis of hazards and ensuring maximum
coverage in identifying hazard scenarios. HAZOP guide words, are key supporting
elements in the execution of a HAZOP analysis according to IEC Standard 61882 [94].

2.4.2.4. Likelihood

According to NIST SP 800-30 [43], the overall likelihood, combines an estimate of the

likelihood of initiation/occurrence of a threat event with an estimate of the likelihood of

impact.

The likelihood of occurrence is a weighted risk factor based on an analysis of the

probability that a given threat is capable of exploiting a given vulnerability (or set of

vulnerabilities). For adversarial threats, an assessment of likelihood of occurrence is

typically based on [43]:

i. adversary intent;

Page 67 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

ii. adversary capability; and

iii. adversary targeting (e.g., goal).

For other than adversarial threat events, the likelihood of occurrence is estimated using

historical evidence, empirical data, or other factors. The likelihood of threat occurrence

can also be based on the state of the organization—taking into consideration predisposing

conditions and the presence and effectiveness of deployed security controls to protect

against unauthorized/undesirable behaviour, detect and limit damage, and/or maintain or

restore mission/business capabilities.

The likelihood of impact addresses the probability (or possibility) that the threat event will

result in an adverse impact, regardless of the magnitude of harm that can be expected.

Organizations typically employ a three-step process to determine the overall likelihood of

threat events:

1. assess the likelihood that threat events will be initiated (for adversarial threat events,

mainly subject to security attacks) or will occur (for non-adversarial threat events,

such as random or sporadic failures).

2. assess the likelihood that the threat events once initiated or occurring, will result in

adverse impacts or harm to organizational operations and assets, individuals, other

organizations, or the Nation.

3. Finally, assess the overall likelihood as a combination of likelihood of

initiation/occurrence and likelihood of resulting in adverse impact.

2.4.2.5. Impact

The NIST SP 800-30 [43] defines two types of impact: level of impact and impact values.
• The level of impact from a threat event is: the magnitude of harm that can be

expected to result from the consequences of unauthorized disclosure of
information, unauthorized modification of information, unauthorized destruction of
information, or loss of information or information system availability.

• The impact value is: the assessed potential impact resulting from a compromise of
the confidentiality, integrity, or availability of an information type, expressed as a
value of low, moderate, or high.

This is clearly related to key security properties (i.e., the CIA triad), while in other domains,
or in a more general perspective, the set of compromised properties may be wider. Other
approaches, e.g., the EVITA [127] or HEAVENS [128] for smart vehicles, also consider
impact dimensions (operational, safety, privacy and financial).

 Overview of the Selected Standards

There are several security standards that can be applied, also depending on the domain

of application. Many factors may guide the choice of one standard rather than another,

e.g., the goal of the activities, the target system which has to be modelled and analysed,

and so on. The standards that have been considered for this analysis and which will be

the main reference for the risk assessment methodology of BIECO use cases are analysed

in this Section. In any case, the list of standards is not exhaustive and does not constitute

a comprehensive review: they were chosen based on our expertise and on the interest for

the BIECO project and use cases.

The details of the comparison of different security standards belonging to various

domains is given in Section 2.4.3.6 and Appendix B.

Page 68 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

2.4.3.1. NIST SP 800-30

Risk Assessment Methodology

The NIST SP 800-30 [43], proposes a risk assessment methodology, which includes:
• risk model: which explicitly defines key terms and risk factors (partially already

introduced in Section 2.4.2 and Figure 43 of this report);
• assessment approach: either quantitative or qualitative;
• risk assessment process;

• analysis approach: which describes how risk factors are identified and analysed in
order to increase the coverage of the "problematic" space.

According to NIST SP 800-30, the documentation of a risk model includes:
• identification of risk factors (description and scales of values).

• identification of the relationships between risk factors (both conceptual
relationships, presented descriptively, and algorithms for combining values).

The same document provides also a wide set of appendices with examples of application
of a risk assessment.

Risk Assessment Approaches

As reported in NIST 800-30, risk and its factors, can be assessed in multiple ways,
including quantitative, qualitative or semi-qualitative approaches. Typically, each
approach has its own advantages and disadvantages

Quantitative assessments usually employ a set of methods, principles or rules for risk
based on the use of numbers, and where necessary integrated with some explanations
relating to the assumptions and constraints on the use of the results.

Qualitative assessments, instead, typically employ a series of methods, principles or rules
are used for risk assessment, based on non-numerical categories or levels, such as very
low, low, moderate, high and very high. This type of assessment supports communicating
risk results to decision makers. However, the range of values in qualitative assessments
is comparatively small in most cases, making the relative prioritization or comparison
within the set of reported risks difficult. Additionally, unless each value is very clearly
defined or is characterized by meaningful examples, different experts relying on their
individual experiences could produce significantly different assessment results. The
repeatability and reproducibility of qualitative assessments are increased by the
annotation of assessed values (e.g., “this value is high because of the following reasons”)
and by the use of tables or other well-defined functions to combine qualitative values.
Semi-quantitative assessments typically employ a set of methods, principles, or rules for
assessing risk that uses bins, scales, or representative numbers whose values and
meanings are not maintained in other contexts. This type of assessment can provide the
benefits of quantitative and qualitative assessments. The bins (e.g., 0-15, 16-35, 36-70,
71-85, 86-100) or scales (e.g., 1-10) translate easily into qualitative terms that support risk
communications for decision makers (e.g., a score of 95 can be interpreted as very high).

Examples of qualitative and semi-qualitative assessment scale from [43] are given in
Table 9 and Table 10.

Table 9 Assessment scales for the level of risk (source: [43])

Qualitative
Values

Semi-
Quantitative

Values
Description

Very High 96-100 10
Very high risk means that a threat event could be expected
to have multiple severe or catastrophic adverse effects on

Page 69 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

organizational operations, organizational assets, individuals,
other organizations, or the Nation.

High 80-95 8

High risk means that a threat event could be expected to
have a severe or catastrophic adverse effect on
organizational operations, organizational assets, individuals,
other organizations, or the Nation.

Moderate 21-79 5

Moderate risk means that a threat event could be expected
to have a serious adverse effect on organizational
operations, organizational assets, individuals, other
organizations, or the Nation.

Low 5-20 2

Low risk means that a threat event could be expected to have
a limited adverse effect on organizational operations,
organizational assets, individuals, other organizations, or the
Nation.

Very Low 0-4 0

Very low risk means that a threat event could be expected to
have a negligible adverse effect on organizational
operations, organizational assets, individuals, other
organizations, or the Nation.

Table 10 Assessment scales for the level of risk – Combination of Likelihood and Impact (source: [43])

Likelihood
(Threat Event
Occurs and
Results in

Adverse Impact)

Level of Impact

Very Low Low Moderate High Very High

Very High Very Low Low Moderate High Very High
High Very Low Low Moderate High Very High

Moderate Very Low Low Moderate Moderate High
Low Very Low Low Low Low Moderate

Very Low Very Low Very Low Very Low Low Low

Risk Assessment Process

The risk assessment process described in NIST 800-30 focuses on assessing information

security risk and it is composed of four steps, which are described in Table 11, while Step

2 “conduct risk assessment” is shown expanded in Figure 44.

Table 11 – Steps of Risk Assessment Process from [43]

Steps Description

1. Prepare
for Risk Assessment

Identify: purpose and scope, assumptions and constraints, information sources,
the risk model and analytic approaches to be employed during the assessment

2. Conduct
Risk Assessment

Identify: threat sources and threat events, vulnerabilities and predisposing
conditions correlated.
Determine: the likelihood that the identified threat sources would initiate
specific threat events and the likelihood that the threat events would be
successful, adverse impact and information security risks as a combination of
likelihood of threat exploitation of vulnerabilities and the impact of such
exploitation, including any uncertainties associated with the risk determinations

3. Communicate and
Share Risk
Assessment Results

Communicate the result of risk assessment and to share the related
information;

4. Maintain Risk
Assessment

Monitor the risk factors and update the risk assessment

Page 70 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 44 Risk Assessment Process – Step 2 Conduct Assessment Expanded View (source: [43])

Analysis Approach

According to the fundamentals of risk assessment from NIST 800-30 [43], an analysis
approach can be:

• vulnerability-oriented: starts with a set of predisposing conditions or exploitable

weaknesses/deficiencies in organizational information systems or the

environments in which these systems operate, and identifies threat events that

could exploit those vulnerabilities together with possible consequences of

exercised vulnerabilities;

• threat-oriented: starts with the identification of threat sources and threat events,

and focuses on the development of threat scenarios; vulnerabilities are identified

in the context of threats. For adversarial threats, impacts are identified based on

adversary intent;

• asset/impact-oriented: starts with the identification of impacts or consequences

of concern and critical assets, possibly using the results of a mission or business

impact analyses and identifying threat events that could lead to and/or threat

sources that could seek those impacts or consequences;

Each analysis approach takes into consideration the same risk factors, and thus entails
the same set of risk assessment activities, albeit in different order. Differences in the
starting point of the risk assessment can potentially bias the results, causing some risks
not to be identified. Therefore, identification of risks from a second orientation (e.g.,
complementing a threat-oriented analysis approach with an asset/impact-oriented
analysis approach) can improve the rigor and effectiveness of the analysis.
In addition to the orientation of the analysis approach, organizations can apply more
rigorous analysis techniques (e.g., graph-based analyses) to provide an effective way to
account for the many-to-many relationships between:

Page 71 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

(i) threat sources and threat events (i.e., a single threat event can be caused by
multiple threat sources and a single threat source can cause multiple threat
events);

(ii) threat events and vulnerabilities (i.e., a single threat event can exploit multiple
vulnerabilities and a single vulnerability can be exploited by multiple threat
events); and

(iii) threat events and impacts/assets (i.e., a single threat event can affect multiple
assets or have multiple impacts, and a single asset can be affected by multiple
threat events).

For example, graph-based analysis techniques (e.g., functional dependency network
analysis, attack tree analysis for adversarial threats, fault tree analysis for other types of
threats) provide ways to use specific threat events to generate threat scenarios. Graph-
based analysis techniques can also provide ways to account for situations in which one
event can change the likelihood of occurrence for another event.

Attack and fault tree analyses, in particular, can generate multiple threat scenarios that

are nearly alike, for purposes of determining the levels of risk. With automated modelling

and simulation, large numbers of threat scenarios (e.g., attack/fault trees, traversals of

functional dependency networks) can be generated. Thus, graph-based analysis

techniques include ways to restrict the analysis into defining a reasonable subset of all

possible threat scenarios [43].

2.4.3.2. NIST Cybersecurity Framework

Other standards of the same institute, NIST 800-53 rev4 [90] and NIST 800-53 rev5 [91],
focus on how to prevent an “incident” and on possible mitigations in case of its
occurrence.
NIST 800-53 Rev5 [91], introduces a cybersecurity framework, which integrates industry
standards and best practices to help organizations manage risk.

The Cybersecurity Framework provides a systematic methodology for risk management,
envisaging five macro-processes (functions):

1. Identify: assists in developing an organizational understanding to managing
cybersecurity risk to systems, people, assets, data, and capabilities;

2. Protect: outlines appropriate safeguards to ensure delivery of critical infrastructure
services. The Protect Function supports the ability to limit or contain the impact of
a potential cybersecurity event;

3. Detect: defines the appropriate activities to identify the occurrence of a
cybersecurity event. The Detect Function enables timely discovery of cybersecurity
events;

4. Respond: includes appropriate activities to take action regarding a detected
cybersecurity incident. The Respond Function supports the ability to contain the
impact of a potential cybersecurity incident;

5. Recover: identifies appropriate activities to maintain plans for resilience and to
restore any capabilities or services that were impaired due to a cybersecurity
incident.

An example of application of the Cybersecurity Framework is NIST.IR 7628 [87] which is

described in the following section.

2.4.3.3. NIST.IR 7628

NIST.IR 7628 Guidelines for Smart Grid Cybersecurity is a standard composed of three

volumes which presents an analytical framework that organizations can use to develop

effective cybersecurity strategies tailored to their particular combinations of smart grid-

related characteristics, risks and hazard, vulnerabilities and weaknesses [87].

Page 72 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

The document is a companion to the NIST Framework and Roadmap for Smart Grid

Interoperability Standards (NIST SP 1108) [88] and describes a high-level conceptual

reference model for the Smart Grid, identifying standards that are applicable to the

ongoing development of an interoperable Smart Grid, and specifies a set of high-priority

standards-related gaps and issues.

The report contributes to an increased understanding of the key elements critical to

realization of the smart grid, including standards-related priorities, strengths and

weaknesses of individual standards, the level of effective interoperability among different

smart grid domains, and cybersecurity requirements.

The guidelines are intended primarily for individuals and organizations responsible for

addressing cyber security for Smart Grid systems and the constituent subsystems of

hardware and software components [87]. The contents of the three volumes are

summarized in the following.

Volume 1 – Smart Grid Cybersecurity Strategy, Architecture and High-Level Requirements:

• discusses the cybersecurity strategy for the smart grid and the specific tasks within

this strategy;

• includes a high-level diagram that depicts a composite high-level view of the actors

within each of the smart grid domains and includes an overall logical reference

model of the smart grid, including all the major domains;

• describes the approach, including the risk assessment process to identify the high-

level security requirements.

• concludes with a discussion of technical cryptographic and key management issues

across the scope of Smart Grid systems and devices.

Volume 2 – Privacy and the Smart Grid: provides awareness and discussion of topics
regarding privacy issues. Additionally, the second volume provides recommendations,
based on widely accepted privacy principles, for entities that participate within the Smart
Grid, including an overview of some existing privacy risk mitigation standards and
frameworks.

Volume 3 – Supportive Analyses and References: it is a compilation of supporting analyses

and references used to develop the high-level security requirements and other tools and

resources presented in the first two volumes, including classes of potential vulnerabilities

for the smart grid that are classified by category and it identifies a number of specific

security problems in the smart grid.

Smart Grid Risk Assessment

The smart grid risk assessment process described in NIST.IR7628 [87] is based on

existing risk assessment approaches developed by both the private and public sectors

and includes identifying assets, vulnerabilities, and threats and specifying impacts to

produce an assessment of risk to the smart grid and to its domains and subdomains, such

as homes and businesses. Between the documents used in developing the risk

assessment process of [87], there are NIST SP 800-30 and ANSI/ISA 62443.

Because the smart grid includes systems from the IT, telecommunications, and electric

sectors, the risk assessment process is applied to all three sectors as they interact in the

smart grid.

The risk assessment in [87] has been undertaken from a high-level, overall functional

perspective. The output was the basis for the selection of security requirements and the

identification of gaps in guidance and standards related to the security requirements.

Page 73 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Vulnerability classes: The initial list of vulnerability classes was developed using

information from several existing documents and web sites, e.g., NIST SP 800-82, Guide

to Industrial Control Systems Security, CWE vulnerabilities, and OWASP vulnerabilities list.

These vulnerability classes ensure that the security controls address the identified

vulnerabilities. The vulnerability classes may also be used by smart grid implementers,

e.g., vendors and utilities, in assessing their systems. The vulnerability classes are

included in Chapter 6 of [87].

Both bottom-up and top-down approaches were used in implementing the risk

assessment of this standard.

The bottom-up approach focuses on well-understood problems that need to be addressed,

such as authenticating and authorizing users to substation intelligent electronic devices

(IEDs), key management for meters, and intrusion detection for power equipment. Also,

interdependencies among smart grid domains/systems were considered when evaluating

the impacts of a cybersecurity incident. An incident in one infrastructure can potentially

cascade to failures in other domains/systems.

Top-down analysis: In the top-down approach, logical interface diagrams were developed

for six functional priority areas—Electric Transportation, Electric Storage, Wide Area

Situational Awareness, Demand Response, Advanced Metering Infrastructure, and

Distribution Grid Management. The report [87] includes a logical reference model for the

overall smart grid, with logical interfaces identified for the additional grid functionality.

Some examples of the logical interface categories are (1) control systems with high data

accuracy and high availability constraints; (2) business-to-business (B2B) connections; (3)

interfaces between sensor networks and controls systems; and (4) interface to the

customer site.

A set of attributes was defined and the attributes allocated to the interface categories, as
appropriate. This logical interface category/attributes matrix is used in assessing the
impact of a security compromise on confidentiality, integrity, and availability.

The level of impact is denoted as low, moderate, or high. This assessment was done for
each logical interface category. The output from this process was used in the selection of
security requirements. An example is given in Figure 45, where the interface of between
control systems and equipment with high availability and with computation and/or
bandwidth constraints (e.g., Transmission SCADA and substation equipment) is depicted.
The figure also shows the level of impact, on the top right, and the technical high-level
security requirements.

As with any assessment, a realistic analysis of the inadvertent errors, acts of nature,

and malicious threats and their applicability to subsequent risk-mitigation strategies

is critical to the overall outcome. The smart grid is no different. Table 12 summarizes

the categories of adversaries to information systems, which, according to this NIST.IR

report need to be considered when performing a risk assessment of a smart grid

information system.

Page 74 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 45 Assessment for the interface between control systems and equipment, including level of impact

and security requirements

Table 12 Categories of Adversaries to Information Systems in NIST.IR 7628 (source: [87])

Adversary Description

Nation States
State-run, well organized and financed. Use foreign service agents to gather
classified or critical information from countries viewed as hostile or as
having an economic, military or a political advantage.

Hackers
A group of individuals who attack networks and systems seeking to exploit
the vulnerabilities in operating systems or other flaws.

Terrorists/
Cyberterrorists

Individuals or groups operating domestically or internationally who
represent various terrorist or extremist groups that use violence or the
threat of violence to incite fear with the intention of coercing or intimidating
governments or societies into succumbing to their demands.

Organized Crime
Coordinated criminal activities including gambling, racketeering, narcotics
trafficking, and many others. An organized and well-financed criminal
organization.

Other Criminal
Elements

Another facet of the criminal community, which is normally not well
organized or financed. Normally consists of few individuals, or of one
individual acting alone.

Page 75 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Industrial
Competitors

Foreign and domestic corporations operating in a competitive market and
often engaged in the illegal gathering of information from competitors or
foreign governments in the form of corporate espionage.

Disgruntled
Employees

Angry, dissatisfied individuals with the potential to inflict harm on the smart
grid network or related systems. This can represent an insider threat
depending on the current state of the individual’s employment and access
to the systems.

Careless or Poorly
Trained Employees

Those users who, either through lack of training, lack of concern, or lack of
attentiveness pose a threat to smart grid systems. This is another example
of an insider threat or adversary.

2.4.3.4. ISA/IEC 62443

The ISA/IEC 62443 standard [89] is of international standard for the security of industrial

automation and control systems. It is actually a group of standards, initiated by the ISA,

carried worldwide and is being further developed by the IEC.

The scope of the ISA/IEC 62443 Series is the Security of Industrial Automation and Control

Systems (IACS). An IACS is defined as a: collection of personnel, hardware, software, and

policies involved in the operation of the industrial process and that can affect or influence

its safe, secure, and reliable operation [92].

Since IACS includes not only technology, but also people and work processes needed to

ensure the safety, integrity, reliability, and security of the control system, the term security

here assumes a broader meaning, and, somehow rewrites the security triad, from

confidentiality, availability, integrity, (typical for the IT-security) to people, process,

technology (for the OT-security) [92].

The security life cycle of the IACS is composed of three phases:
1. Assessment: includes activities to identify high-level risks, to carry out vulnerability

and low-level risk analyses, to allocate the minimum IT security requirements for
each component of System. In detail, this phase includes:
• Risk Assessment;
• Vulnerability Assessment;

• Penetration Test;
• Threat Modelling;
• Security Level Allocation.

2. Implementation: it is necessary to structure the entire Cyber Security Management
System (CSMS) which represents the set of activities needed to identify IT risks
and define the related mitigations that make up the security strategy, to protect its
own industrial systems. This phase includes: defence Strategy; IT CSMS; Security
Level Verification.

3. Maintenance: includes maintenance actions that constitute a process of constant
monitoring of the security level of components, which allows the transmission of
data to be shared safely to the outside. In detail, this phase includes: Control
(Auditing); Subsequent Checks (Follow-up).

This standard is arranged in four groups, and each of them is composed of parts [89], [92].

Table 13 shows the complete list of ISA/IEC 62443 standards and technical reports, where

document types acronyms, where available, indicate International Standard (IS), Technical

Report (TR), and Technical Specification (TS). Part 3-2, presented in bold in the table, is

summarized in the following Section.

Page 76 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Table 13 ISA/IEC 62443 [92]

 Part Type Title Date

O
v

e
rv

ie
w

 1-1 TS Terminology, Concepts, and Models 2007

1-2 TR Master glossary of terms and abbreviations

1-3 System cybersecurity conformance metrics

1-4 IACS security lifecycle and use cases

P
o

li
c

ie
s

 &

p
ro

c
e

d
u

re
s

2-1 IS Establishing an IACS security program 2009

2-2 IACS security program ratings

2-3 TR Patch management in the IACS environment 2015

2-4 IS Security program requirements for IACS service providers 2018

2-5 TR Implementation guidance for IACS asset owners

S
y

s
te

m
s

3-1 TR Security technologies for IACS

3-2 IS Security risk assessment for system design 2020

3-3 IS System security requirements and security levels 2013

C
o

m
p

o
n

e
n

t

4-1 IS Product security development life-cycle requirements 2018

4-2 IS Technical security requirements for IACS component 2019

IACS Risk Management

ISA/IEC 62443-3-2, which is entitled Security risk assessment for system design describes

the requirements for addressing the cybersecurity risks in an IACS, including the use of

Zones and Conduits, and Security Levels. While Part 3-2 includes the requirements for the

risk assessment process, it does not specify the exact methodology to be used. The

methodology used must be established by the Asset Owner and should be consistent with

the overall risk assessment methodology of the organization. Examples using the risk

matrix methodology are included as informative content [92]. Figure 46 shows the risk

assessment process.

A key step in the Risk Assessment process is to partition the System Under Consideration

into separate Zones and Conduits. The intent is to identify those assets which share

common security characteristics in order to establish a set of common security

requirements that reduce cybersecurity risk [92].

A Zone is defined as a grouping of logical or physical assets based upon risk or other

criteria such as criticality of assets, operational function, physical or logical location,

required access, or responsible organization.

A Conduit is defined as a logical grouping of communication channels that share common

security requirements connecting two or more zones.

Page 77 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 46 Flow diagram of the ISA 62443-3-2 Risk Assessment Process (source: [92])

Partitioning the System Under Consideration into Zones and Conduits can also reduce

overall risk by limiting the scope of a successful cyber-attack. Part 3-2 requires or

recommends that some assets are partitioned as follows [92]:

• Shall separate business and control system assets

• Shall separate safety related assets

• Should separate temporarily connected devices

• Should separate wireless devices

• Should separate devices connected via external networks

Part 3-2 also requires that required security countermeasures from the Risk Assessment

as well as security requirements based on company or facility-specific policies, standards,

Page 78 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

and relevant regulations are documented in a Cybersecurity Requirements Specification

(CRS). The CRS does not have to be a standalone document; it can be included as a

section in other relevant IACS documents. The CRS includes information such a

description of the System Under Consideration, Zone and Conduit drawings, threat

environment, and countermeasures from risk assessments [92].

Part 4-1 describes the requirements for the Security Development Lifecycle (SDL) of

Control System and Component products. One of the key processes in the product SDL is

threat modelling which is a systematic process to identify data flows, trust boundaries,

attack vectors, and potential threats to the control system. The security issues identified

in the threat model must be addressed in the final release of the product and the threat

model itself must be periodically updated during the product’s lifecycle [92].

Part 3-3 further defines the Security Level in terms of the means, resources, skills, and

motivation of the threat actor, as shown in Table 14.

Table 14 Security Level and Threat Actors Definition in ISA/IEC 62443-3-3 (source: [92])
Security

Level
Definition Means Resources Skills Motivation

1
Protection against casual or
coincidental violation

simple low generic low

2

Protection against intentional
violation using simple means with
low resources, generic skills, and low
motivation

simple low generic low

3

Protection against intentional
violation using sophisticated means
with moderate resources, IACS-
specific skills, and moderate
motivation

sophisticated moderate
IACS-

specific
moderate

4

Protection against intentional
violation using sophisticated means
with extended resources, IACS-
specific skills, and high motivation

sophisticated extended
IACS-

specific
high

2.4.3.5. ETSI EG 203 251

The ETSI EG 203 251 V1.1.1 standard methodology for risk assessment [129] combines

an extended security assessment derived from ISO 31000 and typical security testing

activities following the standard ISO 29119. This methodology was initially developed and

evaluated in the RASEN [100] and ARMOUR research projects [101].

The proposal distinguished two main perspectives, a test-based risk security assessment

and a risk-based security testing one. In the test-based risk security assessment, testing

is used to guide and improve the risk assessment, adjusting risk values and providing

feedback, whereas in the risk-based security testing, risk assessment results are used to

guide the testing, prioritizing the areas to be tested according to their risk.

The main purpose of integrating the testing process into the risk assessment process is
to use testing to extend certain activities of the risk assessment process, thereby
improving the overall process results. This can be achieved by ensuring that the test
results are used as input for the risk assessment. Risk assessment includes the
identification of assets, threats and vulnerabilities, as well as the identification,
designation and realization of risk treatment, that is, security control and other
countermeasures. Risk itself is a measure that relates the frequency and/or likelihood of
accidents to their impact.

Page 79 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 47 ETSI test-based risk security assessment [129]

The overview of the test-based risk security assessment process is shown in Figure 47. In

this process, the risk assessment activity is composed by three activities:

Risk identification is the process of discovering, identifying and describing risks. This

involves determining the source of risk (such as threats and vulnerabilities), areas of

impact (such as assets), events (including changes in circumstances), causes, and

potential consequences. It should disclose the analysis of potential threats or attack

surfaces, the identification of potential threats and vulnerabilities, and the derivation of

complete threat scenarios, which should cover the relationship between threats,

vulnerabilities, and unwanted events. Risk identification can involve historical data,

theoretical analysis, informed and expert opinions and the needs of stakeholders.

Risk estimation is the process of determining the level of risk. This involves understanding

the nature of the risk, its source and its consequences.

Risk assessment is the process of comparing the results of the risk estimation with risk

criteria to determine whether the risk and/or its degree is acceptable or tolerable. Risk

assessment helps to make decisions about risk treatment and the most appropriate risk

treatment strategies and methods.

These three, together with the "Establishing the Context" and "Treatment" activities, form

the core of the ISO 31000 risk management process. As shown in Figure 48, especially in

two specific activities, testing can enhance the risk assessment process.

On the one hand, testing can enhance risk identification, as shown in Figure 48. During the

risk assessment process, risk identification activities are performed against a target of

analysis described in the "Establishing the Context". However, in a test-based risk

assessment setting, risk identification is not only based on the documentation of the

target, but also on its related test results. Test-based security risk identification can

improve security risk identification providing information about the system. Security

testing can identify/indicate potential actual vulnerabilities or vulnerable areas of the

system.

Page 80 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 48 Test based risk identification [129]

On the other hand, testing can enhance the risk estimation activity. As shown in Figure 49,
risk estimation activity is comprised by the three sub-activities: Likelihood Estimation,
Consequence Estimation, and Estimate Validation. The last sub-activity refers to checking
and/or gaining confidence in the correctness of the risk estimates. There are in particular
two activities that can be integrated with testing:

• Test-based likelihood estimation

• Test-based estimate validation

Figure 49 Test-based security risk estimation [129]

Likelihood Estimation is the activity of estimating the likelihood of risks and their causes.
In security setting, this involves estimating the following possibilities: a security attack will
be launched; an attack will be successful; a successful attack will result in an established
risk. In this sense, testing is particularly relevant to obtaining information that can support
the estimation of the likelihood of success if an attack is launched. This is because
security testing is most commonly used to identify vulnerabilities, and the existence of
these vulnerabilities directly affects its likelihood.

The main difference between test-based likelihood estimation and test-based likelihood
verification is that in the first one, the test is used to obtain the likelihood first, while in the
second activity, the purpose is to verify or gain confidence on the likelihood estimated.
In addition, Figure 47 shows other support activities, such as "communication and
consult" and "monitoring and review", which are designed to establish a management
perspective to continuously control, react and improve all relevant information and results
of the process. From a process perspective, these activities are meant to provide context
and management-related information for the combined security assessment, and are
considered to be the common denominator of the security risk assessment workflow and
the test-based risk assessment workflow.

Page 81 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

2.4.3.6. Other Standards Considered

The standards presented so far are a good reference for designing and developing a risk
assessment methodology and tool (Task 6.1) and for its application to the project use
cases (T6.2 and WP8). However, the set of standards analysed is not limited to them: in
Table 15 there is the complete list of standards studied in the context of this task. Most
of the standards pertains to IT-security domain, while some others address (also) OT-
security, safety and privacy.

Table 15 Full list of standards analysed in the context of this activity

Standard Title

NIST 800-30 Information Security - Guide for Conducting Risk Assessments
ISA/IEC 62443 Security for Industrial Automation and Control Systems
NIST.IR 7628 Guidelines for Smart Grid Cybersecurity (Rev.1)
NIST 800-37 Risk Management Framework for Information Systems and

Organizations
(A System Life Cycle Approach for Security and Privacy Rev 2)

ISO/IEC 15408-1:2009 Common Criteria for Information Technology Security Evaluation
(Part 1: Introduction and general model Rev.5)

ISO/IEC 18045:2008 Common Methodology for Information Technology Security Evaluation
EUCC EUCC (Common Criteria based European candidate cybersecurity

certification scheme)
EN 50129:2018 Railway applications – Communication, signalling and processing

systems – Safety related electronic systems for signalling
SAE J3061 Cybersecurity Guidebook for Cyber-Physical Vehicle Systems
ISO 21434 Road vehicles — Cybersecurity engineering
ISO/WD PAS 5112 Road vehicles — Guidelines for auditing cybersecurity engineering

(Version 1)
ISO/IEC 27001:2018 Information technology — Security techniques — Information security

management systems — Overview and vocabulary (Fifth edition 2018-
02)

ISO/IEC TR
19791:2010

Information technology — Security techniques — Security assessment
of operational systems (Rev.2)

NIST 800-53 Security and Privacy Controls for Federal Information Systems and
Organizations (Rev.4 and Rev.5)

NIST 800-82 Guide to Industrial Control Systems (ICS) Security (Rev.2)
EN 50159:2010 Railway applications - Communication, signalling and processing

systems -
Safety-related communication in transmission systems

ISO 26262 Road vehicles – Functional safety
IEC 61508 Functional Safety of Electrical/Electronic/Programmable Electronic

Safety-related Systems (E/E/PE, or E/E/PES)
ETSI EG 203 251
(ISO 31000)

Methods for Testing & Specification; Risk-based Security Assessment
and Testing Methodologies

 From Standards to BIECO Risk Assessment Process

After having reviewed the standards and identified some possible overlaps in the phases,
a set of nine phases for the risk assessment, from 0 to 8, has been drafted and is shown
in Table 16. It integrates the common steps and similarities in the security life cycles of
the standards. The phases can be considered an extension of the risk assessment
process from NIST SP800-30 described in Table 11.

For step 3 in Table 16 “Identification of vulnerabilities / hazards / threats “, it is possible to

improve the activity of vulnerability identifications by means of supporting test-based

methods described in ETSI EG 203 251. In particular two testing activities can be

performed:

Page 82 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

• Tests for obtaining information that can support the estimation of the likelihood

of success if an attack is launched;

• Tests to verify or gain confidence on the likelihood estimated.

Similarly, for step 4 in Table 16 “Likelihood determination” tests in compliance with ETSI
EG 203 251 can be executed for improving security threats identification providing
information about the system. Security testing can identify/indicate potential
vulnerabilities or vulnerable areas of the system.

In Appendix B, we provide more details on the association between steps and descriptions
with the reference standards.

Table 16 – BIECO Risk Assessment Process
Step

No.
Name Description

0 Preparation

Identification of purpose, scope, assumptions - constraints, information sources, risk
model. Establishing the context, understanding the regulatory environment,
requirements and processes identification.
Cyber security requirements specification, SUC description.

[For IACS context] Produce zone and conduit drawings, identify zone and conduit
characteristics, operating environment assumptions, threat environment,
organizational security policies, tolerable risk, regulatory requirements

For safety-critical context] a safety goal is to be determined
for each hazardous event evaluated in the hazard analysis

1
Identification of

assets

1: Definition of a list of information assets
2: Identification of assets and potential damage resulting from a breach of security
features
3: SUC (System Under Consideration) identification
4: [For IACS context] Partition the SUC into zones and conduits

2

Identification of

vulnerabilities

/hazards

/threats

Identification of threats, attacks and vulnerabilities that apply to each asset

[for safety-critical/automotive/railway domain]
Identification and description of operational situations and operating modes in which a
vehicle may malfunction. Determination and evaluation of potential hazards.

3

Attack path

analysis /

Impact

determination

Identification and linking of potential attack paths to one or more threat scenarios

Analysis of threats and vulnerabilities

Determination of consequence and impact

[for safety-critical/automotive/railway domain]
Classification of the identified potential hazards (also) based on the estimation of
severity and controllability

4
Likelihood
determination

Rating of the feasibility of attack paths based on the ease of exploitation

Determination of unmitigated likelihood

Analysis of likelihood and associated uncertainty

[for safety-critical/automotive/railway domain]
Classification of the identified potential hazards (also) based on the estimation of
probability of exposure
Determination of probability of successful attacks

5

Determination of
Risk,
uncertainty,
target level, and
prioritization

Determination of the risk value of a threat scenario

Determination of unmitigated cyber security risk, SL-T (Target Security Level),
comparison of unmitigated risk with tolerable risk

Communication of risk assessment results (e.g., reports, dashboards).

[for safety domain]

Page 83 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Determination of SIL for each hazardous event using the estimation parameters
severity, probability of exposure and controllability

Production of a list of information security risks that can be prioritized by risk level and
used to inform risk response decisions.

Provision of uncertainty associated with the risk assessment process

6

Selection of
Countermeasure
s /Mitigations
/Controls

Identification of an initial set of controls for the system

Tailoring of controls as needed to reduce risk to an acceptable level based on an
assessment of risk

Addressing identified risks by selecting a suitable risk treatment option

Compare unmitigated risk with tolerable risk, identify and evaluate existing
countermeasures

7

“Implementation
” of
Countermeasure
s /Mitigations
/Controls and
assessment of
effectiveness

Taking of countermeasures until the remaining risk is acceptable

Description of how the controls are employed within the system and its environment of
operation

Assessment of whether the controls are implemented correctly, operating as intended,
and producing the desired outcomes with respect to satisfying the [security and
privacy] requirements

Re-evaluate likelihood and impact, determine residual risk, compare residual risk with
tolerable risk, identify additional cyber security countermeasures

8

Maintenance &
Communication
of assessment
results /
Monitoring

Documentation and communication of results.
Keeping the specific knowledge of the risk organizations current.
To support the ongoing review of risk management decisions, maintain risk
assessments to incorporate any changes detected through risk monitoring
Documenting changes and reporting the [security and privacy] posture of the system
Reporting of asset lists, damage scenarios, attack reports or risk reports
Comparison of initial risk to tolerable risk

2.5. Modelling of CPSoS

ICT systems and solutions developed by different companies, once integrated in a single

system give birth to a so-called System-of-Systems (SoS). SoS are typically deployed on

very large geographic scales, comprise a very large number of components, are organized

in a hierarchical structure, are driven by complex interactions, and their correct operation

and availability is essential. However, the efforts and investments required for their design,

implementation and maintenance are enormous. Therefore, new methodologies,

principles and reliable tools are needed to manage their evolution and address the

growing complexity.

In the traditional modelling environments, large UML [106] or SySML [107] models, which

constitutes the widely adopted standards in this field, may become difficult to design and

maintain, and often lead to spaghetti diagrams, composed of many relationships very

complex or even impossible to be visualized and maintained.

Therefore, during the design and modelling of a SoS, many issues have to be faced, as the

time required for early prototyping, the cost of modelling large and complex SoS due to

their intrinsic complexity, as well as scalability, readability, manageability of the model.

This section reviews some of the main contributions of AMADEOS project [104] which

addressed and solved the above challenges and constitutes the starting point on which

the solution described in this deliverable is built and which evolves the AMADEOS results,

especially for addressing security and risk related concepts.

Page 84 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 50 Overview of SoS conceptualization in AMADEOS [104]

AMADEOS collected21 and reviewed22 the SoS basic concepts, and further described them

through:

• a conceptual model, thus a high-level graphical representation where concepts and

relationships has been grouped in different Viewpoints23 representing the key

perspectives of SoS, namely: Structure, Dynamicity, Evolution, Dependability and

Security, Time, Emergency and Multi-criticality (described in Section 2.5.2);

• a semi-formal representation, in SysML, of the conceptual model and the

viewpoints, which has been organized in a profile composed of several packages;

the profile aimed at supporting the understanding and further analysis activities

that can be carried out on modelled SoS instances through such a profile

(described in Section 2.5.3);

• the development of a supporting facility, called Blockly4SoS; leveraging the above

concepts and conceptual model, Blockly4SoS has been introduced, and

constitutes an important solution for modelling SoS as it reduces the cognitive

complexity, introduces an ad-hoc domain-specific SoS profile, provides continuous

model validation, includes different model viewpoints, enables the embedded

specification of system components behaviour, and automatically generates

source code from a model. The tool is further described in Section 2.5.4.

 SoS Basic Concepts

In this section, the set of definitions of the relevant concepts for understanding the SoS is

provided and some parts of the AMADEOS conceptual model are presented, which

constitute the starting point for the design of the methodologies defined and then

21 with a detailed analysis of the existing literature for the domain (e.g., from the projects DANSE
[123], DSoS [125] and COMPASS [124])
22 overview of the process is in Figure 50
23 different perspectives, each of which is focused on different SoS concerns Error! Reference
source not found..

Page 85 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

implemented in the context of BIECO WP6 that are presented in this deliverable. Hence,

the objective here is to propose a shared vocabulary and define an implicit theory about

the SoS domain.

System: An entity that is capable of interacting with its environment and may be sensitive

to the progression of time.

Universe of Discourse (UoD): the set of entities and relationships between them that are of

interest when modelling the selected world view.

Environment of a System: The entities and their actions in the UoD that are not part of a

system but have the capability to interact with the system.

System Boundary: A dividing line between two systems or between a system and its

environment.

Autonomous System: A system that can provide its services without guidance by another

system.

System Architecture: The blueprint of a design that establishes the overall structure, the

major building blocks and the interactions among these major building blocks and the

environment.

Subsystem: A subordinate system that is a part of an encompassing system.

Constituent System (CS): An autonomous subsystem of an SoS, consisting of computer

systems and possibly of controlled objects and/or human role players that interact to

provide a given service.

Cyber-Physical System (CPS): A system consisting of a computer system (the cyber

system), a controlled object (a physical system) and possibly of interacting humans.

An interacting human can be:

• Prime Mover: A human that interacts with the system according to his/her own goal;

or

• Role Player: A human that acts according to a given script during the execution of a

system and could be replaced in principle by a cyber-physical system.

System-of-Systems (SoS): An SoS is an integration of a finite number of constituent

systems (CS) which are independent and operable, and which are networked together for a

period of time to achieve a certain higher goal.

The behaviour of a system is of maximum interest to a user, so it is important to define,

also:

Function: A function is a mapping of input data to output data [103]. An alternative

definition of function is specification of the intended behaviour of a system.

Behaviour: The timed sequence of the effects of input and output actions that can be

observed at an interface of a system.

Service: The intended behaviour of a system.

The service specification must specify the intended behaviour of a system.

2.5.1.1. Communication Concepts

In an ICT system, it is essential that the transport of a message from a sender to one or

more recipients occurs within a given duration and with high dependability, which means

Page 86 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

that: within a finite and specified period of time, the message is delivered to the recipients

with a high probability, the message is not damaged, and the security of the message

(confidentiality, integrity, availability) has not been compromised. So, in a SoS, the

communication between the CSs through the exchange of messages is a central

mechanism that realizes the integration of the CSs [103].

All the entities involved in the communication, senders and recipients, must share the

“rules of the game”, and their interpretation should be unambiguous. These rules are

defined as follows.

Communication Protocol: The set of rules that govern a communication action.

Message: A data structure that is formed for the purpose of the timely exchange of

information among computer systems.

A fundamental role for the interaction between the CSs is played by the interfaces, which

represent their points of interaction with each other and the environment over time and

allow the exchange of information among connected entities. They are defined as follows:

Interaction: An interaction is an exchange of information at connected interfaces;

Relied Upon Interfaces (RUI): interface of a CS whose services are offered to other CSs. A

RUI can be of two types:

• Relied Upon Message Interface (RUMI): interface for the exchange between CS of

messages containing information;

• Relied Upon Physical Interface (RUPI): interface for the exchange of things or

energy between CSs.

In the context of AMADEOS, interfaces have a more detailed and different sub-division

(e.g., Internal, External, Utility Interfaces and so on); a dedicated viewpoint has been

developed, but they are omitted here since not particularly interesting for the risk

assessment for the following of the deliverable.

 AMADEOS SoS Conceptual Model

AMADEOS represented the main concepts regarding SoS (some of which have been

reported above, while many others can be found in [103]) in a conceptual model, with a

graphical high-level representation, organized in different viewpoints.

Then, the conceptual model has been semi-formalized in SySML (details in Section 2.5.3),

and finally the resulting viewpoints have been imported into Blockly4SoS (described in

Section 2.5.4). The conceptual model is available in [103] and is not reported here for the

sake of brevity.

 AMADEOS SoS SySML Profile

This section focuses on the basic SoS concepts belonging to the different viewpoints and

on their semantic relationships, and it describes how the SoS concepts are formally

translated using a semi-formal SysML language, organized in a profile composed by

viewpoint-related packages [110].

2.5.3.1. Brief introduction to SySML

A semi-formal modelling language is useful for improving the comprehensibility of a

problem, because it abstracts a problem thus focusing on particular points of interest

through the description of a system using independent visions and levels of abstraction.

Page 87 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

It also supports the reduction of development risks and defects through analysis and

experimentation processes carried out in the early stages of the design cycle.

The semi-formal language used to describe SoS concepts in AMADEOS is SysML [107]

which provides an extension to UML in order to support the modelling and analysis of

system-level elements using specific stereotypes (i.e., blocks) and their associations (e.g.,

generalization). SysML reuses a subset of UML [106] and at the same time extends it:

hence it is defined as a UML profile.

2.5.3.2. The AMADEOS Viewpoints

The aspects related to the structure viewpoint have been deeply considered to identify the

SoS internal structure, its boundaries with the environment through well-defined

interfaces, SoS functionalities and how interactions occur by exchanging messages. The

profile diagrams contain the SoS basic concepts distributed in sub-packages [110].

In this document, only four packages are described in detail, since they are the starting

point for the developments of evolved and new features in ResilBlockly:

SoS Architecture: describes the basic architectural elements and their semantic

relationships;

SoS Communication: provides the basic elements to describe the behaviour of a SoS as a

sequence of messages exchanged between CSs;

SoS Security: provides the basic concepts related to SoS security.

SoS Dependability: provides the basic concepts relating to the reliability of SoS.

Instead, other packages are the following (details are in [110]):

SoS Interface: describes all the integration points that allow the exchange of information

between the connected components;

SoS Evolution: provides the main elements to describe the gradual and progressive

change process of a SoS;

SoS Dynamicity: provides basic concepts relating to the dynamism of a SoS;

SoS Scenario-based reasoning: provides the basic concepts to support the generation,

evaluation and management of different scenarios resulting from SoS dynamics, thus

supporting the decision-making process in a SoS;

SoS Time: provides the basic elements to describe time concepts;

SoS Multi-Criticality: provide the basic concepts to describe the multi-criticality aspects

of a SoS;

SoS Emergence: provides the main elements to describe the SoS emergency concepts.

SoS Architecture, SoS Communication and SoS Interface all together implement the

Structure Viewpoint.

Page 88 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 51 Overview of AMADEOS SysML profile and viewpoint-related packages

2.5.3.3. SoS Architecture Package

This package extends the SysML Block Definition Diagram (BDD) to model the topology

and relationships of an SoS. Blocks in SysML BDD are used to represent: systems, system

components (hardware and software), elements, conceptual entities and logical

abstractions.

Figure 52 represents the static structure of an SoS in terms of its constituent system and

relationships and it can represent the topology of any System of Systems (more details

are in [103]):

• A System is a type of entity (thereby a Block) and is expressed by the sys_type

Enumeration: autonomous, monolithic, open, closed, legacy, homogeneous,

reducible, evolutionary, periodic, stateful and stateless;

• A system can be influenced by an Architectural style;

• A system provide communication Interfaces and it has a boundary;

• A Subsystem is a subordinate system that is part of a system and is related to

System by a composite relation;

• a Constituent System (CS) is an autonomous subsystem of an SoS;

• CS consisting of human machine interfaces hmi and possibly of physical

controlled_object;

• CS provides a given Service by interacting with role_player through the RUI (that is

introduced in SoS Communication package);

• A wrapper to a legacy_system and a prime_mover are CSs;

• CS extends the property of System, which contains multiple sub_system, which in

turn can be CS;

• System has a state_space composed of states described by the variables that may

be accessed by the CS service;

• CS interacts with cyber physical systems;

• SoS represents the integration of systems;

Page 89 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 52 SoS Architecture Package [103]

• An SoS can be directed, acknowledged, collaborative or virtual as it is expressed

by the sos_type Enumeration;

• Cyber-Physical System (CPS) is composed by a set of cyber_system (i.e., computer

systems), and physical_system (i.e., controlled objects).

2.5.3.4. SoS Communication Package

In a SoS, the communication among the CSs by the exchange of messages is the core

mechanism that realizes the integration of CSs.

Figure 53 provides the SysML stereotypes in order to describe the main characteristics of

communication protocols among CSs (details are in [103]):

• A RUI represents an external interface of a CS where the services of a CS are

offered to other CSs;

• RUI extends external_interface and guarantees the exchange of information

among CSs;

Page 90 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 53 SoS Communication package [103]

• A RUI, can be either a RUMI or a RUPI and it is monitored through probes;

• A RUI, having a connection_strategy, is instantiated complying to possibly multiple

dependability_guarantees and satisfying security constraints;

• A RUMI represents a message interface for the exchange of information among

two or more CSs;

• Physical elements are exchanged among the CSs of an SoS through the RUPI;

• Physical elements are things or energy;

• The environment is affected by the RUI;

• A message is a data structure that is composed by a data_field, a header and a

trailer;

• Message flows through a transport_service;

• The main transport protocol classes are listed in the transport_service

Enumeration data type (i.e., datagram, PAR-Message and TT-Message);

• A message can be classified as valid, checked, permitted, timely, correct or

insidious.

Page 91 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

2.5.3.5. SoS Dependability Package

Dependability and Security are important properties for SoSs since they affect its

availability, reliability, maintainability, safety, data integrity, data privacy and

confidentiality.

Figure 54 shows the key concepts (details are in [103]):

• A CS or a whole SoS may require possible multiple dependability_guarantee;

• Dependability_guarantee is achieved through different dependability measure by

means of possible different technique;

• A technique is exploited to reduce the occurrence of faults: fault_prevention,

fault_tolerance, fault_removal, fault_forecast;

• A measure represents a property expected from a dependable system expressed

in terms of a quantitative target_value: availability, reliability, maintainability, safety,

integrity, robustness.

Figure 54 SoS Dependability package [103]

2.5.3.6. SoS Security Package

This package describes the fundamental elements used by a system designer to represent

security aspects of an SoS.

Figure 55 shows a set of security concepts (details are in [103]):

• A CS or a SoS are connected to Security Stereotype to satisfy the security

conditions of an SoS;

• Cryptography based on symmetric (symmetric_cryptography) or public key

(public_key_cryptography) infrastructure;

• Encryption represents the process of encoding information or data;

Page 92 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

• Three types of keys have been represented: symmetric_key, private_key or

public_key;

• Data (or the information exchanged) can be encrypted (ciphertext), or not

encrypted (plaintext)

• Decryption represents the process of turning ciphertext to plaintext;

• AccessControl consists in a set of actions that are permitted or not allowed by the

system;

• Subject that represents an active user, a process or a device that causes

information to flow among objects or changes the system state;

• A subject may have attributes permission that describe how the subject can

access to objects;

Figure 55 SoS Security package [103]

Page 93 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

• An object is a passive system-related devices, files, records, tables, processes,

programs, or domain containing or receiving information;

• AccessProcess is composed by the authentication and the authorization;

• ReferenceMonitor represents the mechanism that implements the access control

model;

• AccessControlModel captures the set of allowed actions within a system as a

policy;

• SecurityPolicy represents a set of rules that are used by the system to determine

whether a given subject can be permitted to gain access to a specific object.

 Blockly4SoS

The AMADEOS SoS profile [110] can be adopted to support a Model-Driven Engineering

(MDE) activity. MDE is an approach for system development which leverages models for

the understanding, design, construction, deployment, operation, maintenance and

modification of systems.

Defining a SoS profile can be difficult for individuals inexpert with SySML language.

Moreover, there can be scalability and readability issues when the complexity of the SoS

to be modelled increases. Designers should be able to realize a SoS without having

specific and strong skills in modelling languages such as UML or SysML. Furthermore, in

traditional modelling environments, large models are known to be difficult to design and

maintain and often lead to spaghetti diagrams, which is a very complex diagram that leads

to a worst visualization of the model, with the use of many relationships (lines) between

the intersecting blocks, making it illegible [103].

Blockly4SoS24 is used to model, validate, query, and simulate SoSs by leveraging the

integrated Google Blockly25, which is an open-source JavaScript library for building visual

programming editors or a visual Domain Specific Language (DSL), using blocks.

Blockly4SoS is a valid alternative that facilitates the design of a SoS, thanks to the use of

an intuitive interface and in any case compatibility with the MDE approach. In fact, its

modelling syntax is defined by a set of blocks available as a puzzle, which are composed

to model a SoS.

Blockly4SoS is thus a supporting facility tool for SoS designers which enables them to

perform MDE leveraging the AMADEOS conceptual model [103] and the integrated Blockly

library. The meta-model in Blockly is represented by all the rules and specifications that

define the meaning of the various blocks, the relationships that can be created between

blocks and all the constraints that allow them to join or not. In particular, Blockly has two

ways to define blocks, the JSON and the JavaScript format. The goal of the tool is to

simplify and provide means to rapid modelling of SoS using the SysML profile (meta-

model).

The SysML meta-model is first transformed into Blockly blocks, then these blocks could

be used within the tool to create a SoS model.

2.5.4.1. Overview of Blockly4SoS Flow, Pros and Cons

The main features of Blockly4SoS are [103]:

• It speeds up the modelling and only a modern web browser is required;

24 http://blockly4sos.resiltech.com .

25 https://developers.google.com/blockly/ .

http://blockly4sos.resiltech.com/
https://developers.google.com/blockly/

Page 94 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

• Its intuitive and simpler user interface than SySML Language;

• the ability to check constraints at design time (user defined and pre-defined

constraints) and to warn user when they make mistakes or violations.

Figure 56 Flow of MDE using the Blockly4SoS [103]

Figure 56 shows the flow and outputs of MDE activity with Blockly4SoS [103]. A

preliminary step is carried out by a SoS profile expert, which transforms the AMADEOS

SoS SysML profile into Blockly blocks; in the case of Blockly4SoS is a one-time activity

that has been performed by using an external tool26.

Then, a SoS designer is able to performs modelling with Blockly4SoS as follows:

1. the user is provided with a facility for modelling the SoS, where only compatible

blocks can be connected, implementing a validation functionality: the model can

be transformed into PlantUML27 or exported as an XML28

2. in addition, the tool enables the coding of behaviour of components directly within

the modelling environment (in Python Language), and this source code can be later

on exported from the model;

3. The exported code allows the simulation of the components behaviour and of their

interactions; simulated constituent systems can also be complemented with real

implementations;

4. Simulation results are sequence diagrams and log files which can be analysed in

order to refine and update the model.

26 https://www.eclipse.org/papyrus/
27 http://plantuml.com
28 a specific Blockly version of XML

http://plantuml.com/

Page 95 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Together with its features, some cons of Blockly4SoS have been identified: Blockly4SoS

only supports coding only in python and only in a window within the modelling

environment, so without the features usually available to a programmer when coding in

an IDE. Then, the generated XML is possible only in the XML proprietary version of Google

Blockly, that can only be reimported within Blockly4SoS itself. Then, Blockly4SoS allows

only modelling according to the AMADEOS SySML profile, and no other meta-models are

available; potential modifications to the profile have to be performed outside the tool. This

could be a problem if the user wants to create an ad-hoc profile for a different domain or

to modify some details.

A description of the improvements to Blockly4SoS introduced in the context of BIECO is

given in Section 6.1

2.5.4.2. Introduction to Blockly4SoS Main Features

In Blockly4SoS, all the blocks required to build a SoS can be found in the toolbox on left

hand side as they have been provided by the SoS profile expert and according to the

AMADEOS SysML profile [110]. As example, Figure 57 shows all the blocks related to the

Architecture Viewpoint.

Figure 57 – Architecture viewpoint related blocks in Blockly4SoS [111]

Page 96 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

The model, in order to be usable in a simulation, must have service blocks with a coded

behaviour. So, after having defined a CS and its RUMI, in order to provide a defined service

through a RUMI, the user clicks on the plus symbol, located on the right of Provides

exchange of – Service (S) in a RUMI block, and select from the dropdown menu the service

(s), as shown Figure 58:

Figure 58 Providing services through a RUMI [111]

To add a behaviour, the user can right click on the interested Service block, and to select

the @Add behavior item; by doing so, a blue icon button appears on the left of the selected

service. The designer can click on the icon, opening a text box, in which can insert the

python code to define the behaviour of the Service, as shown in the example of Figure 59.

To generate the code related a SoS model, the designer must click on the button Generate

code and an archive, named SoS-Simulation.zip, is generated.

Page 97 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 59 Example of behaviour of a service [111]

The file includes:

1. a folder src that contains the Python source code:

• amadeos.py (contains all the constructor code);

• sos.py (the main code for running SoS simulation);

• sos_gui.py (which interacts with the user);

• model_behaviour.py (which contains all the behaviours defined by user).

2. two files for running the simulation on UNIX or windows, respectively.

The simulator is a set of Python programs meant for executing the desired scenarios

created by designer. At the end of the simulation, a log file is be generated, from which

quality metrics may be computed.

Other features have been introduced out of the context of AMADEOS project, one of which

is enabled by clicking on the generate analysis button: this, even if in a draft version,

supports a functional and interface analysis and generates a template for the analysis

directly retrieving functions and RUMIs from the model. This is one of the features that

have been redesigned and are described in the following of the deliverable (Section 3).

Page 98 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

3. Definition of a HAZOP-based Risk Assessment Methodology

The HAZOP technique (described in Section 2.1.13), consists in examining a system by

dividing it into parts and analysing the potential hazards matched to a system part (Figure

32) with the help of guidewords. This Section introduces a methodology, derived from the

HAZOP, for a systematic application of an HAZOP-based risk assessment to specific parts

of the system model: functions and interfaces, which will be presented in Sections, 3.1

and 3.2 respectively.

In the context of BIECO, the methodology described here in Section 3 (overview of the

process is given in Figure 60), together with the approach introduced in Section 4,

constitute a basic but effective strategy towards the integration of safety and security

analyses, where results from the HAZOP-based risk assessment (typically applied in the

safety domain) can be fed into the security risk assessment. In fact, as an example,

hazards or low-level component failure that are safety-relevant and that have been

identified during the HAZOP, can be further analysed during the security risk assessment

from a different point of view.

In other words, this methodology is being proposed and applied as an alternative or

preliminary risk assessment approach with regard to the BIECO Risk Assessment Process

whose steps have been identified in Section 2.4.4, and whose details are given in Section

4. Therefore, a user which has a safety background may feel more comfortable in

following the HAZOP approach, while another may prefer to adopt the process originating

from the integration of common steps of security standards, and a third user may instead

be interested in applying both the methodologies to analyse the same ecosystem from

different perspectives.

Moreover, even if the HAZOP methodology is typically used in safety domain for hazard

analysis, it is possible to use this approach for conducting also security (threat) analysis

and risk assessment, e.g., by using some specific keywords, as discussed in Section 3.3.

In this case the two methodologies may be seen as alternative each other. The HAZOP-

based methodology is the underlying approach of a feature already existing in

Blockly4SoS29 before BIECO, even if in a draft status, introduced after and out of the

context of AMADEOS project. In BIECO, the functionality has been re-designed to enable

the application also to profiles different from the SoS one, and its implementation

completely refactored (description of the latter is given in Section 6.3).

Thus, the contribution of this section is a novel methodology for systematically applying

the state-of-the-art HAZOP technique and some typical standard guidewords (Table 4) to

the functions and interfaces of a modelled system (e.g., Table 17 and Table 19). Then,

leveraging a template for the risk analysis (e.g., Table 18 and Table 20), the methodology

originates a HAZOP report. This methodology is practically assisted by the

implementation described in 6.3, thanks to which a user automatically obtains the list of

functions and interfaces identified from the modelled ecosystem, the automatic

generation of a pre-filled HAZOP/THROP report (as depicted in Figure 60). The latter is a

downloadable worksheet that can be completed offline originating an actual assessment

report. Moreover, the user can specify custom keywords and parsing rules for determining

their meaning for the functional/analysis (details in Section 6.3).

29 This feature of Blockly4SoS, as already described in Section 2.5.4.2, is enabled by clicking on the generate
analysis button

Page 99 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 60 Process view of the HAZOP-based methodology (in blue the steps assisted by ResilBlockly, in
white the ones to be addressed offline)

3.1. Functional Hazard Analysis

The Functions are a part of the model that are systematically analysed and examined,

based on guidewords. An example of guidewords is derived from the HAZOP technique,

as shown in Table 17, which is the application of the guidewords proposed by IEC

Standard 61882 (Hazard and operability studies - Application guide), already presented in

Table 4, to the functions and the meaning is updated accordingly.

Table 17 Possible HAZOP Keywords and their meaning for the Functional Analysis

 Keyword Meaning for the Functional Analysis

NO OR NOT ▪ Complete negation of the function outcome
MORE ▪ Quantitative increase in function outcome

▪ LESS ▪ Quantitative decrease in function outcome
▪ AS WELL AS ▪ Qualitative modification/increase in function outcome
▪ PART OF ▪ Qualitative modification/decrease in function outcome
▪ REVERSE ▪ Logical opposite of the function outcome
▪ OTHER THAN/ INSTEAD Complete substitution in function outcome
▪ EARLY Function outcome anticipates the intended clock time
▪ LATE Function outcome is given after the intended clock time

▪ BEFORE
Function outcome is produced before than expected with respect
to the order or sequence of events

▪ AFTER
Function outcome is produced after than expected with respect
to the order or sequence of events

The analysis can be customized by specifying the list of keywords and the consequent

type of deviation from the intended behaviour.

Once the keywords are determined, they are systematically applied to each function, thus

generating a table where the number of rows is the product of the number of functions

and the number of keywords. On the columns, instead, there are the dimensions of the

Page 100 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

HAZOP analysis as represented in Table 18; the first five (Analysis ID, Block, Function

description, Keyword, High level description of the scenario to be analysed) can be filled

automatically, without the user intervention, by retrieving the set of functions and related

information from the model, and by applying specific parsing and substitution rules. The

rules can be also defined by the user as a template (implementation details and examples

are in Section 6.3.).

Table 18 Columns in the HAZOP Functional Analysis Template

Column in the template Meaning for the Functional Analysis

Analysis ID Unique Identifier Number of a system Function (typically, a
relation block that is identified as Function)

Block Name of the block (e.g., a system component providing the
Function) as defined in the model

Function description Name of Function as defined in the model

Keyword The keyword that is being applied for the analysis (e.g., one of the
guidewords of Table 17)

High level description of
the scenario to be
analysed

The description of the unexpected behaviour of the function (e.g.,
according to the meaning of functional analysis, in second
column of Table 17)

Causes Possible causes of the deviation from expected behaviour of the
function

Consequences (Local
Level)

Impact of the deviation at the local level (if applicable e.g., the
function is provided by a subsystem or component)

Consequences (System
Level)

Impact of the deviation at the system level

Severity (Pre-Mitigation) Severity of the impact of the deviation (without considering the
introduction of new mitigations)

Probability/Frequency
(Pre-Mitigation)

Likelihood of the deviation (without new mitigations in place)

Risk (Pre-Mitigation) Risk of the deviation (determined considering the above severity
and probability and without new mitigations in place)

Mitigation Possible countermeasure or safeguard to be introduced

Severity (Post-Mitigation) Updated severity of the impact, considering the mitigation
introduced

Probability/Frequency
(Post-Mitigation)

Likelihood of the deviation, considering the mitigation introduced

Risk (Post-Mitigation) Risk of the deviation, considering the updated severity and
probability after the introduction of the mitigation

Page 101 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Status The status of the hazard; e.g., it can assume a value based on
categories depending on the system, the domain, or standards
(open, pending verification, closed, deleted, covered, etc.)

Note A field that can be used for commenting the analysis

The other columns in the table (from Causes to Note) require the user intervention and

expert analysis in order to be filled.

3.2. Interface Hazard Analysis

Analogously to the Functions, the Interfaces are another part of the model that can be

analysed for hazards in a systematic way, based on keywords.

An example of keywords for the interface hazard analysis, again derived from the HAZOP

technique, is shown in Table 19, where the meaning of each keyword is also explained.

Table 19 Possible HAZOP Keywords and their meaning for the Interface Analysis

 Keyword Meaning for the Interface Analysis

NOT ▪ Complete negation of the transmission over an interface
▪ PART OF ▪ Qualitative modification/decrease in the object transmitted

▪ EARLY
Transmission over an interface anticipates the intended clock
time

▪ LATE
Transmission over an interface happens after the intended clock
time

▪ BEFORE
Transmission over an interface happens before than expected
with respect to the order or sequence of events

▪ AFTER
Transmission over an interface is produced after than expected
with respect to the order or sequence of events

As with the functions, the analysis can be customized by specifying the list of keywords

and the consequent type of deviation from the intended communication or transmission

over an interface.

Similarly, once the keywords are established, the systematic application to each interface

generates a new table. On the columns, there are the dimensions of the HAZOP Interface

analysis as represented in Table 20; the first six (Analysis ID, Message, Source Block,

Destination Block, Keyword, High level description of the scenario to be analysed) can be

automatically filled by retrieving from the model the set of interfaces and related

information, and by applying specific parsing and substitution rules. Once again, the rules

can be specified according to templates, e.g., depending on application domain, standards

or specific system details (examples are in Section 6.3.).

Table 20 Columns in the HAZOP Interface Analysis Template

Column in the template Meaning for the Functional Analysis

Analysis ID
Unique Identifier Number of a system Interface (typically, a triple
of relation blocks that is identified as Interface, composed of
source, destination and “message”)

Message
Name of the “message” block as defined in the model; in
principle, it could

Source Block
Name of the block (e.g., a system component) that, leveraging the
interface, originates the transmission of a message or “thing”,

Page 102 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Destination Block
Name of the block (e.g., a system component) that, leveraging the
interface, receives a transmitted message or “thing”

Keyword
The keyword that is being applied for the analysis (e.g., one of the
guidewords of Table 19)

High level description of
the scenario to be
analysed

The description of the unexpected behaviour involving an
interface (e.g., according to the meaning of interface analysis, in
second column of Table 19)

Causes
Possible causes of the deviation from expected behaviour on the
interface

Consequences (Local
Level)

Impact of the deviation at the local level (if applicable e.g., it is the
interface of a subsystem or component)

Consequences (System
Level)

Impact of the deviation at the system level

Severity (Pre-Mitigation)
Severity of the impact of the deviation (without considering the
introduction of new mitigations)

Probability/Frequency
(Pre-Mitigation)

Likelihood of the deviation (without new mitigations in place)

Risk (Pre-Mitigation)
Risk of the deviation (determined considering the above severity
and probability and without new mitigations in place)

Mitigation Possible countermeasure or safeguard to be introduced

Severity (Post-Mitigation)
Updated severity of the impact, considering the mitigation
introduced

Probability/Frequency
(Post-Mitigation)

Likelihood of the deviation, considering the mitigation introduced

Risk (Post-Mitigation)
Risk of the deviation, considering the updated severity and
probability after the introduction of the mitigation

Status
The status of the hazard; e.g., it can assume a value based on
categories depending on the system, the domain, or standards
(open, pending verification, closed, deleted, covered, etc.)

Note A field that can be used for commenting the analysis

3.3. THROP: HAZOP for Security Assessment

Along with typical HAZOP guidewords, one interesting variant that has been proposed in
literature is the so-called Threat and Operability Analysis (THROP), which considers
threats for a particular feature from a functional perspective. Thus, the THROP first
identifies the primary functions of a feature, second applies guidewords to identify
potential security threats, and third determines potential worst-case scenario outcomes
from the potential malicious behavior [117]. The same approach can be adopted also for
interfaces.

Page 103 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Adopting this methodology, and with the help of additional specific guidewords, it is thus
possible to extend our HAZOP-based risk assessment methodology for identifying
additional threats, and then conducting security analysis and risk assessment.

Some examples of THROP keywords that we identify are given in Table 21, but many other
can be specified by the assessor.

Table 21 Additional Keywords identified for the THROP functional and interface security analysis

 Keyword Meaning for the Functional Analysis

DENIAL ▪ The function is not carried out or not executed.

 Keyword Meaning for the Interface Analysis

▪ CORRUPTED ▪ The message arrives corrupted/modified
▪ REDIRECTED ▪ The message is redirected to a wrong/different recipient

Since the implementation described in Section 6.3 enables the user to define custom
keywords and rule for determining their meaning for the functional/analysis, the THROP
can be realized as well.

Page 104 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

4. Definition of a Threat Modelling and Security Risk Assessment
Methodology

As described in Section 2.4, the reference security standards for threat analysis and risk

assessment have been analysed, and the analysis has driven the definition of an BIECO

Risk Assessment Process, which steps (from 0 to 8) listed in Table 16, are depicted also

in Figure 61 for reader’s convenience. The process integrates the common steps and

similarities in the security life cycles of the standards, with a fundamental contribution

from the NIST SP 800-30 [43].

Figure 61 Overview of the Methodology (in blue the steps object of this deliverable and assisted by
ResilBlockly, as well as databases or external data integrated within it).

This section provides details about the methodology shown in Figure 61, and in particular

about the steps represented with blue rectangles, which can be assisted by ResilBlockly.

These steps are:

• step 1 (Identification of assets) which is addressed in section 4.2;

• step 2 (Identification of threats) in section 4.3, where the lists of known

weaknesses from CWE [86], vulnerabilities from CVE [49] and NVD [51], and attack

patterns from CAPEC [54], are analysed and the process for identifying and

associating vulnerabilities and weaknesses to the system components is

determined;

• step 3a (Attack path analysis) in section 4.4, where different graphical

representations built leveraging the above listed catalogues and their existing

relations are proposed and discussed;

• step 3b (Impact determination) in section 4.5, where approaches for impact

determination (which in the case of vulnerability is based on CVSS) are presented;

• step 4 (Likelihood determination) in section 4.6, and

• step 5 (Determination of Risk) in section 4.7.

Page 105 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Their description, given herein in Section 4, will be further extended in Section 6 with the

tool’s implementation details.

Steps 0 (preparation), and 8 (maintenance of results) are briefly addressed in sections 4.1

and 4.8 respectively. Finally, step 6 (Selection of Countermeasures) and eventually also

step 7 (implementation of countermeasures) are not in the scope of this deliverable and

will be eventually addressed within D6.4 “Mitigations identification and their design”.

4.1. Preparation

In our context, the purpose of the risk assessment is determining the risk information

about a particular ICT solution, part of the supply chain, that constitutes the system under

analysis and is examined for identifying and potential weaknesses, vulnerabilities, and

attack patterns, as well as impacts to the system components that could, later on,

constitute an issue especially in case of propagation over for the supply chain.

The main preparatory activity consists in obtaining the useful information sources (e.g.,

the technical documents describing the system architecture, assets, functionalities, and

so on), either the system is still at the design stage, or is already implemented and running.

The scope of the assessment and the operating environment have also to be identified: in

our case we can focus on a risk analysis of a specific system under analysis, however,

e.g., by adopting the SoS concepts, the risk assessment can be extended to other systems

and components in the ICT ecosystem.

The proper definition of terminology and the concepts is also a fundamental part of

preparation phase; in our case, we refer to the concepts introduced in Section 2 and we

will later on clarify them, where needed, in order to resolve possible ambiguities.

Assumptions on the threat environment, and events need to be made by the assessor: in

this case the main focus is on cyber and malicious, human-made threats. However, the

methodology and also the tool could be adapted to address also other kind of threats (e.g.,

physical or cyber-physical). Regarding the threat sources, the assessment provided in this

case is not differentiated depending on threat agents and their skills; in other words, we

do not provide different assessments for different attackers. Anyway, this variable of the

assessment could be introduced later on, both in the methodology as well as in the tool.

Finally, the risk model has to be identified; it is detailed within Section 4.7 (as general

methodology) and 6.6 (with specific details regarding the risk analysis in ResilBlockly).

4.2. Identification of the Assets

As summarized in Table 16, the identification of the assets consists in listing the

components that are going to be analysed; if necessary, a partitioning of the system under

analysis or its division in hierarchical levels can be provided.

In the case of ResilBlockly, the association of weaknesses or vulnerabilities to elements

of the model will be considered, implicitly, as asset identification. Moreover, this

identification can take place also during the profiling, -thus even before the modelling of

a specific instance of a system-, that is during the definition of a meta-model, applicable

to a category of systems of the same domain.

4.3. Identification and Modelling of Threats

This step consists in the identification of threats, attacks and vulnerabilities that apply to

each asset. More in detail, for each system component, that as described before is

Page 106 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

implicitly identified as asset during this step, the methodology requires the association of

potential weaknesses or vulnerabilities.

In order to achieve the goal and reduce the intrinsic difficulty30 of this process, the

methodology leverages the MITRE lists of known threats, and in particular weaknesses

from CWE [86], vulnerabilities from CVE [49] and NVD [51], and attack patterns from

CAPEC [54], which provide a common baseline and understanding of the threats. These

catalogues have been chosen as they are widely adopted and referenced in industry,

academia, standards, etc.31. In principle, however, other threats originating from different

platforms and datasets (e.g., the ones introduced in D3.1 [105]), as well as user-defined

weakness or vulnerabilities can be identified and associated similarly.

Sections 4.3.1, 4.3.2 and 4.3.3 are mainly the report of our analysis of the catalogues and

their schemas, conducted to identify the most interesting fields for the purpose of o threat

identification and for the final goal of defining the threat modelling and security risk

assessment methodology. Section 4.3.4 describes instead the threats identification and

association process.

 CWE - Common Weakness Enumeration

The Common Weakness Enumeration (CWE) [86] is a community-developed list of typical

and well-known software and hardware weakness types. In this catalogue, the

weaknesses are defined as flaws, faults, bugs, vulnerabilities, or other errors in software

or hardware implementation, code, design, or architecture that if left unaddressed could

result in systems, networks, or hardware being vulnerable to attack. One of its main merits

is that has been built over the years with the help of a number of external sources32 and is

updated about four times a year. At the time of writing, the CWE List latest version is the

4.4, and the number of total weaknesses is 918.

The CWE weaknesses are organized and can be consulted according to three main views:

1. Software Development33 (composed by 418 weaknesses in 40 categories, e.g.,

authentication errors, state issues, API/Function errors, etc.) organizes

weaknesses around concepts that are frequently used or encountered in software

development;

2. Hardware Design34 (composed by 95 weaknesses in 12 categories, e.g., memory

and storage issues, debug and test problems, etc.), organizes weaknesses around

concepts that are frequently used or encountered in hardware design;

3. Research Concepts35(composed by all the 918 weaknesses in CWE), It is mainly

organized according to abstractions of behaviours and is intended to facilitate the

research.

4.3.1.1. Description and analysis of CWE schema

This Section describes and analyses some of the typical fields in CWE entries according

to CWE version 4.4 and mostly focusing on the fields that are relevant for the following of

30 i.e., it is impossible to imagine every potential threat existing, it is difficult to determine whether
a threat may or may not exist for a system, and the model will never be complete
31 https://cwe.mitre.org/community/citations.html
32 https://cwe.mitre.org/about/sources.html
33 https://cwe.mitre.org/data/definitions/699.html
34 https://cwe.mitre.org/data/definitions/1194.html
35 https://cwe.mitre.org/data/definitions/1000.html

Page 107 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

the deliverable. The description of the fields is thought to be read with an example at hand.

The full list of fields, including some optional ones can be found in the schema

documentation36 37 or in the glossary38. Optional fields are delimited by squared brackets.

ID: unique identifier for the entry, e.g., CWE-262.

Name: a string that identifies the entry, without mentioning the attack that exploits the

weakness or the consequences of exploiting it. Example: Not Using Password Aging.

Status: defines the different status values that an entity (view, category, weakness) can

have, e.g., stable, draft, incomplete, etc.

Figure 62 Symbols for Weaknesses abstractions and types in CWE

Abstraction: defines the different abstraction levels, among the following five, that apply

to a weakness: A Pillar (the most abstract type), a Class (also very abstract, but more

specific than a Pillar Weakness), a Base (a more specific type of weakness that is still

mostly independent of a resource or technology, but with sufficient details to provide

specific methods for detection and prevention), Variant (is a weakness that is linked to a

certain type of product, typically involving a specific language or technology).

There is also another abstraction that in our case and in the interest of determining

weakness and attack tree structures, deserves a more in-depth description. The

Compound weakness is a meaningful aggregation of several weaknesses, which can be,

which can vary depending on the structure and are currently known as either a Chain or

Composite.

Structure: the structure of a weakness, either Simple, Chain, or Composite:

• A chain is a sequence of two or more separate weaknesses that can be closely

linked together39. One weakness, X, can directly create the conditions that are

necessary to cause another weakness, Y, to enter a vulnerable condition. When

this happens, CWE refers to X as "primary" to Y, and Y is "resultant" from X. Chains

can involve more than two weaknesses, and in some cases, they might have a tree-

like structure.

The CanPrecede relationship is used to identify when the weakness is primary to

others, and CanFollow is used to identify when a weakness is resultant from

others.

36 https://cwe.mitre.org/data/archive.html
37 https://cwe.mitre.org/documents/schema/
38 https://cwe.mitre.org/documents/glossary
39 https://cwe.mitre.org/data/reports/chains_and_composites.html

https://cwe.mitre.org/data/archive.html
https://cwe.mitre.org/documents/schema/

Page 108 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Named Chains: while CWE primarily contains "implicit" chaining relationships,

there are several chains that are so common that they were assigned their own

CWE identifiers. Named chains possess the optional Chain Components field,

where the nature of relations StartsWith and FollowedBy are detailed similar to

other relationships (see below).

• A Composite is a combination of two or more separate weaknesses that can create

a vulnerability, but only if they all occur all the same time. One weakness, X, can be

"broken down" into component weaknesses Y and Z. The Requires relationship is

used by a composite to identify its component weaknesses, and

the RequiredBy relationship is used by the components of that composite.

At the time of writing, the number of Chains is 78, while there are 3 Named Chains, and 4

Composites.

Description: short definition of the weakness and its key points.

[Related Weaknesses]: is used to refer to other weaknesses that and high-level categories

that are related to the weakness. It contains one or more Related_Weakness elements,

each of which is used to link to the CWE identifier of the other Weakness. Additional

attributes included here can be:

• Nature: the nature of the relation (e.g., ChildOf, ParentOf, PeerOf, MemberOf,

CanPrecede, CanFollow);

• Type: one of the symbols and types as in Figure 62

• ID:

• Name: the optional Ordinal attribute is used to determine if this relationship is the

primary ChildOf relationship for this weakness for a given View_ID.

• This attribute can only have the value "Primary" and should only be included for the

primary parent/child relationship.

[Applicable Platforms]: the list possible areas for which the given weakness could appear.

These may be for specific named Languages, Operating Systems, Architectures,

Paradigms, Technologies, or a class of such platforms. The platform is listed along with

how frequently the given weakness appears for that instance. They could also be

language-independent.

[Likelihood of Exploit]: contains a list of values corresponding to different likelihoods.

[Common Consequences]: is used to specify individual consequences associated with a

weakness, and can be a very important field to be considered during a risk assessment.

At the time of writing, this optional field recurs in 870 CWE entries.

• Scope identifies the security property (or properties) that is violated (e.g., Integrity).

• [Impact] is a textual description of the negative technical impact that arises if an

adversary succeeds in exploiting this weakness (e.g., Bypass Protection

Mechanism).

• [Likelihood] element that identifies how likely the specific consequence is

expected to be seen relative to the other consequences.

[Detection Methods]: is used to identify methods that may be employed to detect this

weakness, including their strengths and limitations.

• Method identifies the particular detection method being described.

Page 109 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

• Description is intended to provide some context of how this method can be applied

to a specific weakness.

• [Effectiveness] says how effective the detection method may be in detecting the

associated weakness. This assumes the use of best-of-breed tools, analysts, and

methods.

• [Effectiveness_Notes] element provides additional discussion of the strengths and

shortcomings of this detection method.

[Potential Mitigations]: it contains one or more potential Mitigation elements, which each

represent individual mitigations for the weakness.

• Phase indicates the development life cycle phase during which this particular

mitigation may be applied.

• Strategy describes a general strategy for protecting a system to which this

mitigation contributes.

• Effectiveness summarizes how effective the mitigation may be in preventing the

weakness.

• Description contains a description of this individual mitigation including any

strengths and shortcomings of this mitigation for the weakness.

[Observed Examples]: specifies references to a specific observed instance of a weakness

in real-world products. Typically, this will be a CVE reference, that should contain the

identifier for the example being cited in the standard CVE identifier format, such as CVE-

YYYY-XXXX.

This field is one of the most interesting ones according to our purposes and from the

perspective of representing threats with a tree or graph structure, as in the objectives of

WP6. Details are provided in the following, especially in Section 4.4 and Section 6.4.

[Affected Resources]: is used to identify system resources that can be affected by an

exploit of this weakness. If multiple resources could be affected, then each should be

defined by its own Affected_Resource element.

[Taxonomy Mappings]: is used to provide a mapping from an entry in CWE to an equivalent

entry in a different taxonomy. Examples of taxonomies are in the CWE sources40.

This could be interesting in the context of an assessment especially for connecting an

ongoing analysis with possible already existing ones conducted by other entities

according to different taxonomies. However, this optional field is quite rare, since it is

currently appearing in 190 CWE entries only.

[Related Attack Patterns]: contains references to attack patterns associated with this

weakness. The association implies those attack patterns may be applicable if an instance

of this weakness exists. Each related attack pattern is identified by a CAPEC identifier.

This is one of the most important fields according to our purposes and from the

perspective of building an attack tree. Details are provided in the following, especially in

Section 4.4 and Section 6.4.

40 https://cwe.mitre.org/about/sources.html

Page 110 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

 CVE - Common Vulnerabilities and Exposures Catalogue

The Common Vulnerabilities and Exposures Catalogue (CVE) is a dictionary of publicly
known cybersecurity vulnerabilities which purpose is to uniquely identify and name
publicly disclosed vulnerabilities pertaining to specific versions of software or codebases.
The CVE list is increased daily, and, at the time of writing, the number of total
vulnerabilities is 162473.

4.3.2.1. Description and analysis of CVE schema

This section describes and analyses the typical fields in CVE entries, similarly to what has
been done and presented for CWE. The description of the fields is meant to allow
understanding the following of the deliverable.
Each CVE Record includes the following fields41.
CVE-ID. Unique identifier number of CVE vulnerabilities, with four or more digits structured
as CVE-YYYY-XXXX; having a unique identifier is particularly important in ecosystems that
encompass different constituent systems and stakeholders, as addressed in BIECO, and
need to share information about vulnerabilities in an unambiguous way.
Description. Unique description which provides the relevant details to help users in finding
the CVE Record for a specific vulnerability, and/or to distinguish between similar-looking
vulnerabilities42. It may include (but not all the Descriptions do include them) details such
as:

• name of the affected product and vendor,

• summary of affected versions,
• vulnerability type,

• impact,
• access that an attacker requires to exploit the vulnerability, and

• important code components or inputs that are involved.

References. Pertinent references (i.e., vulnerability reports and advisories) are provided to
help distinguish between vulnerabilities. Each reference used in CVE identifies the source
e.g., with an URL to source's website
Assigning CNA. The CVE Numbering Authority (CNA) that assigned the CVE ID to the
vulnerability43.

Date Record Created. It indicates when the CVE ID was issued or the CVE Record published
on the CVE List. This date does not indicate when the vulnerability was discovered, shared
with the affected vendor, publicly disclosed, or updated in CVE. That information may or
may not be included in the description or references of a CVE Record, or in the enhanced
information for the CVE Record that is provided in the NVD.
The CVE List feeds the NVD or National Vulnerability Database (see section 4.3.2.2), which
then builds upon the information included in CVE Records to provide enhanced
information for each record such as fix information, severity scores, and impact ratings
(as also introduced in D3.1 [105]). Table 22 describes the possible states of CVE records,
according to NVD44.

Table 22 Status of CVEs

Status Description

41 https://cve.mitre.org/cve/identifiers/index.html
42 https://cve.mitre.org/about/faqs.html#cve_record_descriptions_created
43 https://cve.mitre.org/cve/cna.htm
44 https://nvd.nist.gov/vuln/vulnerability-status

Page 111 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

PUBLISHED
It is populated with details. These are a CVE Description and reference links
regarding details of the CVE

RESERVED

It has been reserved for use by a CNA or security researcher, but the details of
it are not yet published. A CVE Record can change from the RESERVED state to
being published at any time based on a number of factors both internal and
external to the CVE List. Once the CVE Record is published with details on the
CVE List, it will become available in the NVD

DISPUTED
When one party disagrees with another party's assertion that a particular issue
in software is a vulnerability, a CVE Record assigned to that issue may be
designated as being Disputed.

REJECT

A CVE Record that is not accepted as a CVE Record. The reason of the rejection
is often stated in the description. Possible examples include it being a duplicate
CVE Record, it being withdrawn by the original requester, it being assigned
incorrectly, or some other administrative reason. As a rule, REJECT CVE Records
should be ignored.

4.3.2.2. NVD – (US) National Vulnerability Database

The NVD is the U.S. government repository of standards-based vulnerability management

data represented using the Security Content Automation Protocol (SCAP). It is a reference

for vulnerability management, security measurement, and compliance and includes

databases of security checklist references, security-related software flaws,

misconfigurations, product names, and impact metrics [51].

When a vulnerability is identified, and CVE IDs are assigned, the information in NVD is

updated permanently, is typically available in the NVD within an hour, and is fully

synchronized with the CVE List so that any future updates to CVE appear immediately in

NVD.

The NVD ingests from the CVE List and in turn performs analysis to determine and

associate impact metrics (based on the CVSS), vulnerability types (i.e., CWE weaknesses),

and applicability statements (CPE45, the Common Platform Enumeration), as well as other

pertinent metadata. The NVD does not actively perform vulnerability testing, relying on

vendors and third-party security researchers to provide information that is then used to

assign these attributes.

In any case, for the interest of BIECO and our methodology, the NVD is an important source

of information, especially for the association between CVE and CWE, where the latter can

be retrieved starting from the former, and also for the CVSS base score information.

Regarding this last point, some NVD records contain the CVSS v2 while others contain the

score computed with both versions of the scoring system.

The NVD Dashboard46 contains updated information about the CVEs received and

processed, as well as the CVSS score distribution between CVSS V3 and CVSS V2.

4.3.2.3. Description and analysis of NVD schema

Each CVE that is registered in NVD Database, includes the following fields:

45 https://nvd.nist.gov/products/cpe
46 https://nvd.nist.gov/general/nvd-dashboard

Page 112 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

ID. The unique identifier of the CVE.

Description. A summary of the vulnerability, which can include information such as the

vulnerable product, impacts, attack vector, weakness or other relevant technical

information. In some cases, CVEs may display a Current Description, available at the time

of viewing, and Analysis Description, that were available at the time of NVD analysis.

Descriptions are maintained by the CVE Assignment Team.

Severity47. Each vulnerability is associated a CVSS v2 and CVSS v3 vector string. CVSS

vector strings consist of exploitability and impact metrics. These metrics can be used in

an equation to determine a number ranging from 0.0 to 10.0. The higher the number, the

higher the severity of the vulnerability.

Figure 63 shows an example of Severity field for an NVD where CVSS v3.x is selected.

Figure 63 Example of NVD Severity

[References]: these URLs are supplemental information relevant to the vulnerability, which

include details that may not be present in the CVE Description. References are given

resource tags such as third-party advisory, vendor advisory, technical paper, press/media,

VDB entries, etc. The NVD does not have direct control over them.

[Weakness Enumeration]: the common software security weakness from CWE related to

the CVE. The NVD uses the CWE-1003 view when associating CWEs to vulnerabilities48.

[Known Affected Software Configurations]: this section of the vulnerability detail page is

used to show what software or combinations of software are considered vulnerable at the

time of analysis. The NVD uses the CPE Specification [50] when creating these

applicability statements49.

It is important to clarify that the vulnerabilities within the NVD are derived from the CVE

List which is maintained by processes upstream of the NVD. The comparison between

statuses of CVE and NVD as well as the process involving CVE analysis is in [118].

 CAPEC - Common Attack Pattern Enumeration and Classification

The CAPEC [54] is a public catalogue of typical attacks patterns, which are descriptions

of common attributes and typical approaches employed by attackers to exploit known

weaknesses. The purpose is to help users understand how adversaries exploit

weaknesses in their applications, how attacks are designed and executed, with the clear

aim of giving guidance on mitigate the attacks.

47 https://nvd.nist.gov/vuln/vulnerability-detail-pages
48 https://cwe.mitre.org/data/definitions/1003.html
49 https://nvd.nist.gov/vuln/vulnerability-detail-pages

Page 113 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Currently, the CAPEC lists 553 attack patterns. They are organized and can be consulted

according to two main hierarchical views:

4. Mechanisms of Attack50: composed by 9 categories, based on the mechanisms

and different techniques that are often used when exploiting a vulnerability to

attack a system;

5. Domains of Attack51: composed by 6 categories, representing the attack domain

(e.g., software, hardware, supply chain, physical security, etc.).

Additional external mappings are: the view by WASC52 , ATT&CK53 and OWASP54.

4.3.3.1. Description and analysis of CAPEC schema

This Section describes and analyses some of the typical fields in CAPEC entries according

to CAPEC version 3.4 and mostly focusing on the fields that are relevant for BIECO and

the purpose of risk analysis which is in object of WP6.

The full list of fields, including some optional ones, can be found in the schema

documentation55, XML schema definition56 or in the glossary57.

ID. A unique identifier for the attack pattern

Name. A string that identifies the entry, without mentioning the weaknesses that exploits

or the consequences of exploiting it.

Status. Defines the different status values that an attack pattern - but also a view or

category-, can have.

Abstraction. Defines the abstraction level that apply to an attack pattern:

• Meta level attack (indicated with M, is the most abstract type;

• Standard level attack pattern (indicated with S, is also very abstract but more

specific than a Meta level attack);

• Detailed level attack pattern (indicated with D, is a low level of detail, typically

leveraging a specific technique, targeting a specific technology, expresses a

complete execution flow and often leverages a number of different standard level

attack patterns chained together to accomplish a goal).

Description. High level definition of the attack pattern. It should include how malicious

input is initially supplied, the weakness being exploited, and the resulting negative

technical impact.

[Relationships]: is used to refer to other attack patterns and give insight to similar items

that may exist at higher and lower levels of abstraction. It contains one or more

Related_Attack_Pattern elements, each of which is used to link to the CAPEC identifier of

the other attack pattern. The nature of the relation is also capture by the Nature attribute

of a related attack pattern. Additional attributes included here can be:

• Nature: the nature of the relation (see Related Nature below);

• Type: one of the types abstractions (M, D, S);

50 CAPEC VIEW Mechanisms of Attack https://capec.mitre.org/data/definitions/1000.html
51 CAPEC VIEW Domains of Attack https://capec.mitre.org/data/definitions/3000.html
52 CAPEC VIEW WASC Threat Classification 2.0 https://capec.mitre.org/data/definitions/333.html
53 CAPEC VIEW ATT&CK related patterns https://capec.mitre.org/data/definitions/658.html
54 CAPEC VIEW OWASP related patterns https://capec.mitre.org/data/definitions/659.html
55 CAPEC Schema Documentation: https://capec.mitre.org/documents/schema/index.html
56 CAPEC Schema xsd https://capec.mitre.org/data/xsd/ap_schema_latest.xsd
57 CAPEC Glossary: https://capec.mitre.org/about/glossary.html

https://capec.mitre.org/data/definitions/1000.html
https://capec.mitre.org/data/definitions/3000.html
https://capec.mitre.org/data/definitions/333.html
https://capec.mitre.org/data/definitions/658.html
https://capec.mitre.org/data/definitions/659.html
https://capec.mitre.org/documents/schema/index.html
https://capec.mitre.org/data/xsd/ap_schema_latest.xsd
https://capec.mitre.org/about/glossary.html

Page 114 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

• ID: ID of related attack pattern;

• Name: name of related attack pattern.

This is one of the most interesting fields.

[Related Nature]: defines the different values that can be used to define the nature of a

related attack pattern:

• A ChildOf nature denotes a related attack pattern as a higher level of abstraction;

• A ParentOf nature denotes a related attack pattern as a lower level of abstraction;

• The CanPrecede and CanFollow relationships are used to denote attack patterns

that are part of a chaining structure.

• The CanAlsoBe relationship denotes an attack pattern that, in the proper

environment and context, can also be perceived as the target attack pattern.

• The PeerOf relationship is used to show some similarity with the target attack

pattern which does not fit any of the other types of relationships.

This field is one of the most interesting ones according to our purposes and from the

perspective of representing threats with a tree or graph structure, as in the objectives of

WP6. Details are provided in the following, especially in Sections 4.4 and 6.5.

[Likelihood of Attack]: contains a list of values corresponding to different likelihoods. It is

used to capture an average likelihood that an attack that leverages this attack pattern will

succeed, but “with the understanding that it will not be completely accurate for all attacks”.

[Typical Severity]: is used to capture an overall average severity value for attacks following

this pattern, again not aiming at being completely accurate for all of them.

[Execution Flow]: indicates the steps by the attacker to reach the goal. For each step is

contained Phase, Description and/or Techniques.

[Common Consequences]: is used to specify individual consequences associated with an

attack pattern, and similarly to CWE, can be a very important field to be considered during

a risk assessment.

• Scope: identifies the security property (or properties) that is violated (e.g.,

Integrity).

• [Impact]: describes the technical impact that arises if an adversary succeeds in

their attack.

• [Likelihood]: element that identifies how likely the specific consequence is

expected to be seen relative to the other consequences.

[Potential Mitigations]: is used to describe actions or approaches to prevent or mitigate

the risk of an attack that leverages this attack pattern. Each individual mitigation approach

should help in improving the resiliency of the target system, reduce its attack surface, or

reduce the impact of the attack if it is successful.

[Prerequisites]: indicates one or more prerequisites for an attack and is used to provide a

description of the conditions that must exist in order for an attack of this type to succeed.

[Skills Required]: is used to describe the level of skills or specific knowledge needed by

an adversary to execute this type of attack.

[Resources Required]: is used to describe the resources (e.g., CPU cycles, IP addresses,

tools) required by an adversary to effectively execute this type of attack.

Page 115 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

[Taxonomy Mappings]: is used to provide a mapping from an entry (Attack Pattern or

Category) in CAPEC to an equivalent entry in a different taxonomy.

As described for the CWE, also here this similar mapping can be interesting in the context

of an assessment especially for connecting an ongoing analysis with possible already

existing ones conducted by other entities according to different taxonomies.

[Related Weaknesses]: contains references to weaknesses associated with this attack

pattern. The association implies a weakness that must exist for a given attack to be

successful. If multiple weaknesses are associated with the attack pattern, then any of the

weaknesses (but not necessarily all) may be present for the attack to be successful. Each

related weakness is identified by a CWE identifier.

This last field is one of the most important fields according to the purposes described in

this deliverable and from the perspective of building an attack tree which may highlight

the steps and paths of an attacker in exploiting a weakness of the system or of one of its

components. Details are provided in Section 4.4.

 The Weaknesses and Vulnerabilities Identification Process

This step consists in identifying and associating the weaknesses and vulnerabilities to a

component. The process has to be considered a following step with regard to the

preparation and identification of assets, thus it builds on the assumption that the previous

phases have been completed: i.e., the technical documentation of the system and its

components has been retrieved and the assets have been identified.

The sub-steps required for the identification of weaknesses and vulnerabilities can be

summarized as follows.

1. Similarities identification – Identification of similarities between components is

suggested in order to reduce the effort required for this whole phase of the

methodology. In fact, as some of the components may serve the same functionality,

identifying weaknesses (vulnerabilities) may be required only once. After that, it could

be added also to the rest of the components. If the functionality presents differences,

then a base common characteristic can be identified, limiting the number of

weaknesses (vulnerabilities) to be analysed.

2. Keywords extraction – Since the catalogues are relatively big, the extraction of key

descriptive words for each component has to be performed in order to simplify and

improve the retrieval of results. In example, the component name, function or category

can be some examples of keywords.

3. CWE - Search weaknesses on the CWE catalogue by using the keywords identified and

associate them to the component.

4. CVE - Search vulnerabilities on CVE by using the keywords identified and associate

them to the component.

5. CWE from CAPEC - search weaknesses starting from the CAPEC, which means

adopting the same keyword-based approach to retrieve relevant attack patterns, and,

leveraging the “related weaknesses” field in CAPEC, retrieve the CWE weaknesses to be

associated to the component.

6. CVE from CWE - After having identified and associated the weaknesses from CWE, the

“Observed Examples’” field in CWE can be used in order to retrieve additional and

potentially relevant, vulnerabilities from the CVE catalogue. These CVE vulnerabilities

may be an extension of the set retrieved in sub-step 4.

Page 116 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

7. CWE from CVE (through CWE) – Exactly as in the above sub-step, after having identified

and collected the vulnerabilities from CVE, the “Observed Examples’” field in CWE can

be inspected in order to identify the vulnerabilities and retrieve the related CWE

weakness that is referring to it.

8. CWE from CVE (through NVD) – A different way to obtain the same result described in

the previous step involves the NVD, where to look for an identified vulnerability, and

leveraging the Weakness Enumeration field, retrieve the connected CWE weakness.

This process should offer a relatively wide list of weaknesses and vulnerabilities

associated to the system components. Moreover, the list can be appropriately integrated

with custom weaknesses and vulnerabilities which may be retrieved from different

sources.

However, in all the above steps, results may need to be filtered (e.g., based on the CWE

applicable platforms field, programming language, technology affected, as well as by

relevance to the system/scenario with a manual checking).

This can be seen as an example of trade-off between precision and recall, typical in the

information retrieval. On the one hand, the choice of good keywords is fundamental to

tune the identification process towards the retrieval of relevant threats only, and this saves

time in case the user has to manually analyse several weaknesses and vulnerabilities for

each interface of a complex system. On the other hand, some relevant threats may be

missed if the choice of keywords is not ideal.

As a future improvement, we plan the implementation of a threat identification algorithm

which, leveraging the attributes of the system profile, can support the user and

automatically propose CWE weaknesses and CVE vulnerabilities to be associated. Other

strategies for the filtering of Weaknesses can leverage the graphical representation of the

following sections (e.g., limiting the association to the CWEs in the first level of an HWT),

or the views existing in CWE catalogue (already introduced in Section 4.3.1).

4.4. Graphical Representation and Attack Paths Analysis

A graphical representation may be helpful in order to assist the identification of threats

and can serve as means for identifying additional weaknesses or vulnerabilities.

Moreover, when assuming the form of an attack tree, the structure can be used to

understand the possible paths an attacker may follow to exploit a weakness, and can be

a smart way to understand where to place mitigations.

The purpose of the graphical representations is thus to give insights that can be useful

during the risk assessment process.

Leveraging the information in CWE, CVE and CAPEC catalogues, several different type of

trees can be designed which help this phase. In the following we present some of the most

interesting ones that have been devised, designed and a subset of which developed within

ResilBlockly.

Some of the following example trees have been built by: i) leveraging Talend58 tool for

extracting the information from the CWE, CVE, and CAPEC catalogues and generate

relationships XML files; then ii) using the ADTree tool (introduced in Section 2.1.1.1) for

building the graphical tree models by importing the XML.

58 https://www.talend.com/products/talend-open-studio/

Page 117 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

 Hierarchical Weakness Tree

This type of tree shows the hierarchical structure of weaknesses and is based on ParentOf

and ChildOf relations often available in the optional CWE field called related weaknesses.

From a starting weakness identified during the keyword-based search (Section 4.3.4), a

child weakness can be retrieved which may better specify the previous, more abstract one,

by following the ParentOf relation. Based on the relationships in the catalogue, when

available, it is possible to generate a Hierarchical Weakness Tree (HWT) for a target

weakness associated with the component.

The HWT can generated in different ways, and categorized accordingly, i.e.,

• 1-Direction HWTs: where the tree includes either ‘child’ or ‘parent’ weaknesses

related to starting weakness, where available;

• 2-Directions HWTs: the tree that includes both ‘child’ and ‘parent’ weaknesses

related to the starting weakness, where available;

Figure 64 Example of HWT with all the child weaknesses for the “CWE 287: Improper Authentication”

Figure 64 shows an example of HWT tree for the CWE-287 named “Improper

Authentication”. As can be seen, the dimension of the resulting tree is quite high, thus in

order to be useful for the threat identification, from this tree, weaknesses that do not apply,

e.g., because of applicable platform, or any other reason, should be filtered out by the user.

A possible approach to reduce the dimension of this tree and improve its usability is thus

to build it only with CWE weaknesses that have been found during the keyword-based

search: this can still provide a useful information, that is the representation of weaknesses

of different abstraction levels which are connected with parent-child relations and are all

associated to the target component.

Moreover, a possible hint for the user here is to consider only the more specific

weaknesses associated and discard the more abstract ones: this means focus on the

leaves of the tree. The resulting weaknesses, on the leaves of the HWT, can then be used

as starting element for further analysis and could be root of other trees, as the ones

presented in the following.

 Weakness Chains Tree (WCT)

As discussed in Section 4.3.1, in some cases, weaknesses can be reached through chain

connections, thus from a preceding weakness which directly create the conditions that

are necessary to cause another weakness.

Page 118 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

It is possible to build a graphical tree leveraging the CanPrecede and CanFollow relations

existing in the CWE catalogue. This approach gives birth to the so-called Weakness Chains

Tree (WCT), as in example the one shown in Figure 65, having as a root weakness the

CWE-289 “Authentication Bypass by Alternate Name”.

So, considering to have modelled the system and associated e.g., the CWE-178

“Authentication Bypass by Alternate Name” to one component, this tree can inform the

user and visually show which other weaknesses can be existing in the component, (in this

case the CWE-289).

Figure 65 Example of WCT having as root the CWE 289: Authentication Bypass by Alternate Name

Table 23 Chains leading to CWE 289: Authentication Bypass by Alternate Name

Chains 1st weakness 2nd weakness

Chain_1 CWE-46 CWE-289

Chain_2 CWE-52 CWE-289

Chain_3 CWE-173 CWE-289

Chain_4 CWE-178 CWE-289

This type of tree is relatively useful, but has the main drawback that the number of chains

of weaknesses in CWE is quite limited, as also discussed in Section 4.3.1.1.

 Attack Path Tree and Attack Path Graph

Based on CWE-CAPEC relationship, and in particular on the related attack pattern and

related weakness fields existing in them, respectively, it is possible to build a useful

graphical representation having as a root a weakness identified during the keyword-based

search, and associated to a system component, and having as its children attack patterns

that are related to it, and potentially have been as well identified during the keyword-based

identification. Then, connecting these attack patterns with additional patterns that can

Precede them, we are going to obtain a structure that we call Attack Path Tree (APT) as

the one shown in Figure 66.

Page 119 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 66 Example of Attack Path Tree for CWE-648

The tree identifies alternative attack paths that can potentially bring an adversary to

exploit the CWE-648 weakness. Chains are also listed in Table 24

Table 24 Attack Paths represented with APT having CWE-648 as root weakness

Attack
Path

1st attack
pattern

2nd attack pattern 3rd attack
pattern

Exploited Weakness

Path_1 CAPEC-174 CAPEC-63 CAPEC-107 CWE-648

Path_2 CAPEC-85 CAPEC-63 CAPEC-107 CWE-648

Path_3 CAPEC-234 - - CWE-648

By extending an Attack Path Tree with the related weaknesses for all the attack patterns

in the paths, it is possible to obtain a structure that can be called Attack Path Graph (APG).

The APG is a useful structure which gives hints to the user and in assists the threats

identification phase of the risk assessment. Figure 67 shows the APG for CWE-648:

obtained by extending the APT of Figure 66 with the related weaknesses.

We believe that APG is particularly useful since it allows some early reasoning on which

weaknesses could be more critical, e.g., based on the type and quantity of attack patterns

to which they are related and on their position in the path. By definition, related

weaknesses must exist for a given attack pattern to be successful: this means that if none

of the weaknesses related to an attack pattern are considered existing in the

system/component, and have not been associated to it, the attack pattern is unlikely to be

successfully executed. On the contrary, an existing and associated weakness that has

multiple related attack patterns, is something to be taken in careful consideration.

This graphical structure can be further improved by following some other rules, e.g.,

Page 120 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

• by differentiating (e.g., greying out) or eliminating weaknesses not applicable for

the system or component under evaluation;

• by adding mitigations information (e.g., with green squares, to adopt the

formalism of ADtool, as introduced in section 2.1.1.1);

Figure 67 Attack Path Graph example related to CWE-648

 Other Trees

Other structures that have been studied and are not described in detail here because

considered less interesting for the BIECO risk analysis, are:

• Weakness-Vulnerability Tree (connecting a root CWE entry with “observed

examples” CVE entries)

• Hierarchical Attack Pattern Tree (connecting a more general attack pattern with its

children, more specific, attack patterns)

• Weakness-Vulnerability-Attack Pattern Tree (a unique tree with a CWE weakness as

root node and as children both CVE vulnerabilities and CAPEC attack patterns)

There is also an additional tree, called Weakness-Attack Pattern Tree, that can be

considered being incorporated in the Attack Path Tree (and Attack Path Graph).

The graphical structures described here are built by leveraging only the weaknesses,

vulnerabilities, and attack patterns in the catalogues; however, completely custom or

hybrid solutions can also be designed with similar approaches.

Page 121 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

4.5. Impact and Severity

After having identified and associated weaknesses and vulnerabilities to system

components and having eventually improved the identification by leveraging relations and

their structured graphical representation, which enables a first preliminary risk (or

criticality) analysis of the threats and attack paths, the risk assessment process continues

with the step 3.

This phase of the risk assessment process, introduced in Section 2.4.4, includes an

impact determination (step 3b), that is determination of the consequences of a

vulnerability or weakness exploit and the estimation of the severity. The following sections

discuss how the methodology distinguish the impact and severity of impact determination

for vulnerabilities and weaknesses, respectively.

 Vulnerabilities Impact and CVSS Base Score

As resulting from the studies of CVE (Section 4.3.2) and NVD (Section 4.3.2.2), as well as

from the analysis of the state of the art risk rating and scoring systems which highlighted

the features of CVSS (Section 2.2.2), the severity of impact for CVE vulnerabilities is an

information that can be considered already existing and given, at least in a base form.

In fact, the widely adopted CVSS, includes in its outputs the Base Score a numerical value

indicating the severity of a vulnerability according to its intrinsic characteristics, which are

constant over time, and assumes the reasonable worst-case impact across different

deployed environments [36]. Moreover, the base score, originating from the base metric

group, includes information about the impact of a vulnerability in terms of security

properties, that is, confidentiality, integrity and availability.

Therefore, the methodology introduced in this section bases the impact and related

severity determination for vulnerabilities, on the CVSS Base Score, which can be retrieved

from NVD (Section 4.3.2.3). The base score is usually available in NVD in two different

formats, according to CVSS version 3.x or version 2. This requires that one of the two

versions has to be chosen and applied for the whole assessment. At the time of writing,

the total number of CVE scored based on CVSS v3 is 79344 while CVSS v2 is available for

153420 CVEs59. Thus, according to the current numbers, the conservative choice would

be the CVSS v2, due to its higher availability. Vice versa, if in some cases a CVE (NVD)

entry possesses only the CVSS v3 base score, appropriate equivalence and conversions

should be adopted. Finally, if the scoring is not available for none of the two versions, the

underlying equation60 could be still used for computing the base score, e.g., adopting the

online calculator61 . In case in the future the situation will be inverted, that is, having the

CVSS v3 base score increasingly available or even replacing the v2, the choice could be

taken accordingly.

The severity of impact score is retrieved in a quantitative value, ranging from 0.0 to 10.0,

from which a corresponding a qualitative rating can be derived, and actually is also

provided in NVD (as shown in Figure 63), according to the CVSS version, as show in Table

25.

59 https://nvd.nist.gov/general/nvd-dashboard
60 https://www.first.org/cvss/specification-document
61 https://www.first.org/cvss/calculator/3.1

Page 122 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

In any case, the base score must be evaluated by the assessor and confirmed or updated

according to parameters depending on the system under analysis, the environment, and

so on. A useful information in this sense, where available, is the Description field of CVE

and especially the impact information that it may include.

Table 25 Qualitative and quantitative severity rating scale in CVSS

CVSS v2 rating CVSS Base Score CVSS v3.x rating

Low
0.0 None

0.1 - 3.9 Low

Medium 4.0 - 6.9 Medium

High
7.0 - 8.9 High

9.0 - 10.0 Critical

The score has to be mapped with the NIST SP 800-30 level of impact scale (as in Table

10), as described in Section 4.7.

 Weaknesses Impact and Severity

Regarding the weaknesses identified and associated with the system under analysis, a

first approach considered for the impact determination and the related severity

estimation, has been the adoption of CWSS (introduced in Section 2.2.1).

However, to our knowledge there is not a public database of weaknesses reporting also

an already computed CWSS score (as it happens instead for CVSS within NVD). This is

reasonable, since a weakness represent a type of mistake that may be even very abstract,

that could contribute to the introduction of vulnerability, i.e., they represent a mistake that

has been identified but not verified and proven and which did not occur in the specific

product of the manufacturer. Thus, scoring the impact without knowing the context, the

type of product, specific language or technology would be questionable and not

representative.

Independently from that, conceptually, CVSS and CWSS are very similar, and it would be

logical to apply it for weaknesses, since we adopt CVSS for vulnerabilities. However, while

the CVSS seems to be widely adopted and recognized, this seems to be not true for the

CWSS, which appears still at an early stage, even if the MITRE itself, when comparing

CVSS v2 with CWSS, seems to emphasize only the pros of the latter62.

For these reasons, in general, the methodology designed in this WP and described here is

not leveraging CWSS.

Thus, this phase of the risk assessment requires a research and study about the impact

of a weakness, which in the case of CWE weaknesses may also leverage the common

consequences field, where available, (which specifies consequences associated with a

weakness and the security property that is undermined), while the scoring of the severity

the impact is left as responsibility of the user. The user-defined severity of impact score

for the weaknesses, will adopt the NIST SP 800-30 scale, thus from very low, to very high

(as in Table 10).

62 https://cwe.mitre.org/cwss/cwss_v1.0.1.html#appendixA

Page 123 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

4.6. Likelihood determination

The likelihood is probably the most delicate attribute in a risk assessment, since it is very

much a matter of opinion, especially at design phase, when usually the feasibility and ease

of exploitation of a vulnerability cannot be proven by security/penetration testing or

similar methods.

We believe that this value cannot be retrieved from a catalogue or scoring system, but

requires a deep analysis and knowledge of the system. Thus, both for vulnerabilities and

weaknesses, the methodology has to rely on, historical data on successful cyber-attacks

on similar systems, existing assessment reports, vendor/manufacturer vulnerability

reports (for OTS system components), and, moreover, the assessor experience.

Still, all the information eventually available in the catalogues should be taken into account

for deriving this value, i.e.,

• for the CWE the likelihood of exploit field, and/or the likelihood included in the

common consequences field, and

• for the CVE the description field, especially when reporting the access that an

attacker requires to exploit the vulnerability, as well as the exploitability metrics

composing the CVSS base metrics.

The likelihood determined by the assessor is a value expressed according to the NIST SP

800-30 likelihood scale (as in Table 10), and it is the last missing input for determining the

risk.

4.7. Risk

Once the impact and likelihood have been determined, the risk is easily deducted adopting

the NIST SP 800-30 risk matrix of Table 10. The methodology for risk determination that

is applied to CVE (and NVD) vulnerabilities is depicted in Figure 68. This, as briefly

considered above, may require conversion of input values from quantitative to qualitative

scales, or some careful equivalence when mixing different versions of CVSS base scores.

The Risk for CWE weaknesses is computed in a similar way, apart from the fact the the

impact is not converted from CVSS.

It is important to notice that the risk assessment described in this deliverable targets the

potential weaknesses and vulnerabilities in the system, enabling their subsequent

mitigation, but does not directly target the attack patterns. Attack patterns are mainly used

as starting point that could be used for identifying more relevant weaknesses. Anyway, a

similar methodology for identification, association and risk estimation could be also easily

applied to them (e.g., to CAPEC entries, which possesses the consequences and typical

severity, or also the likelihood of attack fields).

Moreover, the risk assessment here is not addressing the combination of risks determined

for different weaknesses (vulnerabilities), either associated to the same asset, or to

different assets in the same system. This could be for sure an interesting future

development, e.g., starting from and evolving existing research results

[119][120][121][122].

Page 124 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 68 Overview of the (vulnerability) risk determination methodology, integrating CVSS and the NIST
SP 800-30 risk matrix

4.8. Assessment Report

This step consists in documenting the results of the assessment. It is a step required and

which applies not only to the methodology of Section 4 but also the the HAZOP-based

methodology of Section 3.

The assessments should produce the necessary reporting documentation: in the case of

the HAZOP-based methodology, a pre-filled HAZOP/THROP report containing the list of

assets (functions, interfaces), to which the hazards systematically identified by applying

the guidewords with the analysis template are mapped is generated; as shown in Figure

60 this report is partially completed within ResilBlockly, and the assessment has to be

finalized offline. The format is CSV, and an example of this report and the fields contained

will be given in Appendix of Deliverable D6.2.

Instead, in the case of the methodology of Section 4, as shown in Figure 61, the report

contains the list of weaknesses and vulnerabilities that have been identified either with a

search in the catalogues, or autonomously defined by the user, as well as the additional

ones discovered thanks to the analysis of relations in the catalogues and attack paths, the

report of the severity of impact, the likelihood and the resulting risk for each hazard,

vulnerability or weakness.

Even if it is not in scope of this deliverable, the report contains a placeholder for suggested

or potential mitigations and could be extended with an additional assessment repeated

after the mitigation have put in place.

Page 125 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

5. Applicability of MUD Standard in Modelling Systems and
Interfaces

This section addresses the integration of the Manufacturer Usage Description (MUD)

standard [130] in the methodology described, linking the security information that we can

obtain from the design phase (modelling) with the runtime phase, when the system is

deployed in a specific context. The main objective is to provide useful security information

to the deployment network, so it can be used not only to know the security features of the

system, but also to decide whether it is secure enough to take part of the system or to

apply some security policies to reduce the attack surface and protect both the system and

the network from the beginning.

In the next subsections, we describe the characteristics of the MUD standard, as well as

the standardized format used to specify all the security information (Section 5.1). Then,

Section 5.2 analyses the main flaws of the MUD model, especially those related with the

expressiveness.

In the following of this deliverable (Section 6.2), there is our proposal to integrate the

usage of the MUD within the modelling phase, allowing the user not only to create an

original MUD file to enrich the model, but also to generate an extended MUD to be used

during runtime. The inclusion of the MUD in the modelling phase and, moreover, in

ResilBlockly, as well as the proposed extension will be further developed in Deliverable

D6.2.

5.1. The Manufacturer Usage Description Standard

The MUD was standardized in 2019 within the scope of the Internet Engineering Task

Force (IETF). The MUD specification's major goal is to limit the threat and attack surface

of a certain IoT device by allowing manufacturers to establish network behaviour profiles

for their devices. Each profile is built around a set of policies, or Access Control Lists

(ACLs), that specify the communication's endpoints. MUD represents a scalable and

flexible approach to the definition of network access policies beyond the use of IP

addresses to enable communications with other services. A manufacturer could, for

example, declare that access to particular cloud services, as well as connection with other

manufacturers' devices, should be permitted. MUD also allows to specify protocols and

ports for each communication to provide a more fine-grained configuration of access

control rules. The standard also possibilities the extension of the scheme, allowing

manufacturers to express other types of conditions or policies based on their needs. For

example, while the MUD is focused on network access control regulations, MUD model

expansions are being considered for Quality of Service (QoS) aspects of the

communications. However, despite this flexibility, the MUD model does not provide

mechanisms to describe more fine-grained aspects and additional security restrictions

beyond the network layer.

One of the key advantages of the MUD approach is that the manufacturer is responsible

for defining the devices' behavioural profiles (instead of the typical network

administrator). Indeed, the MUD design and format make it possible to automate the

creation of network access policies based on the manufacturer's MUD profile. It should

be noted, however, that the instantiation of these profiles may be influenced by the

network domain in which the device is deployed. The standard also defines an architecture

to allow the network domain where the device is deployed to obtain and enforce this

profile.

Page 126 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Since its adoption, MUD has received a significant interest from the research community

and standardization bodies. In particular, the National Institute of Standards and

Technology (NIST) proposes the MUD standard as a promising approach to mitigate

security threats, and to cope with denial-of-service (DoS) attacks in IoT environments,

including home and small-business networks. Additionally, the European Union Agency

for Cybersecurity (ENISA) considers the use of MUD as part of IoT security good practices

to improve, allowing devices to advertise their supported and intended functionality.

 The MUD Model

The MUD standard restricts IoT device connections by defining Access Control Lists

(ACLs), using the Yet Another Next Generation (YANG) standard to model network

restrictions and using JavaScript Object Notation (JSON) for serialization. It's worth

noting that the MUD model includes Network ACL extensions to the YANG data model,

which are augmented by the MUD standard to specify more expressive ACLs.

The MUD file contains two main blocks: the “mud” and “acls” containers, as shown in

Figure 69.

Figure 69 MUD standard model of the “mud” container

The “mud” container specifies several features related with the MUD file itself. The

property mud-version specifies the current version of the MUD file, whereas the last-update

defines when the current version of the file was generated. The MUD is identified by the

mud-url, that is, the URL that can be used to retrieve the MUD file. The mud-signature

(optional) verifies the integrity and authenticates the MUD file to avoid security issues.

Furthermore, this container also allows to define optional aspects such as the model of

the device (model-name), the firmware and software revision (firmware-rev, software-rev),

minimum period of time before checking for updates (cache-validity), if the device will

receive MUD/software/firmware updates (is-supported), additional information

(systeminfo), link to the device documentation (documentation) and additional extensions.

Finally, the containers to-device-policy and from-device-policy containers represent access

lists references by indicating the appropriate direction of a specific flow to define the

communication pattern of the device.

Page 127 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Consequently, the “acls” container defines those ACLs. Each ACL has a name, a set of

conditions to apply the rule (matches), and the actions to apply in case the conditions are

satisfied (e.g., forwarding accept or deny). By default, the MUD specifies only the allowed

connections, but in certain cases, it can be also useful to define an explicit access

restriction to a service (for example, if it has been compromised). The ACL extensions to

the YANG data model adds additional keywords that facilitates the definition of high-level

policies without the need to know the associated IP addresses. These keywords are

manufacturer, same-manufacturer, model, local-networks, controller and my-controller. For

example, the keywords manufacturer and same-manufacturer enable the definition of

policies to allow or deny the interaction with devices from the same manufacturer. This

way, MUD files define the type of communications and access of a certain device in the

form of policies or ACLs. Some examples of these restrictions could be “allow the

communication to devices of the same manufacturer”, “allow the access to a specific DNS

service”, or “deny the access for a specific port”.

5.2. Limitations of the MUD standard

The MUD model enables a standardised and flexible way to specify network policies.

However, as discussed before, one of the main limitations associated with the MUD

standard is the lack of expressiveness for the definition of access restrictions beyond the

network layer. Indeed, the definition of enriched behavioural profiles could be used to

detect/avoid a broader range of potential security attacks, including application layer

threats such as slow DDoS attacks31.

Based on the BIECO use cases analysis, we identified a set of characteristics that,

although they are known at design time, the original MUD file is not able to represent and

detail them.

• Application layer protocols, which also define restrictions on the communications.

• Communications with application layer entities such as databases, which are also

part of the ecosystem in which the device is deployed.

• Cryptographic algorithms, which not only add restrictions to the communications,

but also specify the supported algorithms of the device and its preferences.

• Authorization policies, which are a step forward to access control.

• Exposed resources (HTTP/CoAP API) that the device offers to other entities of the

ecosystem, which can be restricted by other security policies and conditions.

• Restrictions on the number of communications, which can help to avoid denial of

service (DoS) attacks.

Based on the analysed limitations here and taking into account additional aspects of the

other use cases within BIECO project, D6.2 will provide a MUD model extension including

at least the following aspects:

• Specification of any protocol at any TCP/IP stack layer to be used when

communicating with another entity.

o The user will be able to select any number of protocols to be used in each

communication (e.g., CoAP, HTTP, MQTT, TCP, UDP, IPV6, IPV4, etc.).

o The list of protocols will be fixed (at least including those used in the use

cases) to provide harmonization.

• Communications with databases

Page 128 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

o This type of communication will include as specific attributes the host

(using a domain name, as usual in the MUD model), port and schema

(name of the database).

• Cryptographic algorithms nation)

o Each one-directional communication (source/destination) will have the

possibility of specify the cryptographic algorithms required to establish it.

o Additional parameters that will be added are the purpose of the

cryptographic algorithm (integrity, ciphering, authentication, authorization),

the algorithm used (e.g., AES, RSA, SHA, etc.), and the length used (for the

keys, HASH, etc.).

o As in the protocols, the set of algorithms will be fixed, at least including

those used in the BIECO use cases, to provide harmonization.

• Exposed resources (HTTP/CoAP API) and authorization conditions

o In case the device uses HTTP(s)/CoAP(s), the extended MUD will be able

to model the exposed resources, indicating the required method (POST,

GET, PUT, DELETE, etc.), the resource itself (e.g., /temperature, /update),

and an associated authorization condition to access to it.

o The authorization conditions will define the role needed to access to each

resource, following an attribute-based authorization. For example, a user

can be allowed to access to /OpenDoor of the smart door device if he has

the attribute professor.

• Restrictions on the number of communications

o The communications to the device can establish a limit on the

simultaneous number of connections, from which the performance of the

offer service will be affected or even from which the service could fail due

to a DoS attack.

• Known vulnerabilities

o As the MUD file is not completely static, and it can include modifications

from the manufacturer, we foresee that the integration of the known

vulnerabilities could be highly useful for the deployment domain, e.g., to

apply mitigations or to disconnect the affected device from the network

until a patch is available.

o The included vulnerabilities will follow the format of a CVE and CWE entry,

containing the ID and a description.

o The vulnerabilities will include additional information from the ResilBlockly

model, in particular the impact (CVSS base score in case of CVE entries),

likelihood and risk (NIST matrix SP-800-30).

Page 129 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

6. Implementation of the Methodologies in ResilBlockly

This Section introduces ResilBlockly and in particular section 6.1 describes the main

technical and functional improvements that it brings with regard to Blockly4SoS.

Section 6.2 contains our proposal for the integration of MUD within the modelling phase

in ResilBlockly, and the generation of an extended MUD.

Then, Section 6.3 briefly outlines how the HAZOP-based analysis template can be

generated within the tool and according to the methodology of Section 3.

Finally, sections 6.4, 6.5 and 6.6 provide an explanation of how ResilBlockly supports the

risk assessment methodology already introduced in Section 4, and assists in the

application of steps from 1 to 5 of Figure 61.

The present document is not specifically addressing the systems modelling activity within

ResilBlockly, which instead is given in the context of D6.2 “Blockly4SoS user guide”,

together with the preliminary validation over one of the BIECO use cases and the detailing

of all the ResilBlockly features.

6.1. From Blockly4SoS to ResilBlockly

This Section describes the main differences and new functionalities introduced within

ResilBlockly which is the name given to the tool designed and implemented as an evolution

of Blockly4SoS.

The refactoring of existing features and the introduction of completely new ones has been

driven by the need for a having a comprehensive tool, not only capable of modelling the

main concepts of cyber-physical systems (that was the main challenge addressed by

Blockly4SoS and in AMADEOS), but also -in order to reach the BIECO project goals-, to

model threats, hazards, and risk related concepts, to visually match risks to system

components, to represent attack paths, and so on.

 General Improvements

Blockly4SoS has been developed as a prototype, hence its project structure and software

architecture needed important improvements.

Therefore, the following technical improvement points were identified and addressed:

1. Software modularity, to abandon a monolithic architecture.

2. Software maintainability: the code is easier to maintain thanks to the decoupling

of the front-end layer (UI) from the back-end layer (Business), and it is now much

more developer-independent.

3. Software reliability: the main algorithms were developed in JavaScript language

and this does not allow a fast and easy extensibility and maintainability of the core

software features63.

4. Software extensibility: the layout adapts automatically to different resolutions (and

devices).

5. Software validation: code is more testable.

63 ResilBlockly is developed in Java and Angular languages for the backend and frontend
respectively.

Page 130 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Furthermore, Blockly4SoS is domain-specific, since it was designed and intended for the

SoS domain. In the following section, instead, it is described how ResilBlockly is made

able to address and model many other domains.

 Introduction of Profiling and Modelling Features

Two important concepts are being stressed here, since they are required for

understanding the following of this document:

• Profile, sometimes also referred as metamodel, is an abstraction of components

and relations for a specific domain;

• Model, is an instance of a profile.

As described in Section 2.5, Blockly4SoS allows the users to create model instances using

the AMADEOS SoS profile, that is an ad-hoc and specific profile for the SoS domain.

However, it may be useful to evolve the SoS profile in order to better fit on users’ interests

and desires, and to get specialized for specific domains; one of them, for example, is the

software and ICT ecosystem domain. Thus, in order to address this requirement,

ResilBlockly introduces a profiling functionality, i.e., the so-called Profile Designer (the GUI

for the choice between this feature and the modelling, i.e., the Model Designer, is depicted

in Figure 70).

Figure 70 The GUI of ResilBlockly for the choice between Profiling and Modelling Features

The main differences between Blockly4SoS and ResilBlockly, with regard to the

introduction of the Profile Designer, are summarized in Table 26.

Table 26 Comparison of Profiling and Modelling in Blockly4SoS and ResilBlockly

Tool version Profile Model

Blockly4SoS Pre-defined (not modifiable) User defined

ResilBlockly User defined User defined

Page 131 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 71 The ResilBlockly flow and categories of users (to be compared with Blockly4SoS flow in
Figure 56)

Another important distinction that the profiling and modelling features are addressing, is

the different type of users that ResilBlockly is thought for (also depicted in Figure 71):

• Profile Expert (mainly a Profile Designer user)

• System Designer (mainly a Model Designer user)

Figure 72 Example of Derivation of Profiles and Models

With ResilBlockly, an existing profile can be adopted (e.g., the AMADEOS SoS Profile) and,

thanks to the Profile Designer, a Profile Expert can specialize n different profiles derived

from it (as shown in Figure 72). As an alternative, new profiles can be created from scratch

by the expert. This is one of the main values added by ResilBlockly with regard to

Blockly4SoS.

The System Designer, instead, can choose one of the profiles and instantiate it within a

model specific for their use case system; as in Blockly4SoS, also here the System Designer

is not required to have deep knowledge about the domain (as, instead, the Profile Expert

Page 132 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

is). Furthermore, the model is enriched with information (e.g., cybersecurity information

as typical weaknesses) inherited from the profile.

The functionalities shown in the flow of Figure 71, and especially other important

differences with Blockly4SoS, are going to be explained in the following sections. One of

them is the threat modelling, which can be started in the Profiling, thus allowing the profile

expert to identify and associate weaknesses and/or vulnerabilities that, in principle, may

apply to an element of the profile (e.g., the most relevant weaknesses of a generic

database). This activity is meant to be addressed and refined by the model designer,

which, by knowing more details about the technologies adopted in the system under

modelling (e.g., the specific type of database and its interfaces) is able introduce new

weaknesses and vulnerabilities or to remove previously identified ones.

Another important feature is the code generation, which has been completely redefined

and reimplemented; details are given in section 7 and further in D6.2 “Blockly4SoS user

guide”.

 Interoperability, Ecore and EMF

In Section 2.5.4, the flow of MDE with Blockly4SoS (Figure 56), together with phases and

outputs, have been described. As discussed in the previous section, one of the main

features introduced in ResilBlockly, is the possibility to create different profiles

(metamodels) already within the tool; in order to do so, the selected approach and file

format enabling this activity has been the the widely adopted Ecore, the base metamodel

of the Eclipse Modeling Framework (EMF)64 [112] [113][114].

EMF is a framework for modelling applications and generating customizable source code

or other different outputs. It distinguishes the meta-model, which describes the structure,

and the actual model instance. Users can create an Ecore Model by importing existing files

e.g., Ecore, UML, XML schema, XMI or Java annotations, or creating it directly within EMF.

An Ecore Model is thus composed of two main description files [112]: ecore and genmodel.

• modelname.ecore: constitutes the meta-model, in XMI format. It is the

representation of the modelled domain and contains the information about the

defined classes.

• modelname.genmodel: specifies information for the code generation.

As depicted in Figure 73, between the main components of ecore we can find the following

main elements [115]:

• EClass a representation of a class with optional attributes and references.

• EAttribute a representation of an attribute, with name and type

• EReference a representation of an association between two classes. It has flags

to indicate if it represents a containment and a reference class to which it points.

• EDataType a representation of the type of an attribute, e.g., int, float, String.

64 a project initially developed by IBM and then transferred to the Eclipse Foundation, which provides
code generation and model manipulation tools.

Page 133 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 73 Hierarchy of Ecore components

The above listed elements can be considered the key ones based on which ResilBlockly

enables the creation of profiles. It has to be noticed that, as in EMF, the Reference is one

of the Relation types, and the same group includes also the Composition (a portion of EMF

palette is shown in Figure 74).

Figure 74 Types of Relation in EMF

The key elements in ResilBlockly Profile Designer are Class, Attribute and Relation, as

shown in Figure 7565. With a ResilBlockly Relation block it is possible to model relations of

different types (Reference, as default type and as depicted in the figure, or Composition).

Figure 75 Key elements in ResilBlockly Profile Designer

65 actually, there are two additional blocks, namely Menu and Menu Item, which are not reported in
the figure.

Page 134 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

 Conversion of SoS profile and Import of the ecore

One important activity that has been conducted in order to evolve the tool and complete

the transition from Blockly4SoS to ResilBlockly, is the conversion of the AMADEOS SoS

profile. All the AMADEOS viewpoints have been reproduced in EMF, generating a single

output ecore file. During the process, the Security viewpoint has been deeply reviewed and

extended.

Figure 76 shows an example of a small part of the Architecture viewpoint as it appears in

EMF, where two of its classes SoS as CS are modelled and connected with a Composition

relation.

Figure 76 Two of the classes composing the Architecture viewpoint reproduced in EMF

These viewpoints can be imported as ecore into ResilBlockly Profile Designer and are

automatically transformed into Blockly blocks of type classes, attributes and relations. A

portion of the SoS Profile imported as ecore into ResilBlockly, where the SoS and CS

classes have been detailed with other relations, is in Figure 77.

Figure 77 A portion of the SoS Profile imported as ecore into ResilBlockly

Page 135 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

The import ecore for importing metamodels into the Profile Designer is not the unique

functionality implemented that significantly improves the interoperability of ResilBlockly.

In fact, the export ecore feature in XMI format has been implemented as well, which allows

to export the profile as shown in Figure 78.

Figure 78 A portion of the exported ecore XMI showing SoS and CS

Finally, importing and exporting the ecore makes ResilBlockly very interoperable with other

tools and it allows the management of different profiles. In fact, on one hand this feature

allows a user to design its meta-model within EMF or simply retrieve an existing profile,

and then import it into ResilBlockly for later on instantiating the profile and performing

analysis and simulations; on the other hand, the user can also design its model directly

within ResilBlockly and then export to other tools compatible with ecore XMI.

To test the functionality, an existing ecore metamodel66 has been successfully imported

into ResilBlockly profile designer.

Other functionalities regarding interoperability of are also implemented (i.e., import/export

of Profile Designer workspace and of models created in Model Designer) will be described

in the D6.2 together with all the other feature and within the tool’s user guide.

6.2. Using the MUD standard for modelling

In order to facilitate both the generation of the MUD and the modelling, ResilBlockly is

being extended to include mechanisms both to import the original MUD and to export the

extended one. This will imply several benefits for the user:

• The possibility of manually introduce the original MUD aspects

• The possibility of importing the original MUD file just providing the file.

• The possibility to generate the extended version of the MUD with additional

aspects considered within ResilBlockly model.

66 https://github.com/DEIS-Project-EU/ODEv2

https://github.com/DEIS-Project-EU/ODEv2

Page 136 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Next subsections detail the overview of the import/export of the MUD files that will be

further developed and detailed in D6.2.

 Importing the original MUD file in ResilBlockly

The user will have two different options to import the original MUD information. On the

one hand, ResilBlockly will provide an interface to manually indicate all the information

that the standardized MUD file should contain. In particular the user will need to specify

the name of the access control rule, the source and destination interfaces for the

communication, the source and destination ports and the transport layer protocol

(TCP/UDP), as shown in Figure 70. On the other hand, the user can directly import the

original MUD file of the components of the model. This information is later integrated in

the model to enrich it.

Figure 79 ResilBlockly user interface to import MUD information

 Exporting the extended MUD file from ResilBlockly

As discussed before, the MUD model will be enriched to specify additional features from

the design phase that can be obtained both from the user of the tool and from the model.

In this sense, ResilBlockly will include a mechanism with a user interface that allows the

user to add part of the information that compose the extended MUD model and that can

be also used to enrich the model of the system. In particular, the cryptographic algorithms

used for each communication, a higher set of protocols, the exposed resources in case of

HTTP/CoAP, authorization restrictions and limit of the number of communications. The

CVE and CWE associated vulnerabilities, as well as their risk, is obtained also from

ResilBlockly tool.

6.3. Hazard Analysis in ResilBlockly

A feature that has been implemented to evolve the tool ResilBlockly and to make it able to

meet the project goals is the HAZOP Analysis. The HAZOP methodology described in

Section 3 has been implemented, starting from a functionality67 partially already existing

in Blockly4SoS before BIECO, which has been completely re-designed and whose

implementation has been deeply refactored in the context of BIECO project.

In order to perform the Functional Analysis or the Interface Analysis, first the Profile Expert

user has to create a custom profile, thus meta-modelling components and relations of a

67 the so called “Generate Analysis” functionality that is available at the following link and that has been
introduced after AMADEOS https://blockly4sos.resiltech.com/latest/demos/amadeos/i.html

Page 137 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

specific domain by means of class and relation blocks, together with their attribute block,

where needed. Then, in order to perform the analyses, the Profile Expert is required to

clearly mark which class and relation blocks realize and represent functions or interfaces.

This is another main difference with regard to Blockly4SoS: since ResilBlockly has

introduced the Profile Designer functionality, it is not known from the beginning which are

the elements composing a profile and, most importantly, which of them have to be

considered the target of functional or interface analyses, as instead was possible with the

Blockly4SoS SoS profile, which was the only possible profile to be chosen. This is an effort

that is required only once, during the design of a profile, and only to the Profile Expert, and

is justified by the increase of modelling power of the tool.

 Functional Hazard Analysis in ResilBlockly

In the Profile Designer, the Profile Expert starts the so-called Risk designer functionality

(shown in Figure 80). Then, in the Functions tab, the preliminary activity required for

enabling the functional analysis, can be performed. Basically, the profile expert user has

to appropriately select a Class block and determine which, among all its relation blocks,

has to be considered the Functions.

Figure 80 The ResilBlockly Profile Designer - Risk designer GUI with the Functions tab selected and an
example of function identified

As said, this is a configuration step, while the actual functional analysis is carried on

subsequently by the system designer user. This happens in the Model Designer, with a

functionality named Risk Assessment (Figure 81). Here, one or more templates for the

analysis can be specified, following substitution rules and based on regular expressions.

Similarly, a set of keywords can be specified. At this point, the functional analysis is

automatically applied to all the functions (relation blocks) that have been specified during

the profile design, and for all the keywords in the template.

Figure 81 The ResilBlockly Model Designer - Risk Assessment GUI with the functional analysis tab selected
and the interface for specifying the template

Page 138 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 82 shows a simple example of this functional analysis. The result of the analysis is

provided not only as a visual result but also as a CSV file that can be exported and

downloaded. Then, the functional analysis can be completed offline by filling the fields

already listed in Section 3 (Table 18 and Table 20), thus concluding the hazard and risk

analysis.

This functionality, thanks to the automatic and systematic application of the keywords to

all the functions (and interfaces), becomes particularly useful when the modelled system

grows in dimension and complexity, and the HAZOP activities that a user typically

performs manually, helped only by spreadsheets, is significantly speeded up. Moreover,

the risk of forgetting some of the functions to be analysed, is brought to zero if the profile

is realized correctly.

Figure 82 The ResilBlockly Model Designer - Risk Assessment GUI with the functional analysis tab
selected and the result of a functional analysis

 Interface Hazard Analysis

The Interfaces are another type of element of the model that can be systematically

analysed for hazards, adopting the Methodology of Section 3.2, which is based on the

HAZOP technique introduced in Section 2.1.13. Before to describe how to conduct this

analysis within the tool, it is necessary to introduce the recommended approach for

designing the interfaces.

6.3.1.1. Interfaces in ResilBlockly Profile Designer

In ResilBlockly, each interface is unidirectional and can be identified by the user with the

triple <Source, Destination, Message>.

Figure 83 shows a general example where two elements, namely a sensor and a sensor

node, respectively can send and receive messages over a channel identified by two

interface ends, the Sensor-SensorNode and the SensorNode-Sensor interfaces.

Figure 83 Logical representation of a Sensor Network example with two interfaces

Page 139 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 84 Example of profile with the meta-modelling of interfaces

Figure 84 shows an example of profile which represents the aforementioned sensor

network in ResilBlockly making use of Class and Relation blocks.

Analogously to the Functions, in the Profile Designer, after having clicked on Risk designer,

the second tab named Interfaces (shown in Figure 85) allows the configuration of the

interfaces.

Figure 85 The ResilBlockly Profile Designer - Risk Designer GUI with the Interfaces tab selected and the
interfaces definition process ongoing

Thus, before being able to conduct the analysis, the profile expert user has to select

between the available class blocks which is the Source, and then the Destination and

Message both between the available relation blocks. With regard to the above example,

Figure 85 shows the process of definition of the Sensor-SensorNode interface, which is

the centre-top in Figure 84.

Once the interfaces have been added by clicking on Add, the configuration is concluded

and the actual Interface Analysis can be carried out in the Model designer Risk

Assessment. In Model designer, the system designer user instantiates the profile in a

model, e.g., as shown with Figure 86, where a block named s1, which is the instance of a

Sensor, exposes an interface named s-sn which allows it to communicate with a

SensorNode called sn1, by sending a Message named msg towards a destination

interface named sn-s.

Page 140 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 86 Example of model with modelling simple interfaces

Once a model has been created, the Interface analysis can automatically be generated

just after having defined a template for the analysis with a set of appropriate keywords.

Figure 87 shows the result for the interface analysis of the above example, where a

template composed of two simple keywords, not and corrupted, has been defined.

Figure 87 The ResilBlockly Model Designer - Risk assessment GUI with the Interfaces tab selected and the
result of the analysis

The interfaces hazard analysis functionality of ResilBlockly, as well functional one, does

not automatically discover hazards. However, it helps the user in listing all the possible

elements (functions/interfaces) of the model and to systematically map them to the

customizable set of HAZOP guidewords, according to a customizable template. As for the

functional analysis, also here the result is provided as a visual outcome as well as a

downloadable CSV, so allowing the system designer to complete the analysis offline.

The pre-filled report in CSV format can be further analysed and completed offline. This

step corresponds to the white rectangles of Figure 60.

Page 141 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

6.4. Identification of Assets and Threat Modelling in ResilBlockly

This Section describes how the asset identification and threat identification/modelling

phases of the methodology described in Section 4.2 and Section 4.3 respectively, have

been implemented in ResilBlockly. However, the detailed user guide along with the

application of the full methodology to one of the BIECO use cases will be included in

deliverable D6.2.

A preliminary and required step for the asset identification is the existence of a profile,

either created within the tool or imported as ecore file. Then, in the Profile Designer, the

profile expert is allowed to perform the first round of asset identification, which will then

be complemented within the Model Designer.

Starting the Risk designer, in the Weaknesses and in the Vulnerabilities tabs, the user

selects a Class block which is implicitly identified as asset under analysis. Then,

weaknesses can be searched in the CWE by pressing the add weakness button shown in

Figure 88 which opens a search interface Figure 89 and allows to find weaknesses, read

short descriptions, jump to the CWE catalogue, study the details and finally add the CWE

to the asset. Custom weaknesses can be also defined by pressing the dedicated button

and filling the required fields.

Figure 88 The ResilBlockly Profile Designer - Risk designer GUI with the Weaknesses tab selected and
some random weaknesses associated to a sample class block

Figure 89 The CWE search interface with a sample example

Page 142 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

In addition, CWE weaknesses can be indirectly searched by looking for CAPEC attack

patterns (implemented functionality is shown in Figure 90). This can be considered a

different approach and starting point for the identification of weaknesses.

Figure 90 The CAPEC search interface for the retrieval of attack patterns and association of related
weaknesses

With a similar approach, the vulnerabilities tab (as shown in Figure 91) enables the

identification of assets (class block), research and association of CVE vulnerabilities, or

addition of custom defined ones.

Figure 91 The ResilBlockly Profile Designer - Risk designer GUI with the Vulnerabilities tab selected and
some random vulnerabilities associated to a sample class block

Once a profile has been designed, and the weaknesses (vulnerabilities) have been

associated to some of its class blocks by the profile expert, they are automatically

inherited by each model that instantiates the profile.

The system designer user, in the Model designer, by leveraging the so-called Risk

assessment functionality, is then able to see weaknesses and vulnerabilities pertaining to

Page 143 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

the above-mentioned class blocks and, eventually, to identify new ones. This means that

an expert may identify typical threats for a component (interface) of class, and then when

the general component is specialized, additional threats which may be specific of the

particular type of component, can be identified by the modeller (shown in the third and

fourth tab from the left of Figure 87.

As a future improvement, we plan the implementation of a threat identification algorithm

which, leveraging the attributes detailed in the profile, can support the user and

automatically propose CWE weaknesses and CVE vulnerabilities to be associated.

6.5. Attack Paths and retrieval of additional Threats

Selected graphical representation trees among the ones described in Section 4.4 have

been implemented within ResilBlockly in order to enable the visual representation of

attack paths and improve the retrieval of weaknesses.

Among the others, the attack path tree (APT), - which becomes an attack path graph (APG)

in case of weaknesses related to multiple attack patterns, creating loops -, is the best

candidate in this sense. In fact, starting from the set of identified CWE weaknesses that

have been associated to a system component (interface), and adopting the following

algorithm (which refers to the generic APG of Figure 92), the user is able to identify related

attack patterns, preceding attack patterns, and additional weaknesses to be considered,

analysed and eventually associated:

1. Both in the risk designer and risk assessment, an identified weakness (e.g., CWE-

n) is selected;

2. The tool visually represents this weakness (e.g., CWE-n) as root node (Level 0) of

an APT;

3. The tool automatically retrieves the related attack patterns, (e.g., CAPEC-j, CAPEC-

k) where existing, and places them on the Level 1 of the tree.

4. The tool automatically retrieves the preceding attack patterns (e.g., CAPEC-i) where

existing, thus creating an attack path, and places them one on each level of the

three (e.g., Level 2 and subsequent ones)

5. The tool automatically retrieves the related weaknesses (e.g., CWE-m, CWE-p, CWE-

q, CWE-r) places them on the tree, connecting them to all their related attack

patterns. The tree becomes a graph in case loops are created, thus CWE related to

multiple CAPECs.

Some of the benefits of the introduction of this feature are:

• to have a visual representation of attack paths potentially connected to and

leading to the starting weakness (e.g., CWE-n). It is important since the catalogues

structure is very complex, and it may happen to get lost while consulting them.

• being able to directly retrieve and inspect each attack pattern and weakness

shown in the graphical representation, leveraging the details from the catalogues.

• identifying and marking, among all the CAPEC and CWE entries in the APT (APG),

which ones are relevant for the component (interface) under analysis, that is the

one originally associated to CWE-n. In example, the user can grey-out the CWEs or

CAPECs considered not relevant for the component (interface) after a careful

analysis.

Page 144 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 92 A generic Attack Path Graph

• associating the additional CWEs (remaining not greyed-out) to the component

(interface) under analysis.

• according to the definition68 of related weakness in CAPEC, attack patterns in the

APT (APG) have to be considered a threat for the component (interface) if at least

one of the related weaknesses exist in the component (interface). That is, a CAPEC

whose weaknesses are all excluded (greyed-out) from the APT (APG), can be

considered not applicable for the component (interface)

This feature is preliminary to the identification of mitigation strategies and, in particular, it

enables to have a first idea of where to place the mitigations, and which weakness, with

high priority, have to be eliminated from the component (interface) in order to make

unsuccessful the related typical attacks and break the paths towards the exploit.

6.6. Risk Assessment in ResilBlockly

Along with the HAZOP-based Risk assessment that can be conducted by leveraging the

functional and interface analysis described in Sections 3 and 6.3, an additional

functionality for conducting a risk assessment has been implemented within the tool,

according to the methodology introduced in Section 4.

The user, both in the Profile designer (as shown in Figure 93) and in the Model designer,

visualizes the CVSS base score for the vulnerabilities associated to the component

(interface). This constitutes the severity of impact, which is the first parameter required

for the risk assessment (as explained in Section 4 and shown in Figure 68).

Then, in a dedicated window, the likelihood can be inserted, selecting the value from the

qualitative scale (i.e., according to the NIST SP800-30 risk matrix of Figure 68; in the future

developments, different qualitative scales could be selectable). Finally, the corresponding

risk is determined.

The approach is analogous for the weaknesses, with the difference that also the severity

of impact is inserted by the user in a dedicated field, and is not determined by retrieving a

CVSS base score.

68 “[…] each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are

associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be
successful […]”.

Page 145 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 93 The ResilBlockly Profile Designer - Risk designer GUI with the Vulnerabilities tab with the CVSS
base score(s) from the NVD integrated

Page 146 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

7. The ResilBlockly Simulation Engine

This section introduces the new simulation engine that has been devised, implemented

and integrated with ResilBlockly thanks to which it is possible to represent interactions

between system components (e.g., both under normal conditions and during attacks). An

overview of the simulation process and of its integration with external IDE and Simulation

engine is given in Figure 94.

As introduced in Section 2.5.4, Blockly4SoS was provided with the possibility to simulate

the behaviour of model components by specifying some snippets of python code directly

into the Blockly4SoS web UI. However, this choice had some drawbacks, i.e., the difficulty

in writing the python code into a text area, hence without any code validation, compilation

check, import helps, or in general any type of validation that an IDE (Integrated

Development Environment) typically offers.

Hence, in the context of the refactoring of Blockly4SoS, a completely new simulation

engine has been designed and implemented, and enables to simulate models realized with

and exported from ResilBlockly. The engine simulates the behaviour and interactions of

model components, based on the messages69 exchanged between the interfaces exposed

by each component.

Figure 94 Overview of the simulation process and integration of ResilBlockly model with external IDE and
simulation engine

As depicted in Figure 94, the model realized within ResilBlockly can be transformed and

exported as Java source code, i.e., a skeleton of the classes corresponding to model

elements, relations, attributes, and so on. Then, the code can be imported in an external

IDE to be further on elaborated in an environment that offers all the typical features a

programmer may need. In the IDE, the behaviour of the components can also be specified.

Then, the simulation engine takes in input the following elements:

• the Java skeleton source code generated from the ResilBlockly Model,

• the behaviour of each ResilBlockly Model Component,

69 in principle, the same approach applies also to things exchanged over physical interfaces, i.e.,
RUPIs, in accordance with SoS concepts and AMADEOS profile.

Page 147 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

and is able to provide the simulation outcome in many different formats, like:

1. Log file

2. A real-time changing chart

3. A 2D/3D animated simulation

4. Other formats.

The Simulation Engine itself generalizes and standardizes the base structure and

behaviour of a model component, and can be used in an external Java Project as a

common software interface to implement the specific behaviour of each model

component. Indeed, the engine is characterized by an abstract Java class, named

BaseComponent.java, which constitutes the generic abstraction of a Model Component.

A portion of this class is given in Figure 95, while more details will be given in D6.2.

Figure 95 The BaseComponent.java class declaration

Each specific Model Component has to extend the BaseComponent.java class and

override some specific methods; an example of extension of the base component is given

in Figure 96, where a class called DHT11 extends it.

The Java skeleton code of a ResilBlockly Model can be generated and exported from the

Model Designer as a compressed archive (.zip file), and is composed of a set of

automatically generated Java classes, each of them representing the abstraction of

components and interfaces.

Figure 96 An example of auto-generated Java Class for a specific Model Component named "DHT11"

The extension of the classes allows to implement specific behaviour for each Model

Component. In Figure 97 it is shown the example of a class named DHT11Behaviour that

extends DHT11, and, consequently, also the BaseComponent.

Page 148 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 97 An override example of the executeBehaviour() method

Each auto-generated Java class is provided with some instance attributes -of type

Interface (as shown in Figure 96)- which represent and correspond to the interfaces that

the related Model Component exposes. The auto-generated Java classes provided by the

simulation engine already contain attributes and business logic useful to connect the

interface itself with other interfaces, exactly as represented into the ResilBlockly Model.

Figure 98 shows a simple example of a ResilBlockly model with a simple component, a

sensor called DHT11, and its interface for communicating with a sensor node.

Figure 98 An example of ResilBlockly model

This feature of auto-generating interfaces within the Java code, inheriting information

from the model, facilitates the programmer that has in charge the implementation of the

component behaviour, since it already provides the interfaces that can be called from a

specific component. As shown in Figure 99, each interface object contains information as

the interfaceId and interfaceName, as well as the target unique identifier of the

destination interface, i.e., targetInterfaceId.

Page 149 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 99 An example of auto-generated interface instance

In the Simulation Engine, the communication between interfaces is based on the MQTT

protocol70 which is able to decouple them thanks to the Publish/Subscribe paradigm.

Indeed, each interface is uniquely identified by a topic and at the start of the Simulation

Engine all interfaces are subscribed to topics related to interfaces to which they are

connected into the ResilBlockly Model. Hence, a publish is performed every time a source

interface sends a message to the destination interface.

Figure 100 Example of interfaces between simulated and real systems

Thanks to the MQTT protocol, the simulation engine also supports the “hardware-in-the-

loop” technique, thus it is possible to simulate a Model in which some components are

simulated and others are real ones (as in the example of Figure 100). The unique condition

required is the External Interface to be connected with a real External Component that is

able to publish messages on a MQTT broker.

70 an OASIS standard messaging protocol for the Internet of Things (IoT) https://mqtt.org/

https://mqtt.org/

Page 150 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Figure 101 An example of a real time chart, developed as behaviour of a “Dashboard” component, with
third-party dependencies

From the behaviour point of view, the Simulation Engine has been designed to be highly

flexible, as the User is able to implement every type of behaviour, also using third-party

dependencies.

The architectural and functioning concepts behind the simulation engine allow to simulate

the interactions between components, e.g., both during nominal behaviour as well as

when under particular conditions.

In example, the simulated entity can be an attacker, modelled within ResilBlockly, and

whose behaviour is specified within the external IDE; as an alternative, a real attack can

be introduced targeting one of the components (or better, its interfaces) interacting in the

context of the simulation. This allows to observe the interactions between components of

a system when attacks are exploited.

Moreover, the intended usage of the ResilBlockly simulation engine within BIECO is

simulating the attacks modelled during the threat modelling step (described in Section

6.4), thus targeting the exploit of the weaknesses or vulnerabilities identified and

associated to system components (interfaces), to observe the behaviour of the system or

components under attack. It is also possible to connect the results of the different

simulations with the attack paths graphical representation described in Section 6.5.

Then, by comparing the simulation results obtained from different system models, e.g.,

according to different system configurations, it will be possible to analyse and understand

whether and where to introduce mitigations or which mitigation is more effective.

As stated before, as future improvement for the threat identification and modelling, we

plan the implementation of an algorithm which, leveraging the attributes detailed in the

profile, can support the user and automatically propose CWE weaknesses and CVE

vulnerabilities to be associated.

Page 151 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

8. Conclusions

This document reviewed the key concepts regarding modelling of complex systems-of-

systems, targeting the representation and analysis of ICT ecosystems and supply chains

components. It reviewed and compared many existing solutions, tools and methods for

modelling, identifying and representing potential threats, as well as for analysing the

intrinsic security risks according to the reference standards. The results of these review,

analysis and comparison of the state-of-the-art constitute the first important set of

artefacts provided by D6.1.

It has been proposed and described a HAZOP-based hazard analysis and risk assessment

methodology thanks to which a user can systematically identify, represent and later on

analyse, already in the early prototyping, the safety hazards matched to system functions

and interfaces.

Then, a threat identification and modelling methodology has been devised in order to

support the phases of a security risk assessment process, from the identification of

assets and threats (potential weaknesses and vulnerabilities affecting system

components and interfaces), to the determination of impact, likelihood and risk, going

through the analysis of attack paths.

In addition, it has been presented how the MUD-compliant specification of network

policies has been integrated in ResilBlockly, analysing its limitations and providing

specific characteristics and features from the modelling and analysis activities that could

be integrated in an extended MUD file. The details of the extension, as well as its

application to a specific use case, will be further provided in D6.2. Moreover, the extended

MUD will be generated from the information provided in ResilBlockly, so it can be linked

to the ICT component and obtained during the runtime.

Furthermore, a preliminary description of ResilBlockly is provided, highlighting the main

differences and improvements with regard to its previous version, Blockly4SoS, and how

the proposed methodologies are implemented within the tool. A more detailed user guide

will be given in deliverable D6.2 in the context of an early validation over the ICT Gateway

use case. The ResilBlockly tool itself, together with the methodologies that it integrates,

are doubtless the main artefacts of T6.1. Finally, another significant artefact is the

completely new simulation engine that has been designed and implemented, and which

enables to simulate the models realised with and exported from ResilBlockly.

Thanks to these results, it is possible to identify, determine and associate, already during

early prototyping, the weaknesses, vulnerability and safety-hazards of an ICT system or

component and to identify which are the weakest elements in the supply chain. The results

of the risk analysis enable to understand where attackers will likely try to conduct an

attack, and which path would let them to achieve their goal or exploit other weaknesses.

The methodologies, assisted by the tool, constitute an effective solution for the risk

determination and analysis. The effectiveness will be demonstrated with the validation

activities conducted within T6.2 and WP8 over the BIECO use cases.

Once the risk analysis is performed, these activities and can later on and further

complemented with the definition of mitigation strategies and measures (addressed in

T6.3) which can eliminate the identified weaknesses and significantly reduce the risks.

Page 152 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

9. References
[1] Threat Model, Wikipedia

https://en.wikipedia.org/w/index.php?title=Threat_model&oldid=983957746
[2] B. Schneier - Dr. Dobb's Journal, December 1999 – “Modelling security threats “-

https://www.schneier.com/academic/archives/1999/12/attack_trees.html .
[3] T. R. Ingoldsby “Attack Tree-based Threat Risk Analysis”

https://www.amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdf .
[4] Clemen, RT. 1996. Making hard decisions. 2nd Ed. Duxbury Press
[5] Modarres, M. 1993. What every engineer should know about reliability and risk analysis. Marcel

Dekker, Inc., New York, New York
[6] ADTool, Université du Luxembourg - Security and Trust of Software System

https://satoss.uni.lu/members/piotr/adtool/
[7] Kordy, B., Mauw, S., Radomirović, S., & Schweitzer, P. (2010, September). Foundations of attack–

defense trees. In Int. Workshop on Formal Aspects in Security and Trust (pp. 80-95). Springer
[8] Isograph Attack Tree https://www.isograph.com/ .
[9] Wang, P., & Liu, J. C. (2014). Threat analysis of cyber-attacks with attack tree+. Journal of Information

Hiding and Multimedia Signal Processing, 5(4).
[10] RiskTree, 2T Security Ltd https://risktree.2t-security.co.uk/
[11] Risk Management with RiskTree, 2T Security Ltd https://www.2t-

security.com/papers/RiskTree_overview.pdf
[12] Getting started with the Threat Modelling Tool, Microsoft Corporation https://docs.microsoft.com/it-

it/azure/security/develop/threat-modelling-tool-getting-started
[13] ThreatModeler - http://threatmodeler.com/
[14] IriusRisk – Getting Started https://support.iriusrisk.com/hc/en-us/articles/360021517751
[15] I. Tarandach, PyTM: A Pythonic framework for threat https://github.com/izar/pytm
[16] CAPEC, Organization Usage, https://capec.mitre.org/community/usage.html
[17] securiCAD, foreseeti https://foreseeti.com/
[18] Elahi, G., Aratyn, T., Sivaranjan, R., Sethi, R., & Eric, S. K. (2011). SD Elements: A Tool for Secure

Application Development Management. In CAiSE Forum (pp. 81-88).
[19] Security Compass https://www.securitycompass.com/sdelements/how-it-works/
[20] Threat Dragon, OWASP https://docs.threatdragon.org/
[21] Schaad, A., & Reski, T. (2019). "Open Weakness and Vulnerability Modeler"(OVVL)–An Updated

Approach to Threat Modelling.
[22] The CORAS Method and Tool, CORAS http://coras.sourceforge.net/
[23] Vraalsen, F., Den Braber, F., Lund, M. S., & Stølen, K. (2005, May). The CORAS tool for security risk

analysis. In Int. Conf. on Trust Management (pp. 402-405). Springer, Berlin, Heidelberg
[24] Kristian Beckers, Ketil Stølen - ISMS-CORAS: A Structured Method for Establishing an ISO 27001

Compliant Information Security Management System - Chapter · January 2014 DOI: 10.1007/978-3-
319-07452-8_13

[25] Manufacturing Technology Committee –Risk Management Working Group - Hazard & Operability
Analysis (HAZOP) - https://pqri.org/wp-content/uploads/2015/08/pdf/HAZOP_Training_Guide.pdf

[26] LeMay, E., Ford, M. D., Keefe, K., Sanders, W. H., & Muehrcke, C. (2011, September). Model-based
security metrics using adversary view security evaluation (advise). In 2011 Eighth International
Conference on Quantitative Evaluation of SysTems (pp. 191-200). IEEE.

[27] STRIDE Threat Model: Example & Overview https://study.com/academy/lesson/stride-threat-model-
example-overview.html.

[28] DREAD risk assessment model, Wikipedia
https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)

[29] A. Lamba, A., Singh, S., Balvinder, S., & Rela, S. (2015). To Classify Cyber-Security Threats in
Automotive Doming Using Different Assessment Methodologies. International Journal For
Technological Research In Engineering, 3(3).

[30] Morana, M. M., & Vélez, T. U. (2015). Risk Centric Threat Modeling: Process for Attack Simulation and
Threat Analysis. John Wiley & Sons, Incorporated.

[31] Cleland-Huang, J. How Well Do You Know Your Personae Non Gratae? IEEE Software. Volume 31.
Number 4. July 2014. Pages 28–31.

[32] Mead, N. R., Shull, F., Vemuru, K., & Villadsen, O. (2018). A hybrid threat modeling method. Carnegie
MellonUniversity-Software Engineering Institute-Technical Report-CMU/SEI-2018-TN-002.

[33] P. Saitta, B. Larcom, and M. Eddington - Trike v.1 Methodology Document.
https://www.octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf .

[34] What is LINDDUN - https://www.linddun.org/
[35] LINDDUN Framework https://www.linddun.org/linddun .
[36] Common Vulnerability Scoring System version 3.1: Specification Document, FIRST- Forum of

Incident Response and Security Teams https://www.first.org/cvss/specification-document

https://en.wikipedia.org/w/index.php?title=Threat_model&oldid=983957746
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdf
https://satoss.uni.lu/members/piotr/adtool/
https://www.isograph.com/
https://risktree.2t-security.co.uk/
https://www.2t-security.com/papers/RiskTree_overview.pdf
https://www.2t-security.com/papers/RiskTree_overview.pdf
https://docs.microsoft.com/it-it/azure/security/develop/threat-modeling-tool-getting-started
https://docs.microsoft.com/it-it/azure/security/develop/threat-modeling-tool-getting-started
http://threatmodeler.com/
https://support.iriusrisk.com/hc/en-us/articles/360021517751
https://github.com/izar/pytm
https://capec.mitre.org/community/usage.html
https://foreseeti.com/
https://www.securitycompass.com/sdelements/how-it-works/
https://docs.threatdragon.org/
http://coras.sourceforge.net/
https://pqri.org/wp-content/uploads/2015/08/pdf/HAZOP_Training_Guide.pdf
https://study.com/academy/lesson/stride-threat-model-example-overview.html
https://study.com/academy/lesson/stride-threat-model-example-overview.html
https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)
https://www.octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf
https://www.linddun.org/
https://www.linddun.org/linddun
https://www.first.org/cvss/specification-document

Page 153 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

[37] Shevchenko, N., Chick, T. A., O'Riordan, P., Scanlon, T. P., & Woody, C. (2018). Threat modelling: a
summary of available methods. Carnegie Mellon University Software Engineering Institute Pittsburgh
United States.

[38] Mead, N. R., Shull, F., Vemuru, K., & Villadsen, O. (2018). A hybrid threat modelling method. Carnegie
MellonUniversity-Software Engineering Institute-Technical Report-CMU/SEI-2018-TN-002.

[39] OCTAVE Method of Security Assessment, The University of Kansas
https://technology.ku.edu/octave-method-security-assessment

[40] Caralli, R. A., Stevens, J. F., Young, L. R., & Wilson, W. R. (2007). Introducing octave allegro: Improving
the information security risk assessment process. Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst.

[41] Denning, T., Friedman, B., & Kohno, T. (2013). The Security Cards: A Security Threat Brainstorming
Toolkit. Univ. of Washington, http://securitycards. cs. washington. edu.

[42] Joyce, James (2003), "Bayes' Theorem", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of
Philosophy (Spring 2019 ed.), Metaphysics Research Lab, Stanford University, retrieved 2020-01-17

[43] Ronald S. Ross. NIST, Guide for conducting risk assessments. NIST Special Publication 800-30
revision 1. Technical report, US Dep. Of Commerce, 2012

[44] Lautenbach, A., & Islam, M. (2016). HEAVENS–HEAling Vulnerabilities to ENhance Software Security
and Safety. The HEAVENS Consortium (Borås SE).

[45] Microsoft Security Development Lifecycle (SDL) - https://www.microsoft.com/en-
us/securityengineering/sdl/

[46] Kozar, K. A. (1997). The technique of data flow diagramming.
[47] The STRIDE per Element Chart, 2007 https://www.microsoft.com/security/blog/2007/10/29/the-

stride-per-element-chart/.
[48] M. Rohr Microsoft’s new Threat Modeling Tool, 2016.

https://blog.secodis.com/2016/07/06/microsofts-new-threat-Modelling-tool/ .
[49] CVE - Common Vulnerabilities and Exposure. MITRE Corporation. https://cve.mitre.org/
[50] Official Common Platform Enumeration (CPE) Dictionary, National Vulnerability Database, 2018d.-

https://nvd.nist.gov/products/cpe
[51] NVD - National Vulnerability Database, 2018a - https://nvd.nist.gov/
[52] OVVL https://ovvl.org/index.html#home
[53] VAST Modelling Methodology https://threatmodeler.com/threat-Modelling-methodologies-vast/
[54] CAPEC - Common Attack Pattern Enumeration and Classification - https://capec.mitre.org/
[55] Cyber Threat Modelling - https://www.eccouncil.org/threat-modeling/.
[56] Alberts, C.; Dorofee, A.; Stevens, J; & Woody, C. Introduction to the OCTAVE Approach. Software

Engineering Institute, Carnegie Mellon University. August 2003. https://re-
sources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546

[57] Security cards information sheet http://securitycards.cs.washington.edu/assets/security-cards-
information-sheet.pdf

[58] Mead, N. R., & Stehney, T. (2005). Security quality requirements engineering (SQUARE)
methodology. ACM SIGSOFT Software Engineering Notes, 30(4), 1-7.

[59] securiCad https://community.securicad.com/using-the-example-model/
[60] CENZIC, HARM, The OWASP Foundation - Approaches to Quantitative Risk Analysis for Web

Applications.
[61] CWSS - Common Weakness Scoring System - Scoring CWEs -

https://cwe.mitre.org/cwss/cwss_v1.0.1.html
[62] Veracode -

https://help.veracode.com/reader/DGHxSJy3Gn3gtuSIN2jkRQ/oQthQ0PfLS7hcwPMwRhYRw
[63] Microsoft Documentation, STRIDE Threats in Commerce Server https://docs.microsoft.com/en-

us/previous-versions/commerce-server/ee810587(v=cs.20)
[64] FFRI Inc., STRIDE variants and security requirements-based threat analysis

https://www.ffri.jp/assets/files/monthly_research/MR201610_STRIDE_Variants_and_Security_Req
uirements-based_Threat_Analysis_ENG.pdf

[65] R. A. Caralli, J. F. Stevens, L. R. Young, y W. R. Wilson, «Introducing OCTAVE Allegro: Improving the
Information Security Risk Assessment Process», CERT, 2007.

[66] C. J. Alberts, A. J. Dorofee, J. F. Stevens, y C. Woody, «OCTAVE-S Implementation Guide, Version 1»,
2005.

[67] Hellesen, N., Torres, H., & Wangen, G. (2018). Empirical case studies of the root-cause analysis
method in information security. International Journal On Advances in Security, 11.

[68] J. R. C. Nurse, S. Creese, y D. D. Roure, «Security Risk Assessment in Internet of Things Systems»,
IEEE Comput. Soc. IT Pro, 2017.

[69] OWASP Top Ten Project https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
[70] Microsoft, «DREAD scheme», 2010. https://docs.microsoft.com/en-us/previous-versions/msp-n-

p/ff648644(v=pandp.10)#dread.

https://technology.ku.edu/octave-method-security-assessment
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/security/blog/2007/10/29/the-stride-per-element-chart/
https://www.microsoft.com/security/blog/2007/10/29/the-stride-per-element-chart/
https://blog.secodis.com/2016/07/06/microsofts-new-threat-Modelling-tool/
https://cve.mitre.org/
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/
https://ovvl.org/index.html#home
https://threatmodeler.com/threat-Modelling-methodologies-vast/
https://capec.mitre.org/
https://www.eccouncil.org/threat-modeling/
https://re-sources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
https://re-sources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
http://securitycards.cs.washington.edu/assets/security-cards-information-sheet.pdf
http://securitycards.cs.washington.edu/assets/security-cards-information-sheet.pdf
https://community.securicad.com/using-the-example-model/
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://help.veracode.com/reader/DGHxSJy3Gn3gtuSIN2jkRQ/oQthQ0PfLS7hcwPMwRhYRw
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee810587(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee810587(v=cs.20)
https://www.ffri.jp/assets/files/monthly_research/MR201610_STRIDE_Variants_and_Security_Requirements-based_Threat_Analysis_ENG.pdf
https://www.ffri.jp/assets/files/monthly_research/MR201610_STRIDE_Variants_and_Security_Requirements-based_Threat_Analysis_ENG.pdf
https://www.owasp.org/index.php/Category:OWASP/_Top/_Ten/_Project
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=pandp.10)#dread
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=pandp.10)#dread

Page 154 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

[71] Baron, A., Babiceanu, R. F., & Seker, R. (2018, April). Trustworthiness requirements and models for
aviation and aerospace systems. In 2018 Integrated Communications, Navigation, Surveillance
Conference (ICNS) (pp. 1B3-1). IEEE.

[72] NCCgroup, «Threat prioritisation: DREAD is dead, baby?», 2016
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/march/threat-
prioritisation-dread-is-dead-baby/.

[73] OWASP, OWASP Application Security Verification Standard (ASVS) Project
[74] Mobius, Model-Based Environment for Validation of System Reliability, Availability, Security, and

Performance https://www.mobius.illinois.edu/
[75] R. M. R. K, «Security risk assessment of Geospatial Weather Information System (GWIS) using

integrated CVSS approach», Int. J. Adv. Comput. Sci. Appl., vol. 1, n.o 3, 2010.
[76] Potteiger, B., Martins, G., & Koutsoukos, X. (2016, April). Software and attack centric integrated threat

modeling for quantitative risk assessment. In Proceedings of the Symposium and Bootcamp on the
Science of Security (pp. 99-108).

[77] Trike website https://www.octotrike.org/
[78] Trike implementation https://sourceforge.net/projects/trike/

[79] Ford, M. D., Keefe, K., LeMay, E., Sanders, W. H., & Muehrcke, C. (2013, June). Implementing the
ADVISE security modeling formalism in Möbius. In 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) (pp. 1-8). IEEE.

[80] Personas: An Agile Introduction, Agile Modeling
http://www.agilemodeling.com/artifacts/personas.htm

[81] IEC-International Electrotechnical Commission. (2001). IEC 61882, Hazard and operability studies –
Application guide.

[82] Appicharla, S. K. (2015). Application of Cognitive Systems Engineering Approach to Railway Systems
(System for Investigation of Railway Interfaces). Railway Research: Selected Topics on Development,
Safety and Technology, 81.

[83] ISO/IEC, "Information technology -- Security Techniques-Information security risk management"
ISO/IEC FIDIS 27005:2008.

[84] Joint Task Force - SP 800-53 Rev. 5 Security and Privacy Controls for Information Systems and
Organizations - https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final

[85] Stouffer, K. A., Falco, J. A., & Scarfone, K. A. (2011). NIST SP 800-82. guide to industrial control
systems (ics) security: Supervisory control and data acquisition (scada) systems, distributed control
systems (dcs), and other control system configurations such as programmable logic controllers
(plc).

[86] Common Weakness Enumeration - https://cwe.mitre.org/

[87] NISTIR 7628 Rev. 1 - The Smart Grid Interoperability Panel–Smart Grid Cybersecurity Committee -
Guidelines for Smart Grid Cybersecurity

[88] NIST Special Publication 1108r3 - The Smart Grid Interoperability Panel–Smart Grid Cybersecurity
Committee - NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0

[89] ISA Intech magazine. New ISA/IEC 62443 standard specifies security capabilities for control system
components - https://www.isa.org/intech-home/2018/september-october/departments/new-
standard-specifies-security-capabilities-for-c

[90] NIST - SP 800-53A Rev. 4 - Joint Task Force Transformation Initiative - Assessing Security and
Privacy Controls in Federal Information Systems and Organizations: Building Effective Assessment
Plans

[91] NIST Special Publication 800-53 Rev. 5 - Joint Task Force - Security and Privacy Controls for
Information Systems and Organizations

[92] Quick Start Guide: An Overview of ISA/IEC 62443 Standards Security of Industrial Automation and
Control Systems – ISA.org https://gca.isa.org/hubfs/ISAGCA Quick Start Guide FINAL.pdf

[93] Cybersecurity & Infrastructure Security Agency (CISA), Information and Communications Technology
(ICT) Supply Chain Risk Management (SCRM) https:/www.cisa.gov/supply-chain

[94] IEC61882: 2002 Hazard and operability studies (HAZOP studies)-Application Guide
[95] Bartnes, M. et al (2006). Safety vs. security? Proceedings of the 8th International Conference on

Probabilistic Safety Assessment and Management May 14-18, 2006, New Orleans, Louisiana, USA.
[96] CENELEC EN 50129:2018: Railway Applications -Communication, signaling and processing systems,

Safety related electronic systems for signalling.
[97] Miller, C., & Valasek, C. (2015). Remote exploitation of an unaltered passenger vehicle. Black Hat

USA, 2015(S 91).
[98] Nie, Sen, Ling Liu, and Yuefeng Du. "Free-fall: Hacking tesla from wireless to can bus." Briefing, Black

Hat USA 25 (2017): 1-16.
[99] S. Alvarez 2020, “Tesla employee foregoes $1M payment, works with FBI to thwart cybersecurity

attack” https://www.teslarati.com/tesla-employee-fbi-thwarts-russian-cybersecurity-attack/
[100] RASEN Compositional Risk Assessment and Security Testing of Networked Systems FP7-ICT G.a.

ID: 316853 http://www.rasenproject.eu/

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/march/threat-prioritisation-dread-is-dead-baby/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/march/threat-prioritisation-dread-is-dead-baby/
https://www.mobius.illinois.edu/
https://www.octotrike.org/
https://sourceforge.net/projects/trike/
http://www.agilemodeling.com/artifacts/personas.htm
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://cwe.mitre.org/
https://www.isa.org/intech-home/2018/september-october/departments/new-standard-specifies-security-capabilities-for-c
https://www.isa.org/intech-home/2018/september-october/departments/new-standard-specifies-security-capabilities-for-c
https://gca.isa.org/hubfs/ISAGCA%20Quick%20Start%20Guide%20FINAL.pdf
https://www.cisa.gov/supply-chain
https://www.teslarati.com/tesla-employee-fbi-thwarts-russian-cybersecurity-attack/
http://www.rasenproject.eu/

Page 155 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

[101] ARMOUR Large-Scale Experiments of IoT Security Trust H2020-EU.2.1.1. G.a. ID: 688237
http://armour-project.eu/

[102] UcedaVélez, T. Threat Modeling w/PASTA: Risk Centric Threat Modeling Case Studies. Technical
Report. Open Web Application Security Project (OWASP). 2017.

[103] Bondavalli, A., Bouchenak, S., & Kopetz, H. (Eds.). (2016). Cyber-physical systems of systems:
foundations–a conceptual model and some derivations: the AMADEOS legacy (Vol. 10099).
Springer.

[104] AMADEOS EU FP7-ICT-2013.3.4 Project: Architecture for Multi-criticality Agile Dependable
Evolutionary Open System-of-Systems http://amadeos-project.eu/. GA no. 610535.

[105] BIECO D3.1 “Report on the State of the Art of Vulnerability Management”, Feb. 2021.
[106] OMG® Unified Modeling Language® (OMG UML®). Version 2.5.1. formal/2017-12-05. December

2017.
[107] OMG Systems Modeling Language (OMG SysML), http://www.omgsysml.org/ .
[108] J.S. Dahmann and K.J. Baldwin, "Understanding the Current State of US Defense Systems-of-Systems

and the Implications for Systems Engineering," 2nd IEEE International Systems Conference (SysCon),
pp. 1-7, 2008.

[109] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, "Basic Concepts and
Taxonomy of Dependable and Secure Computing", IEEE Trans. on Dependable and Secure
Computing, vol. 1, no. 1, Jan. –Mar. 2004.

[110] https://github.com/AMADEOSConceptualModel/SysMLProfileAndApplication.git - GitHub public
link to the AMADEOS SysML profile and application.

[111] AMADEOS Supporting Facilities User GUIDE https://blockly4sos.resiltech.com/user-guide.pdf
[112] EMF documentation www.eclipse.org/emf/docs.php
[113] Fundamentals of EMF

https://www.eclipse.org/modeling/emf/docs/presentations/EclipseCon/EclipseCon2008_309T_Fu
ndamentals_of_EMF.pdf

[114] EMF Ecore Javadoc
https://download.eclipse.org/modeling/emf/emf/javadoc/2.10.0/org/eclipse/emf/ecore/package-
summary.html

[115] EMF tutorial https://www.vogella.com/tutorials/EclipseEMF/article.html
[116] Sion, L.; Yskout, K.; Van Landuyt, D.; & Joosen, W. Solution-aware data flow diagrams for security

threat modeling. Pages 1425-1432. In Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. April 2018. DOI 10.1145/3167132.3167285.

[117] Macher, G., Armengaud, E., Brenner, E., & Kreiner, C. (2016, September). A review of threat analysis
and risk assessment methods in the automotive context. In International Conference on Computer
Safety, Reliability, and Security (pp. 130-141). Springer, Cham.

[118] NVD vulnerability status https://nvd.nist.gov/vuln/vulnerability-status
[119] Aksu, M. Ugur, et al. "A quantitative CVSS-based cyber security risk assessment methodology for IT

systems." 2017 International Carnahan Conference on Security Technology (ICCST). IEEE, 2017.
[120] NISTIR 7788 Singhal, A., & Ou, X. (2017). Security risk analysis of enterprise networks using

probabilistic attack graphs. In Network Security Metrics (pp. 53-73). Springer, Cham.
[121] Kotzanikolaou, P., Theoharidou, M., & Gritzalis, D. (2013, March). Cascading effects of common-

cause failures in critical infrastructures. In International Conference on Critical Infrastructure
Protection (pp. 171-182). Springer, Berlin, Heidelberg.

[122] Stergiopoulos, G., Kouktzoglou, V., Theocharidou, M., & Gritzalis, D. (2017). A process-based
dependency risk analysis methodology for critical infrastructures. International Journal of Critical
Infrastructures, 13(2-3), 184-205.

[123] DANSE Consortium: DANSE Methodology V2-D_4.3. https://www.danse-ip.eu
[124] COMPASS, Guidelines for Architectural Modelling of SoS. Technical Note Number: D21.5a Version:

1.0, September 2014. http://www.compass-research.eu
[125] Jones, C., et al.: Final version of the DSoS conceptual model. DSoS Project (IST-1999-11585) (2002)
[126] ENISA Threat and Risk Management Glossary https://www.enisa.europa.eu/topics/threat-risk-

management/risk-management/current-risk/risk-management-inventory/glossary
[127] B. Weyl, O. Henniger, A. Ruddle, H. Seudié, M. Wolf, and T. Wollinger: Securing vehicular on-board IT

systems: The EVITA Project. In 25th Joint VDI/VW Automotive Security Conference, Ingolstadt,
Germany, October 2009

[128] Lautenbach, A., & Islam, M. (2016). HEAVENS–HEAling Vulnerabilities to ENhance Software
Security and Safety. The HEAVENS Consortium (Borås SE).

[129] ETSI EG 203 251 V1.1.1 (2016-01) Methods for Testing & Specification; Risk-based Security
Assessment and Testing Methodologies.

[130] E. Lear, D. Romascanu, and R. Droms, “Manufacturer Usage Description Specification (RFC 8520),”
2019. [Online]. Available: https://tools.ietforg/html/rfc8520

http://armour-project.eu/
http://amadeos-project.eu/
http://www.omgsysml.org/
https://github.com/AMADEOSConceptualModel/SysMLProfileAndApplication.git
https://blockly4sos.resiltech.com/user-guide.pdf
http://www.eclipse.org/emf/docs.php
https://www.eclipse.org/modeling/emf/docs/presentations/EclipseCon/EclipseCon2008_309T_Fundamentals_of_EMF.pdf
https://www.eclipse.org/modeling/emf/docs/presentations/EclipseCon/EclipseCon2008_309T_Fundamentals_of_EMF.pdf
https://download.eclipse.org/modeling/emf/emf/javadoc/2.10.0/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.10.0/org/eclipse/emf/ecore/package-summary.html
https://www.vogella.com/tutorials/EclipseEMF/article.html
https://nvd.nist.gov/vuln/vulnerability-status
https://www.danse-ip.eu/
http://www.compass-research.eu/
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary
https://tools.ietforg/html/rfc8520

Page 156 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Appendix A – Comparison Between Threat Modelling Tools

Table 27 Tools based on Attack Tree Methodology

Name Required Knowledge Main Features Output Export format Standard Latest updates Description Openness Owner URLs

ADTool

threats,
attack tree,
numerical and label
values (e.g., probability
of success, difficulty,
time, skill level, etc.) of
atomic actions (leaves)

attack tree creation,
defence tree creation,
security analysis, "risk
assessment",
quantitative analysis,
large-scale printing

model,
numerical and label
values (e.g.,
probability of success,
difficulty, time, skill
level, etc.) of non-
atomic actions
(internal nodes)

pdf, png, jpeg,
tex, XML

none

Latest update
on GitHub:
2017.
Latest
publication:
2016

Attack-Defense
Trees Tool

Open

University
of
Luxembour
g

1

2

3

AttackTree+ threats, attack tree

attack tree modelling
and analysis, mitigation
tree, threat analysis,
definition of indicators
(e.g., attack cost,
difficulty, frequency, cut
set, etc.), modelling and
analysis of
consequences

attack tree, fault tree,
and mitigation tree
diagrams, multiple
type of analysis
outcomes

pdf, XML,
Access, SQL
Server, Excel,
CSV, etc.
(also as input)

"ISO 26262"
J3061

up to date
(2020)

A tool included in a
wide suite of
softwares. Coming
from
dependability/safet
y area. Existing since
1980s and applied in
thousands of
companies. Certified
according to ISO
9001, Cyber
Essentials, and SAP

Commercial Isograph

1

Attack
Tree
Webinar
(from
14:56):
2

RiskTree threats, attack tree
risk tree modelling, risk
assessment, risk
prioritization

risk tree, risk charts
(e.g., pyramid, disk+,
spider diagram+,
riskmap+, prioritized
risk table), threats
charts

 JSON, (also
for input),
Mindmap
XML (tree),
CSV, pdf, (full
report)

ISO 27001
(if extended in
a more
complete risk
management
tool)

up to date
(2020)

can be extended in
the so-called
RiskWiki.
Countermeasures
can be mapped
against controls
(such as ISO27001),

Commercial 2T Security 1

http://satoss.uni.lu/members/piotr/adtool/
https://www.youtube.com/watch?v=DvPIH6ACDUI
https://github.com/tahti/ADTool2
https://www.isograph.com/software/attacktree/
https://www.youtube.com/watch?v=vEZwIYfjvPU
https://risktree.2t-security.co.uk/

Page 157 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Table 28 Tools based on STRIDE methodology

Name
Required

Knowledge
Main Features Output Export format Standard

Latest
updates

Description Openness Owner URLs

Threat Modeling
Tool

DFD template, identify and mitigate
potential security issues, intuitive
user-interface

threat list, report xls (threat
list)

NIST CFS
ID.RA 3 ->
NIST SP

800-53 Rev.
4 RA-3 (ISA

62443-2-
1:2009)

11
February

2020

The Threat Modeling Tool
enables any developer or
software architect to:
Communicate about the
security design of their
systems. Analyse those
designs for potential
security issues using a
proven methodology.
Suggest and manage
mitigations for security
issues

Commercial Microsoft 1

2

OVVL DFD,
threats
knowledge

threat analysis, vulnerability
analysis, suggested mitigations;
threat definitions are the same as in
Microsoft’s TMT and are based on a
modified STRIDE methodology;
Angular as frontend framework, in
the backend Spring Boot, data stored
in MongoDB (easy handling of big
datasets, such as the CVE and CPE
data); differs from existing open-
source tools by distinguishing
between design threats and
technical vulnerabilities. The
features of the product include
threat and vulnerability detection,
risk mitigation, project integration,
secure storage, analysis &
automation, etc.

report: information
about the identified
threats (at design
level) and known
vulnerabilities (at
operational level)
can then be pushed
to available tooling
in the software
development
lifecycle

 n.a. n.a. 2019/202
0

OVVL is a new open-source
framework and tool called
“OVVL -Open Weakness
and Vulnerability Modeler”
to facilitate the integration
of threat modeling into the
development lifecycle for
software teams of any size.
Its core functionality is
derived from the analysis of
the current state and
existing solutions

Commercial developed at
University of
Applied
Sciences
Offenburg and
part of the
BMBF KMU-
Innovation
Project
"CloudProtect"
(Förderkennzeic
hen 16KIS0850)

1

 2

3

Threat Dragon DFD,
STRIDE
methodolog
y, threats,
threats
prioritizatio
n

web application/desktop
application, demo model, support for
LINDDUN and CIA as well as STRIDE
(Threat Dragon provides STRIDE per
Element rules to generate the
suggested threats for an element on
the diagram) and desktop command
line interface

report pdf n.a. Version
1.3 (3 Sep

2020)

a tool used to create threat
model diagrams and to
record possible threats and
decide on their mitigations.
TD is both an online threat
modelling web application
and a desktop application. It
includes system
diagramming as well as a

Open OWASP®
Foundation

1

https://docs.microsoft.com/it-it/azure/security/develop/threat-modeling-tool-getting-started
http://download.microsoft.com/download/B/1/8/B18F4C7D-5CBA-4E68-A437-31F1E908ACBA/Microsoft_Cyber_Offerings_Mapped_to_Security_Frameworks_EN_US.pdf
https://ovvl.org/%20and%20https:/github.com/OVVL-HSO
https://www.researchgate.net/publication/335164474_Open_Weakness_and_Vulnerability_Modeler_OVVL_An_Updated_Approach_to_Threat_Modeling/link/5d569ccc299bf151bad77063/download
https://opus.hs-offenburg.de/frontdoor/index/index/docId/3683
http://docs.threatdragon.org/

Page 158 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

rule engine to auto-generate
threats and their
mitigations. The focus of TD
is on great UX, a powerful
rule engine and alignment
with other development
lifecycle tools

Table 29 The Tool based on VAST methodology

Name
Required

Knowledge
Main Features Output

Export
format

Standard
Latest

updates
Description Openness Owner URLs

ThreatModeler DFD template, identify,
classify and prioritize
threats, combines threat
modeling with abuse
case, intuitive user-
interface, suggested
countermeasures

threat list, view
of security
requirements,
report

all diagrams
can be
exported as
a JSON,
PDF or .png
file

NIST CFS ID.RA 3, CIS
AWSCIS GCPCIS
AzureOWASPNIST 800-
53AWS Security Epics;
MITRE, CAPEC, OWASP
(Mobile, IoT, AppSec),
WASC, CSA, NVD

n.a. ThreatModeler™ is
an innovative
enterprise threat
modeling platform
that helps
organizations fully
integrate security
into their SDLC and
realize sustainable
ROI on their security
resources. The
centralized threat
framework
automatically and
seamlessly
integrates security
within existing agile
and DevOps
workflows

Commercial ThreatModeler
Software, Inc.

1

2

https://threatmodeler.com/
https://cdn2.hubspot.net/hubfs/4595216/ThreatModeler%20Data%20Sheet.pdf

Page 159 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Table 30 The Framework which includes an implementation of ADVISE

Name
Required

Knowledge
Main Features Output

Export
format

Standard
Latest

updates
Description Openness Owner URLs

Mobius
Framework

threats attack execution
graph, adversary
profile, simulation,
construction of
composed
models (e.g., with
SANs)

attack
execution
graph,
simulation
results (e.g.,
defining a
performance
variable and
creating a
set/range
study)

html, csv, txt none up to date
(2020)

ADVISE,
ADversary VIew
Security
Evaluation, is an
atomic formalism
available in
Mobius tool and
can be used in
conjunction with
other formalisms

Commercial Mobius Illinois 1

Table 31 The tool based on Trike methodology

Name
Required

Knowledge
Main Features Output

Export
format

Standard
Latest

updates
Description Openness Owner URLs

Trike requirement model,
DFD, requires a
person to hold a
view of the entire
system to conduct
an attack surface
analysis

generate threat (semi-)automatically
(no brainstorming), security-
inexperienced developers reliably
find issues, it is clear what to analyse
(and what doesn't need to be
analysed), attack chaining (no attack
trees), immediate feedback (design),
start earlier (requirements, not
architecture), include intended
system behaviour

 xls (non-
standalone
version)

 2012 no
longer
maintained

Trike threat modelling is a unique, open-
source threat modelling process focused on
satisfying the security auditing process from a
cyber risk management perspective. It
provides a risk-based approach with unique
implementation, and risk modelling process.
The foundation of the Trike threat modelling
methodology is a “requirements model.” The
requirements model ensures the assigned
level of risk for each asset is “acceptable” to
the various stakeholders

Open n.a. 1

2

3

Table 32 The CORAS Tool

Name
Required

Knowledge
Main Features Output

Export
format

Standard Latest updates Description Openness Owner URLs

https://www.mobius.illinois.edu/wiki/index.php/ADVISE_Atomic_Formalism
http://www.octotrike.org/
https://resources.sei.cmu.edu/asset_files/WhitePaper/2018_019_001_524597.pdf
https://en.wikipedia.org/wiki/Threat_model

Page 160 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

CORAS
risk
management

CORAS method has eight
steps: preparation for the
analysis, customer
presentation of the target,
refining target description
(using asset diagrams),
approval of target
description, risk
identification using threat
diagram, risk estimation
using threat diagrams,
risk evaluation using risk
diagrams, risk treatment
using treatment
diagrams. CORAS
language: graphical
modelling language for
communication,
documentation and
analysis of security threat
and risk scenarios in
security risk analyses.
CORAS tool is a diagram
editor

"Security risk
analysis"

n.a.

ISMS-CORAS: A
Structured Method for
Establishing an ISO
27001 Compliant
Information Security
Management System.
CORAS method is
based on the ISO
31000 risk
management
standard, which is also
the basis for the
information security
risk management
process of ISO 27005

CORAS news -->
2014-12-19: A
new version
(v1.4) of the
Eclipse-based
CORAS tool is
now released. It
is available for
both the 32-bit
and the 64-bit
versions of
Windows and
Java, as well as
for other major
platforms such
as Mac and
Linux

it provides a customised language
for threat and risk modelling, and
comes with detailed guidelines
explaining how the language should
be used to capture and model
relevant information during the
various stages of the security
analysis. In this respect CORAS is
model-based. The Unified Modelling
Language (UML) is typically used to
model the target of the analysis. For
documenting intermediate results,
and for presenting the overall
conclusions we use special CORAS
diagrams which are inspired by
UML. The CORAS method provides
a computerised tool designed to
support documenting, maintaining
and reporting analysis results
through risk modelling. The CORAS
language is a graphical modelling
language for communication,
documentation and analysis of
security threat and risk scenarios in
security risk analyses. The language
is an integral part of the CORAS
method, which is based on the use
of structured brainstorming

Open
SINTEF

ICT

1

2

3

4

Table 33 Other Tools

Name
Required

Knowledge
Main Features Output

Export
format

Standard
Latest

updates
Description

Opennes
s

Owner URLs

IriusRi
sk

n.a.

real-time risk
management, browser-
based user-interface,
threat linked with
weakness and
recommended
countermeasures

report
doc,

xlsx, pdf,
xls

NIST SP 800-53,
ISO/IEC 27002,
PCI-DSS,
OWASP ASVS,
OWASP MASVS

5 August
2020

(IriusRisk
3.2)

IriusRisk is primarily a risk management tool that
helps you identify, mitigate and track security risks
during the software development process. It
includes templating and risk pattern-based
functionality that allows you to quickly create a
threat model based on the answers of a series of
questionnaires

Commer
cial

IriusRisk
SL

1

2

http://coras.sourceforge.net/index.html
http://coras.sourceforge.net/documents/080828TheCORASMethod.pdf
http://coras.sourceforge.net/newsarchive.html
https://www.researchgate.net/publication/300707447_ISMS-CORAS_A_Structured_Method_for_Establishing_an_ISO_27001_Compliant_Information_Security_Management_System
https://iriusrisk.com/
https://www.youtube.com/watch?v=JoND3Ql4qV8

Page 161 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

securi
CAD

DFD

threat modelling, virtual
attack simulation,
automated model
generation, risk
assessments and
suggested mitigations,
integration with external
tools (report), non-
disruptive (virtual attack),
find the structural
weaknesses in the
architecture; you can
import external data

report of
attack

simulatio
n

n.a. n.a.

Version
1.6.2

(08/05/20
20)

securiCAD is a unique tool for decision-making and
risk management in IT security. securiCAD
conducts automated attack simulations to models
of current and future IT architectures, identifies and
quantifies risks holistically including structural
vulnerabilities, and provides decision support
based on the findings

Commer
cial

foreseeti 1

PyTM

Python,
command
line, DFD,
Sequence
Diagram

generate a Data Flow
Diagram (DFD), a
Sequence Diagram and
threats to your system

DFD,
Sequence
Diagram,

html
report

png,
html

n.a.
Version

1.1.2 - 24
Sep 2020

Define your system in Python using the elements
and properties described in the pytm framework.
Based on your definition, pytm can generate, a Data
Flow Diagram (DFD), a Sequence Diagram and
threats to your system

Open n.a. 1

SD
Eleme

nts
n.a.

web-based, threat
modelling, risk
assessment, identify risk
and potential weakness,
classify risks, track status
of security activities, can
instantly generates report
(risk -> mitigation); SD
Elements focuses on
vulnerability prevention
instead of detection

report n.a.

OWASP, WASC
threat
classification, ISA
62443–4–2
(version 4.21 -
Improved content
for industrial
control systems
based on ISA
62443–4–2), NIST
800–171
compliance
regulation report
(version 4.20),
ANSI/ISA-62443,
Part 4–2 (version
4.20),

Version
4.23

(Latest
Release):

May —
 June 2019

secure application development management tool,
called SD Elements, which provides a set of core
values to application developers, system analysts,
and quality assurance teams. SD Elements is a
web-based knowledge repository of security
guidelines, empowered by a retrieval tool. SD
Elements surveys users to learn about the nature of
the project, platform, language, and technologies,
and then it tailors security knowledge. --- (Notes:
Provides requirements, implementation, and
testing guidelines, in situations that compliance
with PCI DSS and HIPPA (HIPAA) is needed;
regulatory compliance including PCI DSS,
HIPPAHITECH, GLBA, NERC CIP, and international
privacy laws) ---

Commer
cial

Security
Compas

s

1

2

3

https://foreseeti.com/securicad-professional/
https://github.com/izar/pytm
https://www.securitycompass.com/sdelements/how-it-works/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.336&rep=rep1&type=pdf%20%20(Notes)
https://resources.securitycompass.com/blog/what-s-new-in-our-latest-version-of-sd-elements-january-2019-june-2019

Page 162 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Appendix B – Risk Assessment Steps Descriptions and Reference Standards

Step
No.

Topic
Step Name in the

Standard
Description Reference Standard

0 Risk Assessment Preparation purpose, scope, assumptions - constraints, information sources, risk model identification.

NIST 800-30
NIST 800-82
NIST 800-53
SAE J3061
EN 50129:2018

0
Risk Management
Process

Establishing the
Context

Understanding the regulatory environment, identification of requirements and process.
ISO 31000
ETSI EG 203 251

0
Security Risk
Assessment
(Security for IACS)

Document cyber
security
requirements,
assumptions and
constraints

cyber security requirements specification, SUC description, zone and conduit drawings, zone
and conduit characteristics, operating environment assumptions, threat environment,
organizational security policies, tolerable risk, regulatory requirements

IEC 62443-3-2:2020
NIST.IR 7628

0-1
Hazard/Risk
Assessment

Safety goal
formulation

a safety goal is to be determined for each hazardous event evaluated in the hazard analysis

ISO 26262
NIST.IR 7628
SAE J3061
EN 50129:2018
EN 50159:2010

1 Risk Assessment
Information
assets

define a list of information assets
ISO 27001
NIST.IR 7628
SAE J3061

1 Risk Assessment
Asset
identification

identification of assets and potential damage resulting from a breach of security features. ISO 21434

1
Security Risk
Assessment
(Security for IACS)

SUC (System
Under
Consideration)
identification

defining a system under consideration (SUC) for an IACS IEC 62443-3-2:2020

1
Security Risk
Assessment
(Security for IACS)

Partition the SUC
into zones and
conduits

establish zones and conduits, separate business and IACS assets, separate safety related
assets, separate temporarily connected devices, separate wireless devices, separate devices
connected via external networks

IEC 62443-3-2:2020
ISO/IEC 15408-1:2009
EN 50129:2018

2
Hazard/Risk
Assessment

Situation analysis
and hazard
identification

operational situations and operating modes in which a vehicle may malfunction are to be
considered as the malfunctioning behaviour may trigger potential hazards. These situations
and the corresponding potential hazards are to be described and evaluated. Then the
potential hazards are determined

ISO 26262
NIST.IR 7628
SAE J3061
EN 50129:2018
EN 50159:2010

Page 163 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Step
No.

Topic
Step Name in the

Standard
Description Reference Standard

2 Risk Assessment

Analyse risk ->
Threats and
Vulnerabilities
identification

identify the threats and vulnerabilities that apply to each asset

ISO 27001
NIST.IR 7628
SAE J3061
EN 50159:2010

2 Risk Assessment
Threat Scenario
identification

identification and analysis of possible threats, attacks and vulnerabilities

ISO 21434
ISO/IEC 15408-1:2009
ISO/IEC 18045:2008
NIST.IR 7628
SAE J3061

3 Risk Assessment
Attack Path
analysis

identification and linking of potential attack paths to one or more threat scenarios
ISO 21434
ISO/IEC 15408-1:2009
ISO/IEC 18045:2008

1-4
Security Risk
Assessment (test-
based)

Risk Identification
Determining areas of impact (such as assets), the source of risk (e.g., threats, vulnerabilities,
attack surfaces), events, causes and potential consequences. Can involve historical data and
security testing.

ETSI EG 203 251

3-4
Hazard/Risk
Assessment

Hazard
classification

identified potential hazards are to be classified based on the estimation of three factors:
severity, probability of exposure, and controllability

ISO 26262
SAE J3061
EN 50129:2018
EN 50159:2010

3-4 Risk Assessment Impact rating
determination of risk levels based on damage scenarios and the probability of successful
attacks

ISO 21434

4 Risk Assessment
Attack Feasibility
rating

the rating of the feasibility of attack paths based on the ease of exploitation ISO 21434

1-5 Risk Assessment Conduction
produce a list of information security risks that can be prioritized by risk level and used to
inform risk response decisions. Organizations analyse threats and vulnerabilities, impacts
and likelihood, and the uncertainty associated with the risk assessment process

NIST 800-30
ISO/IEC 15408-1:2009
ISO/IEC 18045:2008
NIST.IR 7628
SAE J3061

1-5
Security Risk
Assessment
(Security for IACS)

Initial Cyber
Security Risk
assessment

Perform initial cyber security risk assessment
IEC 62443-3-2:2020
NIST.IR 7628

5
Hazard/Risk
Assessment

ASIL
determination

SIL is to be determined for each hazardous event using the estimation parameters severity,
probability of exposure and controllability

ISO 26262
SAE J3061
EN 50129:2018

5 Risk Assessment
Evaluation /
Prioritization

use a risk assessment matrix to identify which risks are worth treating and prioritise them
ISO 27001
ISO/IEC 15408-1:2009

Page 164 of 165

Deliverable D6.1: Blockly4SoS Model and Simulator

Step
No.

Topic
Step Name in the

Standard
Description Reference Standard

ISO/IEC 18045:2008
SAE J3061
EN 50129:2018

5 Risk Assessment
Risk
determination

determination of the risk value of a threat scenario.
ISO 21434
NIST.IR 7628

5
Security Risk
Assessment (test-
based)

Risk Estimation Understanding the value of risk, its source and consequences, also involving security testing ETSI EG 203 251

6 Security Control Selection
it provides an initial set of controls for the system and tailors the controls as needed to
reduce risk to an acceptable level based on an assessment of risk

NIST 800-37
NIST 800-53

6 Risk Assessment
Risk Treatment
(decision)

addressing identified risks by selecting a suitable risk treatment option

ISO 21434

ISO 31000
ETSI EG 203 251

7 Security Control Implementation
it helps describing how the controls are employed within the system and its environment of
operation

NIST 800-37
NIST 800-82
NIST 800-53
ISO/IEC 15408-1:2009
SAE J3061

7 Security Control
Assessment of
effectiveness

it helps assessing whether the controls are implemented correctly, operating as intended,
and producing the desired outcomes with respect to satisfying the security and privacy
requirements

NIST 800-37
NIST 800-53
NIST.IR 7628
SAE J3061

7 Risk Assessment Countermeasures take countermeasures until the remaining risk is acceptable

ISO 21434
ISO/IEC 15408-1:2009
ISO/IEC 18045:2008
NIST.IR 7628
EN 50129:2018
EN 50159:2010

1-8
Security Risk
Assessment
(Security for IACS)

Perform a detailed
Cyber Security
Risk Assessment

identify threats, identify vulnerabilities, determine consequence and impact, determine
unmitigated likelihood, determine unmitigated cyber security risk, determine SL-T (Target
Security Level), compare unmitigated risk with tolerable risk, identify and evaluate existing
countermeasures, revaluate likelihood and impact, determine residual risk, compare residual
risk with tolerable risk, identify additional cyber security countermeasures, document and
communicate results

IEC 62443-3-2:2020
NIST 800-82
NIST.IR 7628
SAE J3061

Page 165 of 165

 Deliverable D6.1: Blockly4SoS Model and Simulator

Step
No.

Topic
Step Name in the

Standard
Description Reference Standard

6-8 Risk Assessment
Risk treatment
selection

eliminate entirely, apply security control, retain risk, share with third party ISO 27001

8 Risk Assessment
Communication of
Results

organizations can communicate risk assessment results in a variety of ways (e.g., executive
briefings, risk assessment reports, dashboards). Such risk communications can be formal or
informal with the content and format determined by organizations initiating and conducting
the assessments share risk-related information produced during the risk assessment with
appropriate organizational personnel

NIST 800-30
ISO/IEC 15408-1:2009
ISO/IEC 18045:2008

8 Risk Assessment Maintenance

keep current, the specific knowledge of the risk organizations incurs. The results of risk
assessments inform risk management decisions and guide risk responses. To support the
ongoing review of risk management decisions, organizations maintain risk assessments to
incorporate any changes detected through risk monitoring

NIST 800-30
SAE J3061
EN 50129:2018
EN 50159:2010

8 Security Control Monitoring it helps documenting changes and reporting the security and privacy posture of the system
NIST 800-37
NIST 800-53
SAE J3061

8 Risk Assessment
Result of risk
assessment

such as asset lists, damage scenarios, attack reports or risk reports

ISO 21434
ISO/IEC 15408-1:2009
ISO/IEC 18045:2008
SAE J3061

8
Security Risk
Assessment
(Security for IACS)

Risk comparison compare initial risk to tolerable risk IEC 62443-3-2:2020

8
Security Risk
Assessment (test-
based)

Communicate &
Consult,
Monitoring &
Review

supporting activities meant to provide context and management-related information.
Common denominator of the security risk assessment workflow and test-based risk
assessment workflow

ISO 31000
ETSI EG 203 251

