

This project has received funding from the European Union´s Horizon 2020 Research and Innovation

Programme under Grand agreement No. 952702.

Deliverable D6.3

Risk Assessment and Additional Requirements

Technical References

Document version : 1.0

Submission Date : 31/08/2022

Dissemination Level

Contribution to

:

:

Public

WP6 – Risk Analysis and Mitigation Strategies

Document Owner : 7B

File Name

Revision

:

:

BIECO_D6.3_31.08.2022_V1.0

3.0

Project Acronym : BIECO

Project Title : Building Trust in Ecosystem and Ecosystem

Components

Grant Agreement n. : 952702

Call : H2020-SU-ICT-2018-2020

Project Duration : 36 months, from 01/09/2020 to 31/08/2023

Website : https://www.bieco.org

Ref. Ares(2022)6052545 - 31/08/2022

Page 2 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

Revision History

REVISION DATE
INVOLVED
PARTNERS

DESCRIPTION

0.0 09.05.2022 7B Initial draft.

0.1 09.05.2022 7B
Added the first version of Chapter 2 (Accountability
using blockchain technology) (mbyra, 7B)

0.2 20.06.2022 RES Contribution to Section 3.1. General review

0.3 22.06.2022 CNR
Start contributing to section 6. First draft of the
content.

0.4 10.07.2022 CNR Finalized the content of Section 6.

1.0 11.07.2022 7B Intro, LFB motivation and conclusions.

1.2 11.07.2022 IESE ResilBlockly and SafeTbox under Section 4.

1.3 13.07.2022 7B Minor fixes and the Executive Summary.

1.4 15.07.2022 7B Minor fixes.

1.5 20.07.2022 7B Final editing and preparing for the internal review.

2.0 25.07.2022 IESE Internal review.

2.2 29.07.2022 7B Updates and fixes after the internal review.

2.3 29.07.2022 CNR Internal review

2.4 08.08.2022 7B Updates and fixes after the internal review

2.5 10.08.2022 UNINOVA External Reviewer

2.6 12.08.2022 7B Updates and fixes after the External review

2.7 22.08.2022 UNINOVA Coordinator review and Update

3.0 31.08.2022 UNINOVA Coordinator Finalization and Submission

List of Contributors

Deliverable Editor and Contributors: Marcin Byra (7B), Radosław Piliszek (7B), Paweł

Skrzypek (7B), Enrico Schiavone (RES), Enrico Araniti (RES), Riccardo Introzzi (IFEVS),

Sara Matheu (UMU), Ioannis Sorokos (IESE), Said Daoudagh (CNR), Eda Marchetti (CNR)

Reviewers: Ioannis Sorokos (IESE), Eda Marchetti (CNR), Said Daoudagh (CNR), Sanaz

Nikghadam-Hojjati (UNINOVA), José Barata (UNINOVA)

Page 3 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

Disclaimer: The information in this document is subject to change without notice.

Company or product names mentioned in this document may be trademarks or

registered trademarks of their respective companies.

All rights reserved.

The document is proprietary of the BIECO consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written

agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not

liable for any use that may be made of the information contained herein.

BIECO project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
952702.

Page 4 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

Acronyms
Acronym Term

AC Access Control

ACL Access Control List

ACP Access Control Policy

ACS Access Control System

AII AI Investments

CAPEC Common Attack Pattern Enumeration and Classification

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CS Computer System

CWE Common Weakness Enumeration

ETH Ethereum currency

GDPR General Data Protection Regulation

GENERAL_D Gdpr ENforcEment of peRsonAL Data

GROOT GdpR-based cOmbinatOrial Testing

ICT Information and Communications Technology

I’M GROOT Integrated environMent for GdpR-based cOmbinatOrial Testing

MUD Manufacturer Usage Description

NVD National Vulnerability Database

RUMI Relied Upon Message Interface

SoS System of Systems

UC Use Case

WPX Work Package X (X = number)

Page 5 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

Executive Summary

The main goal of this deliverable is to report the work related to Task T6.4, building upon

what has already been delivered in Deliverables D6.1, D6.2 and D6.4 and worked on in

Tasks T6.1, T6.2 and T6.3. This deliverable, being the last deliverable of the WP6, reports

also all the remaining work made in WP6. Revising what was proposed in the DoA, the

deliverable reports the activities done by 7bulls, CNR, UMU, and IESE that focuses on the

risk assessment, dynamic system analysis, accountability, auditability, and authorization

mechanisms as well as privacy measures. This work was done in collaboration with Task

7.3. Specifically, deliverable D6.3 focuses on the risk assessment and feedback from the

dynamic system analysis, while the deliverable D7.3 discusses the remaining tooling and

the overall methodology. Moreover, modelling and analysis of use cases of the BIECO

methodology and methods of coordinating and reacting to dynamically detected

vulnerabilities are discussed.

Project Summary

Nowadays most of the ICT solutions developed by companies require the integration or

collaboration with other ICT components, which are typically developed by third parties.

Even though this kind of procedures are key in order to maintain productivity and

competitiveness, the fragmentation of the supply chain can pose a high-risk regarding

security, as in most of the cases there is no way to verify if these other solutions have

vulnerabilities or if they have been built taking into account the best security practices.

In order to deal with these issues, it is important that companies make a change on their

mindset, assuming an "untrusted by default" position. According to a recent study only

29% of IT business know that their ecosystem partners are compliant and resilient with

regard to security. However, cybersecurity attacks have a high economic impact, and it

is not enough to rely only on trust. ICT components need to be able to provide verifiable

guarantees regarding their security and privacy properties. It is also imperative to detect

more accurately vulnerabilities from ICT components and understand how they can

propagate over the supply chain and impact on ICT ecosystems. However, it is well

known that most of the vulnerabilities can remain undetected for years, so it is necessary

to provide advanced tools for guaranteeing resilience and also better mitigation

strategies, as cybersecurity incidents will happen. Finally, it is necessary to expand the

horizons of the current risk assessment and auditing processes, taking into account a

much wider threat landscape. BIECO is a holistic framework that will provide these

mechanisms in order to help companies to understand and manage the cybersecurity

risks and threats they are subject to when they become part of the ICT supply chain. The

framework, composed by a set of tools and methodologies, will address the challenges

related to vulnerability management, resilience, and auditing of complex systems.

Page 6 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

Partners

Disclaimer

The publication reflects only the author's view, and the European Commission is not

responsible for any use that may be made of the information it contains.

Page 7 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

Table of Contents

Technical References ... 1

Revision History... 2

List of Contributors ... 2

Acronyms ... 4

Executive Summary... 5

Project Summary ... 5

Partners .. 6

Disclaimer .. 6

Table of Contents .. 7

List of Figures .. 9

1. Introduction .. 10

1.1. The Structure of the Document ... 10

1.2. Relation to Deliverables of Other Work Packages and the BIECO Platform 10

2. Accountability Using Blockchain Technology – LogForgeryBlocker 11

2.1. Scope of the Tool .. 11

2.2. Functional Description .. 11

2.3. Introduction to Blockchain ... 12

2.4. Cost .. 13

2.5. Architecture ... 13

 Client-Side Application .. 14

 Server-Side Application ... 14

2.6. Implementation Description ... 15

 Modules and Submodules ... 15

 Communication, Hashing, Application State ... 18

2.7. Installation Guide .. 21

 Backend .. 21

Frontend .. 23

Smart Contract ... 23

2.8. User guide .. 24

3. Use Case Modelling in ResilBlockly for Threat Analysis .. 29

3.1. The Applicability of Threat Analysis with ResilBlockly ... 29

 AI Investments Use Case Modelling ... 30

Page 8 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

3.2. IFEVS Use Case Modelling ... 35

 Microfactory and Cloud IoT... 35

 FOTA and UPTANE .. 36

 FOTA-UPTANE Modelling .. 37

 FOTA-UPTANE Risk Analysis .. 38

4. Supporting Rating of Safety-Related Impact of Vulnerabilities 39

5. Definition of the Threat MUD for Sharing Mitigations .. 43

5.1. Threat MUD Model .. 43

5.2. Threat MUD architecture .. 45

5.3. Usages of the threat MUD .. 47

6. GDPR-Based Accountability and Auditability of Authorization Systems 49

6.1. Contextualization of I’M GROOT in BIECO .. 50

6.2. Results Analysis Component Specification .. 51

7. Conclusions ... 53

8. References ... 54

Page 9 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

List of Figures

Figure 1. Architecture diagram of the LogForgeryBlocker ... 13

Figure 2. Message structure for Agent-Log Proxy communication protocol 19

Figure 3. The flow of the log request and delivery .. 20

Figure 4. The main page of Alchemy ... 24

Figure 5. New user registration in LogForgeryBlocker ... 25

Figure 6. Empty list of logs ... 25

Figure 7. Creating a new agent .. 26

Figure 8. Non-empty list of agents ... 26

Figure 9. Agent details .. 27

Figure 10. List of existing log files in the web interface ... 27

Figure 11. List of fingerprints of a selected log file .. 28

Figure 12. Transaction details .. 28

Figure 13. New interface for the specification of custom weaknesses 30

Figure 14. AII Architecture Diagram .. 31

Figure 15. Simplified model of the AII communication system implemented in

Resilblockly .. 32

Figure 16. UPTANE-like architecture of the FOTA system ... 36

Figure 17. Example of representation of the UPTANE based FOTA architecture – the

sketch shows the SoS, with the first CS and RUMI (with message description) in the

model ... 37

Figure 18. Graph representation of the UPTANE-like architecture of the FOTA system (the

picture shows only a representative portion of the whole graph) 38

Figure 19. ResilBlockly-SafeTbox Workflow ... 40

Figure 20. Export from ResilBlockly ... 40

Figure 21. Importing into safeTbox ... 40

Figure 22 - Changing the file format filter to .ecore .. 41

Figure 23. Accessing the properties of an element in safeTbox 42

Figure 24. Threat MUD module .. 44

Figure 25. ACL module ... 45

Figure 26. Threat MUD and MUD architecture .. 46

Figure 27. Sharing discovered threats ... 47

Figure 28. Enforce mitigation ... 48

Figure 29. The Reference Process of I’M GROOT ... 51

file:///C:/Users/sanaz/Downloads/D6.3%20-%20final%20version.docx%23_Toc112686667

Page 10 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

1. Introduction

In this deliverable, we report progress in risk assessment and related aspects of dynamic

system analysis. To this end, we discuss matters related to auditability and non-

repudiation of the system logs and propose a blockchain-based tool to ensure that

system logs are protected against forgery (LogForgeryBlocker). Moreover, we discuss

the accountability and auditability of authorization mechanisms to enable compliance

with the General Data Protection Regulation (GDPR) [20]. We also show how the

ResilBlockly tool can be used to model and analyze the use cases of BIECO. Finally, we

show a framework for coordinating and reacting to dynamically detected vulnerabilities

via the threat Manufacturer Usage Description (MUD).

1.1. The Structure of the Document

To provide the auditability and non-repudiation of the log files, we describe the

LogForgeryBlocker: a blockchain-based tool for protecting against log forgery, along

with a detailed background discussion, architecture description, and installation and

user guides. Then, we present the analysis of the BIECO use cases with the ResilBlockly

software and how SafeTBox can enhance it. Moreover, we show a framework for

reacting to dynamically detected vulnerabilities with the thread MUD to complement the

dynamic system analysis and assessment presented in this deliverable. Then, we

discuss the accountability and auditability of the authorization mechanisms to satisfy

the GDPR which deals with privacy aspects. In particular:

• Chapter 2 describes the LogForgeryBlocker tool with details relevant both for end

users and future developers.

• Chapter 3 contains a description of the modelling and analysis of use cases in the

ResilBlockly tool.

• Chapter 4 describes how ResilBlockly analysis can be enhanced with SafeTBox in

the BIECO framework.

• Chapter 5 is dedicated to the threat MUD used for vulnerability details sharing.

• Chapter 6 describes GDPR-based accountability and auditability of authorization

systems.

The deliverable ends with conclusions summarising the work reported in it.

1.2. Relation to Deliverables of Other Work Packages and the BIECO Platform

This deliverable builds upon the work foundation laid by two deliverables from WP6: D6.1

[11] and D6.2 [12] as well as the deliverables of WP7: D7.1 [9], D7.2 [10] and, parallel to

this one, D7.3 [8]. The WP6 deliverables introduced ResilBlockly and its enhancements

relevant to the BIECO platform. This tool is presented here used for the modelling and

analysis of the BIECO use cases’ platforms: the AI Investments and IFEVS. The WP7 has

collected claims and built a methodology and tooling to certify the system under

scrutiny. In this deliverable, we focus on providing feedback on the dynamic aspects of

risk assessment and related issues. We focus on handling the auditability,

accountability, and non-repudiation of the system logs; we describe authorization

systems, with emphasis on privacy with GPDRs. We also propose a framework for

reacting to dynamically detected vulnerabilities.

Page 11 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

2. Accountability Using Blockchain Technology –
LogForgeryBlocker

As the BIECO framework aims to provide a complete solution to all security-relevant

aspects of the ICT systems, the need to detect and react to runtime issues is paramount.

Some of the auditability measures may depend on the quality of the collected log files

and this is where LogForgeryBlocker finds itself applicable.

LogForgeryBlocker is being proposed as an open-source tool providing non-repudiation

of logs with the help of blockchain technology. It is an easily configurable tool that does

not require advanced expertise from the user. Its typical use is to provide a durable

medium for recording logs so that it is easy to identify a possible malfunction or intrusion

by unfolding and localizing the first illegitimately changed entry. The assumption is that

local agents track the log files in real-time and communicate with the main application

on a separate cluster, putting the information into a selected blockchain system. Using

the blockchain technology allows LogForgeryBlocker to ensure non-repudiation of the

logs. Once the logs (or hashes of the logs, as will be explained in detail in the following

sections) are stored in blockchain, they cannot be deleted or modified, having the same

security guarantees as the whole blockchain used (see section 2.3 below)

The following sections describe the LogForgeryBlocker tool in detail.

2.1. Scope of the Tool

The main feature of the LogForgeryBlocker is providing a lightweight, configurable way

to provide non-repudiation of software logs with blockchain and provides an intuitive

interface for a user who does not have to be a blockchain expert. In other words, if the

LogForgeryBlocker runs, the user can be sure that the logs cannot be modified without

their knowledge. [19] The tool can be installed on multiple machines of one client and

coordinate log management with a central server.

2.2. Functional Description

From the functional perspective, the tool is divided into two parts: Server and Client.

The server-side is responsible for providing the main backend functionality of the

solution: a database, REST APIs providing communication with other modules,

authentication, a web interface, and a blockchain communication module along with

smart-contract-related code and configuration. The user does not have to have deep

knowledge about the blockchain; what is required to provide the configuration

parameters (address, etc.) of the blockchain, i.e., the LogForgeryBlocker has to know

where the smart contract should be deployed to. After providing this information, it

automates generating, monitoring, and pushing the required data to the blockchain

without user effort.

The client-side application is installed into a machine with the user software to monitor

log files, gather new logs, and send them to the server-side using a secure

communication protocol. The client-side is divided into two components: the Client and

the File Proxy. There can be multiple File Proxies installed on different machines, if the

User software and logs are distributed. They track the user-selected log files and folders,

Page 12 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

calculate their hashes and send them to the main Client, which then acts as a

communication hub with the server-side.

This approach provides a practical and lightweight solution, allowing the user to provide

non-repudiation of the software logs, even when the software is distributed on many

machines. Furthermore, the user can provide configuration (files or folders to track, time

intervals for pushing the new logs to the blockchain, etc.) and monitor all processed logs

in real-time using the web interface.

2.3. Introduction to Blockchain

In this section, we introduce basic ideas of the underlying technology from a high

perspective to provide a common ground to understand the architecture and

functionality of the LogForgeryBlocker described in the following chapters.

Blockchain is a distributed software network, often described as a shared, immutable

ledger, that enables tracking the transactions and secure transfer of assets without an

intermediary. An asset can be both ‘material’ (a house or cash) or ‘virtual’ (a copyright,

brand, patent) entity. Blockchain provides immediate and completely transparent

information stored on a shared, immutable medium (the ledger). It can be used to track

payments, orders, and a wide variety of other information, guaranteeing a single view of

truth [18].

Blockchain first appeared in 2008 when Bitcoin, a secure peer-to-peer electronic cash

system, was proposed1. While it remains the most popular cryptocurrency, from the

perspective of this document, the essential fact is that Bitcoin was the first blockchain

system that started a whole new industry.

Today, there are multiple types of blockchains, including dozens of cryptocurrencies.

These systems are designed to meet various requirements. For example, there are

private and open blockchains, permissioned or built by consortiums. They differ in

implementation, technical details, usage, and purpose, but the underlying basics remain

the same. All blockchains have distributed ledgers containing immutable records of non-

duplicated transactions. The records are immutable: once they are in the blockchain,

they can never be modified. A fundamental element deployed into blockchain is a smart

contract, a set of rules defining conditions of the flow of the assets.

Each new transaction (new record, deployed smart contract) is recorded as a part of a

block of data. These blocks are connected to the previous and the following blocks,

hence the name: blockchain. Each new block relies on the combined information of the

previous blocks and strengthens the chain even more. It brings trust, security, and

effectiveness to a variety of applications.

LogForgeryBlocker implements its smart contract with Solidity2. Solidity is an object-

oriented, high-level language for implementing smart contracts. Smart contracts are

programs that govern the behaviour of accounts within the Ethereum state.

1 https://bitcoin.org/bitcoin.pdf
2 https://soliditylang.org/

https://bitcoin.org/bitcoin.pdf
https://soliditylang.org/

Page 13 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

2.4. Cost

The sections below describe configuring LogForgeryBlocker with the Ethereum

blockchain and Alchemy service. The reasoning behind this description is that it is a

quick and straightforward way of configuring the LogForgeryBlocker. We assume the

user would like to configure and test the tool first and later start using it in the production

environment.

Using a public blockchain implies incurring costs for it as each transaction requires a

payment. In Ethereum, the fee is called gas, but the rule generalises to other blockchain

solutions as well. The user wishing to use the LogForgeryBlocker must decide where to

store the log hashes. They can use the Ethereum mainnet and buy gas to pay for the

transactions or other popular networks. These usually provide the highest security

because of the scale. There are also other solutions that do not involve using mainnets

and require significantly lower fees. User can also implement their own chain. However,

the cost and work needed to create the infrastructure should be considered.

A comprehensive discussion of blockchains is by far beyond the scope of this

deliverable. This section, therefore, is intended to underline two factors:

• Users can follow the guide to configure the LogForgeryBlocker and the

related blockchain account using the suggested free-tier solutions to

configure LogForgeryBlocker and get it to work initially.

• For long-term production environment monitoring, the user must decide

which blockchain system to use. LogForgeryBlocker itself is a tool for

gathering, hashing, and sending the logs and requires only adding a

reference to the blockchain of choice in the configuration file. The location

of storing the logs is the user's decision; it is like a database system: a

database producer provides the database software to manage the data,

but the client is responsible for providing the underlying disk space to

store the data.

2.5. Architecture

Figure 1. Architecture diagram of the LogForgeryBlocker

Page 14 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

A general and formal view of the LogForgeryBlocker architecture is presented in Figure

1. The system was designed as a set of multiple microservices which can be labeled into

two categories: Client-side and Server-side.

 Client-Side Application

The Client-side application contains elements such as the Client’s Agent, Log Sources

Proxy, and Log API. The Client’s software and log storage infrastructure are not parts of

the LogForgeryBlocker but are represented in the diagram as logical parts of the system.

An entire Client-side application will be often referred to as a Client Application or Client

for the simplicity of the description, despite the fact that it consists of separate modules.

The Client can be installed on multiple machines by multiple users, and from their

perspective, it can look like a single software package.

The Client’s Agent is responsible for providing communication between Log Sources

Proxy and Backend. Its tasks are scheduling synchronization, log hashing, and validating

logs. It is designed with automatic state restoration after launch or reset to provide a

seamless experience for the user.

The Log Sources Proxy’s task is to listen for new logs in selected files and directories. It

is the only component that requires direct access to the logs in the Client’s storage.

Log API is a RESTful API responsible for communication with the Backend.

Client’s Software represents a program that generates logs LogForgeryBlocker must

track.

Client’s log storage infrastructure is a store for log files generated by the Client’s

Software, e.g., a partition on a hard disk or an NFS.

 Server-Side Application

As a server-side application, we refer to all of the components and services that do not

belong to the Client-side application. However, there are multiple independent modules,

as presented in Figure 1. They consist of the Backend module, REST APIs for the Client

and for the frontend, Auth module, Frontend module, Database, and Blockchain

communication module, which uses defined Smart Contracts to finalize the whole flow.

Backend can be described as a central point of the architecture. It communicates with

the Agents and Frontend module, stores metadata about secured logs, and

communicates with a smart contract.

REST API for the client and REST API for the frontend are separate RESTful APIs and

underlying services designed for communication with the Client and the Frontend

module.

Auth module is responsible for providing authentication and authorization for Clients and

Agents.

Frontend module is a web server and all the libraries responsible for providing a web

interface for the LogForgeryBlocker. It allows user to easily administer, configure, and

monitor the application.

Page 15 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

Database is a relational database designed to store all the information about Users,

Agents, Logs, configuration, and other activity data.

Blockchain communication module is a separated part of the Backend focused on

providing communication with the external blockchain systems, using available

configuration parameters.

2.6. Implementation Description

This section gives implementation details of each module of the LogForgeryBlocker,

though focusing on the implementation details of each module rather than its general

placement in the architecture. Therefore, it is not divided into Client-side and Server-side

categories, and some modules are specified in a single paragraph to clarify the

description.

 Modules and Submodules

Log Sources Proxy

Log Sources Proxy is implemented as a Python application. The aim is to track the

selected files or entire directories for new logs to process them in near-real-time and

pass the information to the Agent.

The obvious idea to periodically check a file opened in a read-mode for changes would

result in high stress for a host machine after adding many files or directories to track,

even if most of the logs were completely inactive. Therefore, Log Sources Proxy

subscribes to filesystem events instead, using the pyinotify3 library. To be specific, Log

Sources Proxy listens to the IN_MODIFY event for files, and, for directories, IN_CREATE,

IN_MOVED_TO (initializing new file watchers), IN_DELETE, IN_MOVED_FROM (closing

file watchers). Records are split and processed one by line, using a line number and a

timestamp. Log Sources Proxy is currently available only for Linux systems.

Client’s Agent

Client’s Agent (or simply Agent) is a Python application responsible for getting

information about log files and changes from Log Sources Proxy, processing and

managing the data, and communicating with the Backend. It is a multi-module

application, and more than one element of the architecture diagram (see Figure 1.) is

discussed here since it is more intuitive to discuss them together.

Scheduler

Scheduler is a module of the Agent responsible for initializing synchronization with the

backend if any of the following conditions are met:

• Time of the day

3 https://pypi.org/project/pyinotify/

https://pypi.org/project/pyinotify/

Page 16 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

• Time interval

• The maximum size of a log file exceeded

A separate scheduler can run for each log source (file, database, etc.) with its

own trigger settings. The scheduler was built on the top of apscheduler4.

Backend

Backend is written in Typescript, with Node.js and Express.js libraries.

For communication with the Agent and frontend, there are two separate services

implementing REST APIs. It is intuitive to present the functionality of the backend by

listing the available controllers:

• auth: Handles registering and logging of new users. Issues tokens, described in

the document about authorization and authentication.

• organization: Allows for the creation of management of organizations - i.e.,

corporate clients of LogForgeryBlocker.

• agent: Endpoints for managing agents of organizations. Allows for creating new

agents, activating/deactivating, and configuring them.

• log: Endpoints for creating new logs, to which snapshots can be added and

fetching information about them. Each log creation triggers a blockchain service

to add information about such a log to our smart contract.

• snapshot: Endpoints for creating new snapshots and receiving information about

them. Each snapshot creation triggers a blockchain service to add information

about the snapshot to our smart contract, and transaction for that is also saved

in the snapshot.

• verification: Endpoints for log verification, agents call this endpoint to update

information about log cohesion.

Database

PostgreSQL5 is used as a database system. It is run as a Docker container. Figure 2 in

the previous section (Architecture) presented the database schema implemented in

LogForgeryBlocker. The backend uses Prisma with PostgreSQL6 as an open-source ORM

solution.

Moreover, Redis7, an open-source in-memory data store, is used for

• Adding new logs and transactions to the blockchain for separating calling smart

contract from the controller logic.

• Verifying whether agents submit logs in configured time periods.

4 https://apscheduler.readthedocs.io/en/3.x/
5 https://www.postgresql.org/
6 https://www.prisma.io/
7 https://redis.io/

https://apscheduler.readthedocs.io/en/3.x/
https://www.postgresql.org/
https://www.prisma.io/
https://redis.io/

Page 17 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

Auth module

The Auth module is responsible for authentication and authorization in the

LogForgeryBlocker. It implements its own tokens that must be used in endpoints.

The authentication and authorization system of LogForgeryBlocker is based on custom

JWT8: an open-source industry-standard method for representing claims securely

between two parties.

There are two types of entities in the system: User and Agent. They have different types

of tokens and can access resources. For example, some endpoints are only accessible

with user tokens, while others might be accessible with agent tokens.

User token schema is presented in the listing below:

export type UserToken = {
 type: 'USER_TOKEN'
 userId: string
 username: string
 roles: Role[] // 'USER' or 'ADMIN'
 organizationId?: string
 iat: number
 exp: number
}

The user token can be acquired by calling either of the endpoints:

/v0/auth/login

/v0/auth/register

Agent token schema is presented in the listing below:

export type AgentToken= {
 type: 'AGENT_TOKEN'
 agentId: string
 organizationId: string
 iat: number
 exp: number
}

The agent token can be acquired by calling:

/v0/auth/getToken/:id

The auth module implements custom express middlewares that can verify tokens and

optionally verify roles.

8 https://jwt.io/

https://jwt.io/

Page 18 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

userAuthMiddleware(roles?: Role[])

agentAuthMiddleware

Blockchain module

The blockchain module of the LogForgeryBlocker is a module inside the main Backend

application. It uses web3.js: a collection of libraries allowing interaction with a local or

remote Ethereum node using HTTP, IPC, or WebSocket.

In the current version of the LogForgeryBlocker, the contract is configured inside

config.ts, where the network and contract address can be specified. The following

versions are planned to extend managing configuration related to smart contracts and

blockchain systems.

The smart contract is straightforward itself because of the simplicity of the underlying

task: what is required from this module is to add new hashed logs to a blockchain to

ensure non-repudiation and to verify that the logs are not modified.

Frontend

The frontend is a simple webpage created with React. It provides access to essential

features of the LogForgeryBlocker:

• Logging in to a user account

• Viewing the tracked log files or directories

• Viewing the calculated hashes

• Verifying the hashes

It will be described in the User Guide section below.

 Communication, Hashing, Application State

Local communication

Local communication, i.e., between the Agent and the Log Proxy, uses TCP sockets and

Google Protobuf9 for serializing messages. This simple and high-performance solution

provides two features essential for the Agent: message ordering and the ability to collect

records from machines different from the Agent’s one while keeping both sides informed

about the active status of the connection.

9 https://github.com/protocolbuffers/protobuf

https://github.com/protocolbuffers/protobuf

Page 19 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 2. Message structure for Agent-Log Proxy communication protocol

In the current development version, messages are not compressed and not encrypted.

Encryption and compression will be implemented in the following phase of

LogForgeryBlocker development. They are not expected to cause significant

performance overhead in the context of time scale of log gathering and communication

frequency.

External Communication

External communication is implemented using the HTTP protocol and the ‘requests’

python library. The application uses a bearer token to authenticate requests, which is a

common safety mechanism10. The token should be provided by creating an entry”

TOKEN” in the .env file before the application starts. The backend responds with a JSON

containing only two fields:

• Success (true/false)

• data

All the functions necessary for communications can be found in the Agent, in the

backend-connector module.

Log Contents Request

Because the Agent has no direct access to logs and wants to verify the logs

automatically, it needs some way of requesting content from proxies. Therefore, a small

protocol was built on the top of agent-proxy communication, which allows querying

proxies for specified log content ranges.

Single content request to one log proxy process flow is:

• The Agent creates the request and gives it a unique request id

• Agent sends GET_LOG_CONTENT message to the proxy

• The proxy receives message, and checks if it has a specified log

• if the log was found, it sends LOG_CONTENT_STATUS message with

FOUND_AND_BEGIN_SEND status

• if the log was not found, it sends LOG_CONTENT_STATUS message with

NOT_FOUND status (steps 4. and 5. are not executed anymore)

• Proxy loads the requested content range and sends it in batches (of 20) using

LOG_CONTENT_DATA messages.

• After all available records have been sent, the proxy sends

LOG_CONTENT_STATUS message with END_SEND status.

10 https://oauthlib.readthedocs.io/en/latest/oauth2/tokens/bearer.html

https://oauthlib.readthedocs.io/en/latest/oauth2/tokens/bearer.html

Page 20 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 3. The flow of the log request and delivery

The flow presented in Figure 4 is for one request (one log, one proxy). But in the current

system, we can’t determine which proxy is responsible for which log. So, if we want to

get log contents, we must broadcast the request to all connected proxies. Now it is

possible (but still not correct for the system) that two log proxies report they found some

log. The strategy for selecting the “leading” one is simple - it is the first that reported it

found the log. “Leading” request from the request batch is treated as THE request - its

content will be treated as the response for the whole request batch.

Log Hashing

Another essential feature of the Agent is the log hashing. It serves two purposes: logs

are hashed as soon as possible so that even the backend doesn’t know the real contents

of the logs; moreover, storing only the hashes of the logs in blockchain allows for a

massive reduction of the cost. Logs are hashed as follows:

• If there are no entries, the new hash (snapshot) is created by running the hash

function on the entry data.

• Otherwise, the existing hash is prepended to the log data before running the hash

function. The result of that operation becomes the new hash.

After a specified time, the hash is sent to a backend, and the whole process starts over.

By default, a standard sha256 algorithm [17] is used as a hash function. However, the

Agent enables using any custom hash function by modifying the hash_fun parameter

located in the agent.log module.

Application State

The Agent application state consists of four primary elements:

• List of uploaded logs and corresponding snapshots in the LogCollector class.

• Scheduler configuration.

• List of active proxies in the LfbAgent class.

• List of pending validation requests in the LogValidator class.

Every agent’s instance automatically restores the necessary part of its state on launch:

Page 21 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

• The list of logs and snapshots is downloaded from the backend.

• Scheduler configuration is downloaded from the backend.

• The list of active proxies is lost but will be restored as soon as the application

receives a request from every one of them.

The list of pending validation requests is lost.

2.7. Installation Guide

This section contains instructions on how to install each module of LogForgeryBlocker,

both on the Client and Server machine. It also describes how to run the software. The

software is developed in four separate packages (repositories) in the current version,

reflecting the architecture diagram presented in Figure 1. In the following versions, there

will be a more automated installation script for the Client and Backend.

 Backend

Prerequisites:

• yarn

• Node.js

• Docker

Installation steps:

1. Clone the repository with the Backend:

git clone

https://github.com/LogForgeryBlocker/LogForgeryBlocker_Public.git

2. Create an .env file in the main directory and fill the required parameters

(these parameters are both confidential and related to a particular user,

so they cannot be placed inside the repository and must be filled at this

step):

DATABASE_URL="postgresql://admin:password@db:5432/lfb-

database?schema=public"

JWT_SECRET_KEY=<Authentication secret key>

PRIVATE_KEY=<Blockchain Wallet Private Key>

ALCHEMY_API_KEY=<Api Key for Alchemy Api>

3. Version 1 (default): to run in Docker: build all docker images

docker compose build

4. Run all backend images (add –d to run in the detached mode, add

backend or db at the end to run only a specific container):

docker compose up

5. Version 2: Run locally (without Docker): install dependencies with yarn:

yarn install

6. Build the app to the dist directory

Page 22 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

yarn build

7. Start the server (on default port 3000):

yarn start

Important note: if using Version 2, you must have a PostgreSQL database running (you

can base it on the default parameters specified in the .env file’s DATABASE_URL above)

Agent and File Proxy

Prerequisites:

• Python 3.10 or newer

• protoc

Installation steps for Agent:

1. Clone the repository with the Agent and File proxy:

git clone https://github.com/LogForgeryBlocker/LogForgeryBlockerAgent_Public.git

2. Create an .env file in the main directory (if not existing) and fill the

required parameters:

BACKEND_ENDPOINT=<backend server address:port>

STATE_CONTROL_ITERVAL=<interval between checking the current state to

send snapshots to backend, and requesting config from backend>

LOGS_CONTROL_INTERVAL=<interval for validating logs>

AGENT_ADDR=<hostname to which bind socket for listening to the new log

proxy connections>

AGENT_PORT=<port number for the agent address above>

TOKEN=<token used to authorize to backend>

3. Launch the Agent and start listening for log proxies:

python -m agent.agent_init

Installation steps for File Proxy:

1. Clone the repository with the Agent and File proxy (note, you can use the

same repository if you have already copied it following the Agent installation

steps):

git clone https://github.com/LogForgeryBlocker/LogForgeryBlockerAgent_Public.git

2. Create an .env file in the main directory (if not existing) and fill the required

parameters:

FILEPROXY_WATCHED_PATHS=<filepaths or directory names to watch. Paths

should be split using the ; sign>

AGENT_ADDR=<agent's hostname>

AGENT_PORT=<agent’s port>

Page 23 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

3. Launch the File Proxy, connect to the specified agent and begin listening to

file changes (currently working only on Linux platforms):

python -m agent.agent_init

Frontend

Prerequisites:

• npm version 6 (you can install it with npm i -g npm@6)

Installation steps:

1. Clone the repository with the Agent and File proxy (note, you can use the

same repository if you have already copied it following the Agent installation

steps):

git clone https://github.com/LogForgeryBlocker/LogForgeryFrontend_Public.git

2. install dependencies:

npm i

3. run the app:

npm start

4. Open http://localhost:3000 to show the interface in the browser

Smart Contract

Prerequisites:

• yarn

• An account on https://www.alchemy.com/ and a new project with an API key

• Private key of your account

Installation steps:

1. Clone the repository with the Agent and File proxy (note, you can use the

same repository if you have already copied it following the Agent installation

steps):

git clone
https://github.com/LogForgeryBlocker/LogForgeryBlockerSmartContract_Public.git

2. Build and test smart contract:

yarn && yarn build && yarn test

3. Deploy your smart contract:

PRIVATE_KEY=<private_key> API_KEY=<api_key> npx hardhat run

scripts/deploy.js --network ropsten o

https://www.alchemy.com/

Page 24 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

2.8. User guide

Assuming all the steps described in section 2.7 Installation guide are successfully

executed, except for filling some configuration data, this section provides a quick start

guide on using the LogForgeryBlocker.

If one starts with no project to deploy the smart contract to, we can recommend using

one of the free solutions, like Alchemy11 to start a new project, using testnet (e.g., Goerli)

for tests or the mainnet for the real scenario. Then, the API key can be copied from the

webpage and used as an ALCHEMY_API_KEY in the backend configuration.

Figure 4. The main page of Alchemy

Similarly, SECRET_KEY should be a key to the user’s wallet, containing some ether to

deploy a smart contract with the hashed logs.

11 www.alchemy.com

http://www.alchemy.com/

Page 25 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 5. New user registration in LogForgeryBlocker

The next step is registering a new user in LogForgeryBlocker, using a button in the web

interface. figure 5 shows the registration page.

Figure 6. Empty list of logs

Page 26 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

After registering the account, the user can see an empty list of logs. A new agent must

be added by clicking the Add button, as indicated by the arrow in figure 6 above.

Figure 7. Creating a new agent

Creating a new agent requires only a name (Figure 7), but more steps will be needed to

configure it later.

Figure 8. Non-empty list of agents

Enter the configuration page for the Agent, clicking on the Details button indicated by the

red arrow in Figure 8.

Page 27 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 9. Agent details

Figure 9 shows the configuration page for the Agent. It provides the functionality to

activate or deactivate the Agent, configure time intervals, and copy a token required for

the communication. The token should be saved into TOKEN parameter in Agent’s .env

file, as described in Section 2.7.

Now, you can run the Agent and the File Proxy (or multiple File Proxies). File Proxy will

start tracking the log files or directories and communicating the new changes to the

Agent.

Figure 10. List of existing log files in the web interface

Page 28 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

The web interface will show a list of all tracked log files (see Figure 10).

Figure 11. List of fingerprints of a selected log file

After selecting one of the log files (by clicking on the Details button), the user can inspect

the history of the blocks of the log that have already been pushed to the blockchain.

Figure 12. Transaction details

Moreover, by clicking on the transaction number, the user is redirected to the transaction

details, where more details of the transaction can be inspected.

Page 29 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

3. Use Case Modelling in ResilBlockly for Threat Analysis

Security measures can be identified as a result of detailed threat analysis and risk

assessment activities targeted at highlighting potential flaws in the system, or entity

taking part in the supply chain, that is under analysis and mitigating or possibly

eliminating them. The ResilBlockly tool, proposed as part of the BIECO framework and

already introduced in deliverables D6.1 and D6.2, provides features dedicated to the

threat analysis and risk assessment. In this deliverable, we give a quick overview of the

tool and show how it has been applied in real-world use case modelling scenarios.

3.1. The Applicability of Threat Analysis with ResilBlockly

For the aim of completeness, this Section summarizes the ResilBlockly description

already provided in deliverables D6.1 [1] and D6.2 [2]. Indeed, ResilBlockly allows the

identification and analysis of weaknesses and vulnerabilities, and the tool offers the

possibility to associate custom weaknesses and vulnerabilities in addition to the threats

retrieved from the online catalogues. This is important because it allows to make use of

the outputs of the Vulnerability Assessment activities conducted and described in the

context of WP3, independently from their origin.

As described in D6.1 [1], ResilBlockly is a Model-Driven Engineering software that

evolves an existing tool called Blockly4SoS and which, in the context of BIECO, has been

provided with a set of new features for addressing typical challenges of ICT supply

chains and ecosystems.

Two fundamental concepts, which identify the two main features of ResilBlockly are:

• Profile, is an abstraction of components and relationships for a specific domain;

• Model is an instance of a profile.

Different profiles and models can also be created from scratch, or as an extension of

existing profiles or models (for example, previously created within ResilBlockly, shared

with other ResilBlockly users, or imported from external sources).

For the creation of Profiles and Models, ResilBlockly uses the functions of the Profile

Designer and Model Designer respectively as shown and explained in Section 2.1 and

Section 2.2 of D6.2 [2].

The D6.2 [2] provides a user guide for ResilBlockly and describes in detail all the features

of the tool for threat modelling, hazard analysis, safety, and security risk assessment.

The tool allows one to identify more critical components, functions, and interfaces that

might cause great impact if compromised. Moreover, it supports the analysis with a

graphical representation of the attack paths that adversaries typically follow to succeed

in the exploit of the system or component. In addition, the tool complies with the

Manufacturer Usage Description (MUD) [3] standard for specification of communication

rules and extends the standard with a set of characteristics derived from the modelling

and analysis and exports the resulting extended MUD file. Finally, thanks to the

integration with a simulator, it also allows to simulate the interactions between

components (e.g., under attack).

D6.2 [2] furthermore provides examples of use of ResilBlockly, showing how to realize

or import profiles (meta-models) and models, to analyse components, functions and

interfaces that possess weaknesses and are most vulnerable or exposed to the risk of

Page 30 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

attacks, how to graphically represent the attack paths and patterns towards the

exploitation of those weaknesses and how to conduct two complementary risk

assessments (one HazOP-based, which is more safety-oriented, and the other leveraging

the integration with online catalogues of threats to security, such as CWE, CVE, CAPEC,

NVD, and scoring systems, such as CVSS).

The interface for the specification of custom weaknesses is shown in Figure 13; the one

dedicated to custom vulnerabilities is analogous.

Figure 13. New interface for the specification of custom weaknesses

Finally, it is important to consider that the risk calculation performed by ResilBlockly in

its current release addresses vulnerabilities and weaknesses in isolation; however, an

already ongoing activity will provide the tool with a functionality for the specification of

dependencies among assets and the computation of the risk of cascading effects

initiated by threats as described in [4]. Moreover, as a future work, it is planned to

consider approaches that allow to account for dependencies between vulnerabilities and

weaknesses in terms of likelihood of successful exploitation, as an example, starting

from the approach in [5] and elaborating over it.

 AI Investments Use Case Modelling

The AI Investment (AII) application is an innovative platform for optimizing financial

portfolio management and risk control using the most advanced AI and deep learning

solutions available on the market. It was created to improve the investment results of

hedge funds and other trading and investing companies. The AII application fetches data

from various sources, combines and normalizes them, and then uses the latest

achievements in time series forecasting and optimization to create the most suitable

investment portfolio. Then, the necessary transactions are automatically executed using

the selected stockbroker.

Page 31 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 14. AII Architecture Diagram

The AII use case architecture, presented in Figure 14, was modeled with ResilBlockly

Modeler, showing all the communication in each direction visible in the diagram. We

created a single CS (Computer System) containing APIs (RUMIs) exchanging messages

between all communicated entities. Moreover, each of the entities (Master AIT

Processor, Integration, AIT DB, Worker, etc.) was modeled as a separate system with its

own set of services and internal APIs (here modeled as RUMIs). The model is relatively

complex, therefore only certain parts are discussed below and most of the fields

(parameters) of classes presented in the figures are hidden for readability.

Page 32 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 15. Simplified model of the AII communication system implemented in Resilblockly

Figure 15 shows the whole AII communication system implemented in ResilBlockly.

Most of the boxes are collapsed to fit the model into the deliverable, but the point of the

figure is to show the general style of the model; the relations can be easily analysed

using Figure 14. Below is the explanation of the model presented in figure 15.

Page 33 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

A general SoS (System of Systems, leftmost rectangle) class contains one CS (Computer

System, big red rectangle) class: AIT. This CS, in turn, connects a variety of CS, i.e., the

entities from figure 14, for example Master AIT Processor REST API, Monitoring API,

Worker API, or AIT DB API (smaller red rectangles).

Master AIT Processor REST API box is expanded in Figure 15 to show RUIs

(communication exchanges with other entities) and internal services, responsible for the

actions behind each of the communications. RUIs include messages to Broker (e.g.,

Master_AIT_to_Broker_API), to Integration

(Master_AIT_to_Integration_Training_Report_Ack) and to DB, as the architecture

diagram in Figure 14 suggests. Moreover, there are additional “internal” communications

from the Master AIT Processor API to the separate Master AIT Processor entity, which

will be described later in this section.

Master AIT Processor REST API contains a list of services implementing its functionality,

e.g., Execute_Training_Report_Request, Start_Training_Request_Service, etc.

As an example, Master_AIT_to_Integration_Training_Report_Ack RUMI is expanded. It is

a confirmation of a received training report request from Integration API. Therefore, it

contains:

• a reference to the Integration API’s RUMI which sends this request (green box

with Integration_API_To_Master_API_Training_Report),

• a message (blue box with Training_Report_Request_Received_Ack),

• and a reference to a Master_AIT service implementing the functionality (green

box with Execute_Training_Report_Request)

All other RUMIs in Master AIT Processor REST API are modelled in this way. Similarly,

other CSs in AIT are modelled likewise. Moreover, all the classes contain more fields

(parameters) that were not presented and discussed here. However, they have only more

technical meaning and are not of a high importance to the Reader of this document.

Page 34 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 16. The internal Master AIT Processor entity in AII Resilblockly model

While figure 15 presented the Master AIT Processor REST API as a part of the model of

all AII APIs, figure 16 shows the internal Master AIT Processor entity. The entity was

simplified to contain only one RUMI and service for a sake of the readability of the

deliverable.

One of the Master AIT Processor REST API functionalities requested by Integration

(figure 15) was to generate the training report. To execute it, the Master AIT Processor

REST API “calls” the internal Master AIT Processor entity. The call is represented by a

green box Master_API_To_Master_Get_Training_Report reference in figure 16. In turn,

Master AIT Processor contains a service Generate_Training_Report (orange box) and a

RUMI Master_To_Master_API_Training_Report which “responds” with the

Training_Report_Result message (blue box) to the REST API.

Other RUMIs and services in Master AIT Processor are implemented similarly, as well as

the other internal entities of the AII Model in Resilblockly.

3.1.1.1. Risk Analysis

After creating the AII model in Resilblockly, the risk assessment analysis was performed.

Each of the entities in the model was analysed and associated with a list of weaknesses,

imported from the CWE or CAPEC databases, or, in rare cases, custom-made

weaknesses. Similarly, the vulnerabilities for each of the entities in the model were

Page 35 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

analysed and then associated with the vulnerabilities imported from the CVE database

or custom-made.

Then, the severity and likelihood were added (or verified, if the values were imported from

the public databases) for the vulnerabilities and weaknesses in each of the entities. At

the end of the process, Resilblockly generated the weaknesses and vulnerabilities

reports for the whole AII model.

3.2. IFEVS Use Case Modelling

 Microfactory and Cloud IoT

As already presented in D2.1, I-FEVS proposes the Microfactory concept to deal with the

assembly of high-performing full-electric vehicles, with high variants and high quality, on

low-cost assembly lines. Significant flexibility is needed to process all variants on the

same work-area. The production lots can vary from a few units, in case of vehicles

transporting temperature-controlled goods such as pharmaceutical products, to tens, for

special freight delivery vans, up to several hundreds, for passenger vehicles.

The low upfront investments necessary for the typology of vehicles addressed in the

project (large variants and small lots) shortens the time for breakeven.

The Microfactory and all its supply-chain represent a cyber-physical environment in an

automotive industrial framework; the need to protect the communications among the

various areas of the production against cyber-attacks is of paramount importance and

has been considered from the beginning, starting with the remote communication with

the vehicle.

The whole system, within the Microfactory and its supply-chain, is basically made of

cloud nodes and these lead to the idea to extend the same approach, adopted for the

remote communication with the vehicle and its onboard network, not only to entire fleets

of vehicles, but also to the data flow within the shopfloor, the headquarters, the R&D

department, the maintenance services, and the suppliers.

Thus, the IFEVS use case can be represented by the remote Firmware (FW) update

service, usually indicated as FOTA (FW Over the Air) without losing details or neglecting

relevant technical aspects. The E-E architecture on-board the vehicle, on its turn, relies

on zone partitioning, where different ECUs (Electronic Control Units), implemented with

identical HW, handle different sets of tasks according to the specific FW uploaded and

running on them; the vehicle is then communicating remotely through a gateway with

the OEM side.

To implement the secure communication system for remote updates, the UPTANE

guidelines, a de facto security standard in the automotive sector, have been chosen.

Page 36 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

 FOTA and UPTANE

The UPTANE network implemented herein, has been constantly adapted and upgraded

to meet the requirements of I-FEVS electric vehicles.

The UPTANE network can be distinguished in the FW supplier, server and client sides.

The server side consists of the Director, Image Repo and Time servers while the client

side consists of the Primary client and a variable number of Secondary clients. In a real

scenario the three servers run in a workstation and the clients in the vehicle gateway.

The following provides a brief description of the role of each entity:

1. Firmware Supplier - it develops the FW to be uploaded into a specific ECU. It

produces also metadata containing information related to the firmware

version, to the ECU it refers to and to the vehicle associated to the specific

ECU.

2. Director server - It manages the update procedure and registers vehicles and

ECUs. It uses metadata files to keep track of the available firmware images,

their current version available for update, the ECU of the vehicle that it refers

to, the hash and size of the firmware image. Additionally, it keeps track of

which version of firmware is currently installed in each ECU.

3. Image Repo server - It is where the images are stored. A vehicle will request

firmware images from this server. It also uses metadata that, among other

uses, informs about the hashes and size of each available firmware image.

4. Time server. It is used to provide signed timestamps which also carry a nonce

value generated by the clients. A client sends the nonce to the Time server

requesting a timestamp. The Time server generates a timestamp which is

signed along with the nonce value and then sent back to the client. The client

uses this trusted timestamp to make sure that the metadata and images that

will, later, be acquired by the Director and Image Repo servers, are not expired.

Figure 16. UPTANE-like architecture of the FOTA system

Page 37 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

5. Primary client. It is the frontline of the vehicle's gateway. It is responsible for

receiving firmware update images on behalf of Secondary clients. In order to

do so, it acquires metadata from both the Director and Image Repo servers.

It checks the metadata about available images for the ECUs. If both servers

agree that there is a new firmware image then the Primary client compares

their metadata to, also, make sure that they agree upon the hashes and size

of the file to download. If the integrity check succeeds, then the Primary client

proceeds with downloading the firmware image from the Image Repo server.

The firmware image is kept in the Primary client for as long as it needs before

a Secondary client asks for it.

6. Secondary client. A Secondary client is responsible for receiving a firmware

image on behalf of an ECU of the vehicle. There should be as many Secondary

clients as the number of ECUs of the vehicle that need to check for updates.

Each Secondary client requests metadata and images from the Primary

client. It uses those metadata to validate the integrity of the firmware image

prior to storing it locally as accepted. An implementation such as the I-FEVS

ECU flasher can then forward the trusted firmware image to the respective

ECU through CAN.

 FOTA-UPTANE Modelling

The whole network has been modelled with ResilBlockly, representing all subsystems

and their communication links. Given the focus of the project activities, the model

describes all nodes-entities of the UPTANE architecture implementation at a high level,

without detailing the single HW and SW features of components (e.g., microprocessor,

memories or libraries and code).

Figure 17. Example of representation of the UPTANE based FOTA architecture – the sketch shows the
SoS, with the first CS and RUMI (with message description) in the model

Page 38 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

A single SoS represents the FOTA service network, gathering a different CS for each

entity operating in the architecture: FW supplier, Director, Image Repo and Time servers,

Primary and Secondary clients. RUMIs are used to describe the various communication

channels between the pair of interacting nodes with reference to each exchanged

message.

The model built by blocks can be represented as a graph as well, to show all links and

connections in the architecture.

Figure 18. Graph representation of the UPTANE-like architecture of the FOTA system (the picture shows
only a representative portion of the whole graph)

 FOTA-UPTANE Risk Analysis

Modelling in Resilblockly enables the use of the risk assessment tool. All model

components can be analysed and associated with a list of weaknesses and

vulnerabilities, as described in Deliverable D6.2. Once the list has been built, each

identified weakness and vulnerability is associated with its corresponding impact

severity and the related likelihood.

The above-mentioned elements are then taken as the basis to generate the risk analysis

report. These steps are being carried out and the report will be generated afterward.

Page 39 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

4. Supporting Rating of Safety-Related Impact of Vulnerabilities

In this section, we provide more details on the interoperability between the ResilBlockly

and safeTbox tools. While the concept of integrated dependability (focusing on safety

and security) has already been touched upon in BIECO deliverable D6.4, the aim of this

section is to highlight how the technical process has been designed and implemented,

and how users can use both tools to arrive at appropriate mitigations for overall

dependability.

ResilBlockly supports an export mechanism based on the Eclipse Modelling Framework

(EMF) metamodel12 aka ‘Ecore’. This allows users to export ResilBlockly models to a

common file format, which can then be used by other tools.

SafeTbox has been extended to support importing such models from ResilBlockly, a

process which is performed in two stages. In the first stage, safeTbox converts the

subject file from the generic Ecore-based format into an Open Dependability Exchange

(ODE) format13. This is implemented prototypically as a text-to-model, then model-to-

model, then model-to-text transformation sequence. The reason for this design choice

is to exploit already existing support for the ODE in safeTbox. Future work could aim

towards simplifying and optimizing the transformation. In the second stage, the now

ODE-formatted file can now be imported in safeTbox using existing import mechanisms

that support the ODE format.

Once modelling in safeTbox is complete, the updated models can be re-exported for

further use. ResilBlockly also supports re-importing the exported safeTbox model files

in a reverse flow, allowing, for instance, safety-related risk assurance information to be

used in the ResilBlockly tool and other tools downstream.

The overall workflow is represented in Figure 19, where a user first models their

system(s) in ResilBlockly, alongside relevant security risk parameters e.g., weaknesses

and vulnerabilities. Once ready, the model is exported from ResilBlockly into a file on the

local system. The user can then launch safeTbox, import the model file, perform

modelling tasks in the tool, and export an updated model file. Finally, the user can import

the file back into ResilBlockly and continue their work there.

12 https://www.eclipse.org/modeling/emf/
13 https://github.com/Digital-Dependability-Identities/ODE

https://www.eclipse.org/modeling/emf/
https://github.com/Digital-Dependability-Identities/ODE

Page 40 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 19. ResilBlockly-SafeTbox Workflow

As an example of the above workflow, starting with ResilBlockly at the point where

modelling has been completed (see BIECO D6.2 for detailed user guidance), use the

export function (see Figure 20) to store the model in a file on the local storage.

Figure 20. Export from ResilBlockly

This should generate a file with a ‘.ecore’ file format extension. In safeTbox, either open

a new project or load an existing one, and then use the ‘Smart Menu’ (Ctrl+Space

shortcut) then navigate to the ‘Comfort’ submenu, then choose ‘Import DDI from file…’

option (see Figure 21).

Figure 21. Importing into safeTbox

Page 41 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

A ‘choose file’ dialog will appear, it is important to change the filter to ‘.ecore’, as seen

in Figure 22. The dialog can then be used to select the target model file.

Figure 22 - Changing the file format filter to .ecore

Once modelling in safeTbox is complete (see BIECO deliverable D6.4 and/or the

safeTbox user manual14 for further guidance), navigate to the same set of menus, and

use the ‘Export to DDI file…’ option to store a file of the model in the local storage.

A specific safeTbox modelling feature that has been extended for BIECO supports

specifying a safety impact rating for (security claims of) imported weaknesses and

vulnerabilities. An example of how this appears in safeTbox, after a model has been

imported, can be seen in Figure 23. At the top of the figure, the Smart Menu is used to

select the option ‘safeTbox Properties’, and the bottom part of the figure shows the

properties dialog with which corresponding safety impact ratings can be specified

(bottom-right). Guidance on the conceptual aspects of this workflow can also be found

in BIECO deliverable D7.3.

14 https://safetbox.de/docu-samples

https://safetbox.de/docu-samples

Page 42 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 23. Accessing the properties of an element in safeTbox

Page 43 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

5. Definition of the Threat MUD for Sharing Mitigations

In a hyper-connected society, in which humans and devices compose complex

interconnected systems, we experience a strong cybersecurity interdependence. In this

scenario, the final network becomes much more complex and heterogeneous and

therefore it can be much more likely for a vulnerability to affect many more systems and

to be propagated very quickly. Due to the borderless nature of the infrastructures and

threats involved, any vulnerability or security incident in one country can have

catastrophic implications throughout the European Union.

Only in 2021, more than 20,000 vulnerabilities were detected [13]. The fact is that

manufacturers cannot quickly deal with new discoveries, since the release of a patch or

an update is usually a slow process, especially when the system is composed by third-

party components. In this sense, security-information-sharing systems propose an

efficient, fast, and collaborative way of sharing recently discovered vulnerabilities or

attacks to react in time before a patch is released. The US National Institute of Standards

and Technology (NIST) proposed a threat signalling approach using a threat

Manufacturer Usage Description (MUD) [14]. The threat MUD is based on the MUD

standard for network behavioural specification [15], and it is intended to be structured

similarly. Unlike the MUD standard, which was described in D6.1, the threat MUD is a new

concept designed as a mitigation mechanism. However, the NIST only gives some

indications about the threat MUD model and its similarity with the MUD standard model

and therefore, the threat MUD model is still unclear.

Next subsections define the threat MUD model and its architecture, taking the NIST

guidelines and the MUD standard as a starting point. In addition, two possible usages of

the threat MUD file are proposed, one for sharing encountered threats and one for

obtaining information about compromised domains and possible mitigations.

5.1. Threat MUD Model

Although this threat MUD has a structure similar to the regular MUD format, it is intended

to serve as a mitigation mechanism, listing external sites to and from which traffic

should be restricted due to their association with a specific threat. Therefore, it is not

within the scope of the threat MUD to provide a list of sites with which access should be

permitted, nor to establish any rules for local network traffic. As a result, rather than

being developed by the manufacturer, the threat MUD is supposed to be created by a

threat intelligence provider.

Figure 24 shows the first module of the threat MUD. This module has been generated

from the standard MUD model (already described in D6.1) and the NIST indications with

some variations, and includes the following fields:

• threat-mud-version, previously named mud-version, indicates the current

version of the threat MUD file. It can be used to get the last update of the threat

MUD or compare different threat MUD files.

• threat-mud-url, previously named mud-url, indicates the URL associated with the

current threat MUD file. This URL can be used to retrieve the file.

• last update, indicates the date of the last update of the threat MUD file, which

can be used to get the last version of the file.

Page 44 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

• threat-mud-signature, previously named mud-signature, indicates the URL in

which the signature of the file is located. As in the MUD standard, this signature

is used to check the integrity of the threat MUD file.

• cache-validity, indicates the frequency in hours to check for an update of the

current file. This field is especially relevant in the threat MUD, as an updated

threat MUD can be created in a short time if new domains are known to be

compromised by the associated threat, and therefore, having the last update of

the file is crucial to implement the countermeasures.

• is-supported indicates if the threat associated with the threat MUD file is

currently being addressed by the involved manufacturers.

• threat-intelligence-provider substitutes the mfg-name field, which described the

manufacturer name, and now identifies the threat intelligence provider that

detected and alerted about the threat.

• threat-name substitutes the model-name field and identifies the threat

associated with the threat MUD file.

• cvss-vector is a new field that indicates the severity of the threat in terms of the

Common Vulnerability Scoring System (CVSS) standard [10]. In particular, the

CVSS score is represented as a vector string, a compressed textual

representation of the values used to derive the score.

• documentation points to a URL in which additional information about the threat

can be found e.g., a link to the National Vulnerability Database (NVD)1 entry.

• extensions, as in the MUD standard, is reserved for future extensions of the

threat MUD model.

• from-device-policy and to-device-policy, indicate the name of the Access

Control Lists (ACL) that should be applied to mitigate the threat. These ACLs are

further detailed in the next module of the threat MUD.

• system-info, firmware-rev and software-rev fields have been removed from the

threat MUD model, as they are associated with a specific device.

Figure 24. Threat MUD module

Figure 25 shows the second module of the threat MUD, which integrates the ACLs that

could be applied to mitigate the associated threat in terms of network access control.

The module is like the MUD standard model. However, as the threat MUD is associated

Page 45 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

with a specific threat, not with a device and the configuration to apply should be as

generic as possible, some fields have been removed from the ace/matches/mud

section, in particular, same-manufacturer, local-networks, controller and my-controller:

• same-manufacturer always had a null value to indicate devices from the same

manufacturer specified in the mfg-name field from the previous module.

However, this field was substituted by the intelligence provider.

• local networks were used to remove or allow access to the whole local network

of a particular device. As the threat MUD should be applicable to any kind of

device, this field has been removed.

• controller and my-controller were used to indicate the generic controller of a

device. As before, this field is not generic enough to be included in the threat

MUD.

Figure 25. ACL module

5.2. Threat MUD architecture

A particular architecture to obtain the threat MUD was proposed by the NIST in [16] to

combine the usage of the MUD standard and the threat MUD. Figure 26 shows a

generalization of that build including additional components for threat management.

Page 46 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 26. Threat MUD and MUD architecture

The following entities are envisioned:

• The device operating in the network. It is responsible for sending the MUD URL

to the switch for obtaining the MUD.

• The router or switch responsible to forward or restrict the device traffic.

• The MUD Manager is the main entity of the MUD architecture. It will oversee

asking for the MUD file to the MUD File Manager using the MUD URL, parsing and

enforcing the policies.

• The MUD file server, located in the manufacturer domain, stores all the MUD files

from devices of a certain manufacturer.

• The Threat Agent monitors the DNS traffic from and to the device to detect when

a DNS request is not solved. When a domain is suspicious of being compromised,

that is, a DNS request returned a null value, it asks for confirmation to the Threat

API and alerts the Threat MUD Manager about this domain. Moreover, it also

receives information from the monitoring and detection entity about possible

threats.

• The DNS service, which receives information from threat intelligence providers

about a compromised domain. In case the domain is marked as compromised,

it returns a null value.

• Threat API receives requests from the Threat Agent to verify whether an

unresolved domain is compromised. Moreover, it gives information about the

Threat Intelligence provider that identified a compromised domain.

• The Threat MUD Manager, analogous to the MUD Manager, queries the Threat

MUD file Server for the threat MUD file and signature. In addition, the Threat MUD

Manager enforces the filtering rules in the router. It's worth mentioning that the

Threat MUD connected with a threat will list all of the domains that are affected

by the threat, as well as the filtering rules that will block access to them. The

threat MUD Manager is also responsible for creating a threat MUD file in case a

new threat without an existing threat MUD file is detected.

• The threat MUD file server job will consist of storing and delivering Threat MUD

files associated with a compromised domain (and threat).

Page 47 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

• The Monitoring and detection entity is in charge of monitoring the device

communications and alerting the threat agent about possible threats.

5.3. Usages of the threat MUD

Sharing discovered threats (Figure 27): The threat MUD is integrated to share

encountered threats and mitigation with interested stakeholders. In this context, the

monitoring and detection entity in charge of monitoring the device communications

(step 1) detects a new threat and alerts the local threat signalling service, specifically

the threat Agent (step 2). The threat agent validates if this threat was already discovered

by asking the threat API (step 3). If the threat API replies that the threat is unknown (step

4), the threat Agent will request the threat MUD manager the creation of a threat MUD

associated with the encountered threat, indicating the compromised domains identified

by the monitoring and detection entity (step 5). Once the threat MUD file is created, the

threat MUD manager will post it on the threat MUD file server (step 6). If accepted, the

threat MUD file server will acknowledge it (step 7) and request an update of the threat

API database (step 8). In this way, other domains that may be affected by this threat will

be able to have access to this information, apply the pertinent mitigations and

collaborate in the construction of the new threat MUD file.

Figure 27. Sharing discovered threats

Enforcing mitigations (Figure 28): This second usage depicted in Figure 28 shows how

the threat MUD file can be used to deploy security policies to mitigate encountered

vulnerabilities. In this case, the detection of compromised domains is performed through

the DNS service. The device will eventually make a DNS request to access a certain

domain (step 1). The router or switch is responsible to forward the DNS request to the

Threat Agent (step 2) and the DNS server (step 3). The DNS service, which receives

information from threat intelligence providers about compromised domains will answer

the DNS query of the device. In case the domain is marked as compromised, it will return

a null value (step 4). The threat Agent, which is monitoring DNS traffic from/to devices

to DNS server, will detect a NULL DNS answer, and it will ask for confirmation to the

Threat API (step 5). If the threat API confirms that the domain is compromised (step 6),

the threat Agent will alert the Threat MUD Manager about this domain to obtain the threat

MUD file (step 7). The threat MUD Manager will ask for the associated Threat MUD file

Page 48 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

(and its signature) to the threat MUD file server (steps 8 and 9). Finally, the threat MUD

Manager will translate and enforce the threat MUD policies in the switch (step 10).

Figure 28. Enforce mitigation

Page 49 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

6. GDPR-Based Accountability and Auditability of Authorization
Systems

The GDPR is an EU regulation that came into effect in May 2018 and imposes strict

requirements on the collection, use, and storage of personal data. Inside the BIECO

project, this section focuses on the notion of Accountability from the point of view of the

GDPR, which is the 7th principle defined in Art. 5 “Principles relating to processing of

personal data”, paragraph 2, which words:

“The controller shall be responsible for, and be able to demonstrate compliance with,

paragraph 1 (‘accountability’).”

Paragraph 1 contains the first six principles. Among them, this work is focusing on the

“integrity and confidentiality" principle, which states that “Personal data shall be: [...]

processed in a manner that ensures appropriate security of the personal data, including

protection against unauthorised or unlawful processing and against accidental loss,

destruction or damage, using appropriate technical or organisational measures (‘integrity

and confidentiality’).”

As extensively discussed in [6], by defining the Integrity and Confidentiality principle, the

European legislator poses security at the heart of the GDPR, and implicitly calls for

adopting Access Control Systems (ACSs). Indeed, ACSs are usually regulated by Access

control Policies (ACPs), which specify who, what, when, where, how, and why (i.e., the

5W1H) a user is granted or denied access to a given asset. This information also

includes Personal Data.

However, the security of processing is not an isolated obligation, but comes together

with the GDPR’s Accountability principle (Art. 6.2). Indeed, according to this principle,

security measures are at the same time an obligation and a technical means to

implement other data protection obligations.

The BIECO’s solution relies on Access Control (AC) systems for guaranteeing

compliance with the GDPR and it is based on the GENERAL_D (Gdpr ENforcEment of

peRsonAL Data) framework. It supports the integrated GDPR-based process

development life cycle for the specification, deployment, and testing of adequate fine-

grained authorization mechanisms able to consider legal requirements.

The GENERAL_D framework has the following objectives:

• OBJ 1: defining a GDPR-based Life Cycle for authorization systems. That means

defining a specific and integrated process development life cycle for the

specification, deployment, and testing of adequate fine-grained authorization

mechanisms, by considering legal requirements.

• OBJ 2: providing an integrated environment for automatically enforcing the data

protection or privacy regulations. Indeed, we define an integrated environment

where we combine some of the available solutions for specifying the privacy

requirements, controlling personal data, processing them, and demonstrating

compliance with the GDPR in collecting, using, storing, disclosing, and disposing

of the personal data lifecycle.

Page 50 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

In work package WP7, GENERAL_D has been enhanced by the GROOT (GdpR-based

cOmbinatOrial Testing strategy) tool [7], [8] for supporting the testing of GDPR-based

access control policies derived directly by the BIECO claims (Task T7.1 and [9]). In Task

6.4, the GROOT enhancement is called I’M GROOT (Integrated environMent for GdpR-

based cOmbinatOrial Testing). It is a tool under development able to organize and

structure the testing data provided by GROOT to improve their testing effectiveness and

make GDPR-based access control auditable for accountability purposes, as defined in

the GDPR.

Indeed, GROOT produces a valuable amount of input and output data that can be hardly

navigated or examined without automatic support. That information, if organized

through data warehousing techniques, can be useful for accountability and auditing

purposes.

For example, before deploying a given GDPR-based policy, answers to several questions

can be obtained such as: Who can access a particular resource or personal data? What

are the runtime processing activities allowed on a given personal data? What are the

data that can be processed for a certain purpose?

Thanks to the solution proposed inside BIECO, the reply to these questions can be

obtained before putting into production a certain GDPR-based policy. Thus, according to

the principle of privacy-by-design, the protective discovery of the vulnerabilities can be

performed. In addition, the mining of the collected test data can be exploited for building

the users’ behavioral models useful for improving the runtime monitoring activity (as

described in deliverable D5.2 [17]). Indeed, the derived models, which represent the

expected runtime behaviors, can be translated into proper monitoring rules and used to

discover suspicious or wrong behaviors and promptly notify the security or privacy

violations.

6.1. Contextualization of I’M GROOT in BIECO

Figure 29 reports the contextualization of I’M GROOT within the BIECO project, for

supporting the testing, accountability, and auditability of GDPR-based access control

systems ruled by ACPs derived from the Privacy Claims. As in the figure, different

components and artifacts developed within BIECO, including GROOT, are involved.

Page 51 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

Figure 29. The Reference Process of I’M GROOT

In Deliverable D7.3, the contextualization of GROOT to the BIECO Claims collected in task

T7.1 are reported. In Figure 29 this is represented by the BIECO Claims (component n.

1 in the figure). These claims are then translated into authorization policies through

a Claim Transformer (component n. 2) that in BIECO are represented by access control

policies expressed in ABAC (component n. 3-Claim-based ABAC Policy). As presented in

deliverable D7.3, the GROOT tool uses the policy for deriving test cases (component n.

4),

In the I’M GROOT process, and differently from what is presented in deliverable D7.3, the

policy and the generated access control requests (in the form of <policy, {requests}>)

are delivered to an UseCase Authorization System (component n. 5) that through a Test

Executor, is able to associate each request with the actual result.

The UseCase Authorization System component can be is also used during the runtime

or operational phases, for evaluating and letting collecting the access control requests

sent by the Use Case Provider and providing the proper authorization response, i.e., deny

or permit the access according to the GDPR-based access control policy.

In this framework, the component in charge of the collection and analysis of the access

control data (requests or responses) is the Results Analysis (component n. 6). This

component has also the role of evaluating the accountability and compliance purposes.

6.2. Results Analysis Component Specification

As in Figure 29, the Result Analysis (component n.6) represents the orchestrator of the

I’M GROOT proposal and it provides the interface for user interaction as detailed in Figure

30.

This component allows both policy tester and the use cases provider to perform the

following main steps:

1. select an input GDPR-based policy and the associated test suite if this has been

already derived; generate the GDPR-based requests and visualize their values

Page 52 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

(such as Data Sub, Personal Data, and Purpose) ordered by the identifier

RequestID;

2. reduce the test suite using either the pairwise testing approach as in GROOT or

the request/response values-based filter, specificity of I’M GROOT or both;

3. execute the obtained requests on the selected GDPR-based policy;

4. get a visualization of the test report, namely the values of the executed requests

and the associated authorizations rights;

5. filter the executed requests according to either their values, the associated

authorization right, or a combination of them;

6. validate that the combination of Data Subject, Personal Data, and the other

categories’ values of the request and the associated authorization right is

consistent with the access control claim associated to the GDPR-based policy.

Figure 30. Graphical User Interface of I’M GROOT Framework

Thanks to the navigation and filtering facility I’M GROOT represents a valid help for the

analysis of both the test results and the operational authorization requests and

responses. Briefly, the main advantages of I’M GROOT can be listed as the following:

• it provides a comprehensive and manageable view of the executed data;

• it lets the analysis of the different combinations of requests values in order to

discover violations or misinterpretations of the associated authorization rights;

• it allows the user to focus on specific behaviours associated with few access

control constraints at a time;

• it lets an interactive validation of the results;

• it enables at the same time both auditability and accountability;

• it constructs an argument for demonstrating compliance with the GDPR.

Page 53 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

7. Conclusions

In this deliverable, we have presented both new additions (non-repudiation of log

modification) to the BIECO framework (LogForgeryBlocker), applications of tools already

reported (ResilBlockly), as well as new views on the use of other tools to obtain further

synergy in terms of risk assessment, security- (threat MUD), safety- (SafeTBox) and

privacy-wise (I’M GROOT). The deliverable has looked both at static and dynamic

aspects of threat discovery and analysis.

The new LogForgeryBlocker tool has been described in detail, covering the background,

the technological aspects, as well as the user manual, and possible applications. Two

use cases have been modelled in ResilBlockly to allow for in-depth threat analysis and

the results have been reported in this deliverable. Finally, the various additional tools

have been shown in context, underlining how they improve solving the risk assessment

problem.

It is interesting to consider all the approaches working in tandem. At the moment, this is

still in progress, but this deliverable has laid the ground for such a synergistic risk

assessment strategy to be detailed and applied in the future.

Page 54 of 55

Deliverable D6.3: Risk Assessment and Additional Requirements

8. References

[1] E. Schiavone (edt.) et al. (2021, June) “Blockly4SoS Model and Simulator”, Deliverable

D6.1 of the BIECO project funded under the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 952702.

[2] E. Schiavone (edt.) et al. (2021, June) “Blockly4SoS User Guide”, Deliverable D6.2 of the

BIECO project funded under the European Union’s Horizon 2020 research and innovation

programme under the Grant Agreement No 952702.

[3] E. Lear, D. Romascanu, and R. Droms, “Manufacturer Usage Description Specification

(RFC 8520),” 2019. [Online]. Available: https://tools.ietforg/html/rfc8520

[4] Schiavone, E., Nostro, N., & Brancati, F. (2021, November). A MDE Tool for Security Risk

Assessment of Enterprises. In Anais Estendidos do X Latin-American Symposium on

Dependable Computing (pp. 5-7). SBC.

[5] Aksu, M. U., Dilek, M. H., Tatlı, E. İ., Bicakci, K., Dirik, H. I., Demirezen, M. U., & Aykır, T.

(2017, October). A quantitative CVSS-based cyber security risk assessment methodology

for IT systems. In 2017 International Carnahan Conference on Security Technology

(ICCST) (pp. 1-8). IEEE.

[6] Said Daoudagh. “The GDPR Compliance Through Access Control Systems” [Ph.D. Thesis,

University of Pisa], ETD Archivio digitale delle tesi discusse presso l'Università di Pisa, 20

July 2021) https://etd.adm.unipi.it/t/etd-07112021-124810/ and

https://publications.cnr.it/doc/461891

[7] Daoudagh, S., Marchetti, E. (2022). GROOT: A GDPR-Based Combinatorial Testing

Approach. In: Clark, D., Menendez, H., Cavalli, A.R. (eds) Testing Software and Systems.

ICTSS 2021. Lecture Notes in Computer Science, vol 13045. Springer, Cham.

https://doi.org/10.1007/978-3-031-04673-5_17

[8] UMU, 7Bulls et Al., Deliverable D7.3. "Deliverable 7.3 Security certification methodology

development" 2022

[9] UMU et Al., Deliverable D7.1. "Deliverable 7.1 Report on the identified security and privacy

metrics and security claims to evaluate the security of a system" 2021

[10] UMU et Al., Deliverable D7.2. "Deliverable 7.2 Security certification methodology

definition" 2021

[11] RESILTECH et Al., Deliverable D6.1. " Blockly4SoS Model and Simulator" 2021

[12] RESILTECH et Al., Deliverable D6.1. " Blockly4SoS User Guide" 2021

[13] “CVE vulnerabilities by date,” May 2022, [Online; accessed 25. May

2022]. [Online]. Available: https://www.cvedetails.com/browse-by-date.

php

[14] NIST, “Securing Small-Business and Home Internet of Things Devices: NIST SP 1800-15,”

2019

[15] E. Lear, D. Romascanu, and R. Droms, “Manufacturer Usage Description Specification

(RFC 8520),” 2019. [Online]. Available: https://tools.ietf.org/html/rfc8520

[16] NIST, “Securing Small-Business and Home Internet of Things Devices: NIST SP 1800-15,”

2019.

[17] W. Penard, T. van Werkhoven, “On the Secure Hash Algorithm Family”,

https://web.archive.org/web/20160330153520/https://www.staff.science.uu.nl/~werk

h108/docs/study/Y5_07_08/infocry/project/Cryp08.pdf

[18] Narayanan, Arvind; Bonneau, Joseph; Felten, Edward; Miller, Andrew; Goldfeder, Steven

(2016). Bitcoin and cryptocurrency technologies: a comprehensive introduction.

Princeton: Princeton University Press. ISBN 978-0-691-17169-2.

[19] Li, Zhaozheng; Lei, Weimin; Hu, Hanyun; Zhang, Wei (2019). "A Blockchain-based

Communication Non-repudiation System for Conversational Service". 2019 IEEE 13th

International Conference on Anti-counterfeiting, Security, and Identification (ASID). pp.

6–10. doi:10.1109/ICASID.2019.8924991. ISBN 978-1-7281-2458-2. S2CID 209320279.

[20] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and

https://tools.ietforg/html/rfc8520
https://etd.adm.unipi.it/t/etd-07112021-124810/
https://publications.cnr.it/doc/461891
https://doi.org/10.1007/978-3-031-04673-5_17
https://www.cvedetails.com/browse-by-date
https://tools.ietf.org/html/rfc8520
https://web.archive.org/web/20160330153520/https:/www.staff.science.uu.nl/~werkh108/docs/study/Y5_07_08/infocry/project/Cryp08.pdf
https://web.archive.org/web/20160330153520/https:/www.staff.science.uu.nl/~werkh108/docs/study/Y5_07_08/infocry/project/Cryp08.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-691-17169-2
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FICASID.2019.8924991
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-7281-2458-2
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:209320279

Page 55 of 55

 Deliverable D6.3: Risk Assessment and Additional Requirements

on the free movement of such data, and repealing Directive 95/46/EC (General Data

Protection Regulation)

[21] CNR at al., Deliverable 5.2: “First version of the simulation environment and monitoring

solutions”, 2022

