

This project has received funding from the European Union´s Horizon 2020 Research and

Innovation Programme under Grand agreement No. 952702.

Deliverable D6.4

Mitigation Identification and Design

Technical References

Document version : 1.0

Submission Date : 31/12/2021

Dissemination Level

Contribution to

:

:

Public

WP6 – Risk Analysis and Mitigation Strategies

Document Owner : Fraunhofer IESE

File Name

Revision

:

:

BIECO_D6.4_31.12.2021_V1.0

3.0

Project Acronym : BIECO

Project Title : Building Trust in Ecosystem and Ecosystem
Components

Grant Agreement n. : 952702

Call : H2020-SU-ICT-2018-2020

Project Duration : 36 months, from 01/09/2020 to 31/08/2023

Website : https://www.bieco.org

Ref. Ares(2021)8022780 - 31/12/2021

https://www.bieco.org/

Page 2 of 117

Deliverable 6.4: Mitigation Identification and Design

Revision History

REVISION DATE
INVOLVED
PARTNERS

DESCRIPTION

0.1 01.11.2021 IESE Initial draft

0.2 12.11.2021 UMU Section 5.4

0.2 15.11.2021 CNR Section 2.7 (preliminary)

0.3 18.11. 2021 CNR Section 3

0.4 22.11. 2021 IESE
Section 2.5 on Goals structuring in Trust-based

Digital Ecosystems

0.4 22.11. 2021 UMU
Section 7 on stricter MUD application. Acronyms

Table.

0.5 23.11. 2021 IESE (on

behalf of CNR)
Changes from CNR being consolidated

0.6 24.11. 2021 IESE Content for sections 4, 5, 6, and 7 added

0.7 24.11. 2021 IESE
Most content has been consolidated across all

sections; included Appendix from CNR

0.8 25.11. 2021 IESE Correcting formatting, correcting references

0.9 25.11. 2021 UMU
Corrections, refinement, and example added to

section 7.1

0.9 26.11. 2021 RES Internal review

1.0 29.11. 2021 IESE
Minor corrections, references, input from CNR

consolidated

1.1 29.11. 2021 IESE Document ready for BIECO internal review

1.2 15.12. 2021 UNI Internal Review

1.3 16.12. 2021 GRAD Internal Review

1.4 20.12. 2021 CNR Response to Internal Reviews

2.0 27.12. 2021 IESE Consolidation and final changes

2.1 29.12. 2021 UNI Final Revision and correction by Coordinator

3.0 30.12.2021 UNI Finalizing deliverable and submission

List of Contributors

Contributor(s): Ioannis Sorokos (IESE); Emilia Cioroaica (IESE); Adrián Sánchez (UMU);
Felicita Di Giandomenico (CNR); Giulio Masetti (CNR) ; Sara N. Matheu (UMU) ; Eda
Marchetti (CNR) ; Silvano Chiaradonna (CNR) ; Enrico Schiavone (RES)

Reviewer(s): Fillipa Ferrada (UNI); Nora M. Villanueva (GRAD); Sanaz Nikghadam-
Hojjati(UNI); José Barata(UNI)

Page 3 of 117

 Deliverable 6.4: Mitigation Identification and Design

Disclaimer: The information in this document is subject to change without notice.

Company or product names mentioned in this document may be trademarks or

registered trademarks of their respective companies.

All rights reserved.

The document is proprietary of the BIECO consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written

agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not

liable for any use that may be made of the information contained herein.

BIECO project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
952702.

Page 4 of 117

Deliverable 6.4: Mitigation Identification and Design

Acronyms
Acronym Term

ICT Information Communication Technology
HARA Hazard Analysis and Risk Assessment
FTA Fault Tree Analysis
FMEA Failure Mode and Effects Analysis
TARA Threat Analysis and Risk Assessment
ATA Attack Tree Analysis
DDI Digital Dependability Identity
ODE Open Dependability Exchange (Metamodel)
GSN Goal Structuring Notation
ACP Assurance Claim Point
CAE Claims Arguments Evidence
SACM Structured Assurance Case Metamodel
MUD Manufacturer Usage Description
ConSerts Conditional Safety Certificates
DRM Dynamic Risk Management
ITC Intrusion Tolerance Countermeasure
CS Constituent System
SG Safety Guarantee
SD Safety Demand
RtE Runtime Evidence
DER Distributed Energy Resource

Page 5 of 117

 Deliverable 6.4: Mitigation Identification and Design

Executive Summary

In this deliverable, we detail the BIECO approach towards assuring that safety, security,
and other ICT risks have been adequately mitigated and controlled during development.
The approach leverages guidelines based on international safety and security standards
(e.g., ISO 26262 and ISO 21434). We further build upon this foundation by incorporating
other BIECO contributions, in terms of methods (e.g., Attack Tree Analysis), models
(predictive models and extended MUD files), and tools (ResilBlockly, safeTbox). Our
contributed advancement is in operationalizing an integrated safety-security co-analysis
process to yield risk mitigation assurance artefacts.

Project Summary

Nowadays most of the ICT solutions developed by companies require the integration or
collaboration with other ICT components, which are typically developed by third parties.
Even though this kind of procedures are key in order to maintain productivity and
competitiveness, the fragmentation of the supply chain can pose a high security risk, as
in most of the cases there is no way to verify if these other solutions have vulnerabilities
or if they have been built considering the best security practices.

In order to deal with these issues, it is important that companies make a change on their
mindset, assuming an “untrusted by default” position. According to a recent study [1]
only 29% of IT business know that their ecosystem partners are compliant and resilient
with regard to security. However, cybersecurity attacks have a high economic impact
and it is not enough to rely only on trust. ICT components need to be able to provide
verifiable guarantees regarding their security and privacy properties. It is also imperative
to detect more accurately vulnerabilities from ICT components and understand how they
can propagate over the supply chain and impact on ICT ecosystems. However, it is well
known that most of the vulnerabilities can remain undetected for years, so it is necessary
to provide advanced tools for guaranteeing resilience and also better mitigation
strategies, as cybersecurity incidents will happen. Finally, it is necessary to expand the
horizons of the current risk assessment and auditing processes, taking into account a
much wider threat landscape. BIECO is a holistic framework that will provide these
mechanisms in order to help companies to understand and manage the cybersecurity
risks and threats they are subject to when they become part of the ICT supply chain. The
framework, composed by a set of tools and methodologies, will address the challenges
related to vulnerability management, resilience, and auditing of complex systems.

Page 6 of 117

Deliverable 6.4: Mitigation Identification and Design

Partners

Disclaimer

The publication reflects only the author´s view and the European Commission is not
responsible for any use that may be made of the information it contains.

Page 7 of 117

 Deliverable 6.4: Mitigation Identification and Design

Table of Contents

Technical References .. 1

Revision History ... 2

List of Contributors .. 2

Acronyms ... 4

Executive Summary ... 5

Project Summary ... 5

Partners .. 6

Disclaimer .. 6

Table of Contents .. 7

List of Figures .. 10

List of Tables ... 13

1. Introduction .. 14

2. Motivation & Background ... 16

2.1. Functional Safety Standard Development Lifecycle ... 18

2.2. Security Development Lifecycle .. 21

2.3. Safety(/Dependability) and Security Co-Assurance .. 22

2.4. Assurance Cases ... 23

2.5. Goal Structuring in Trust-based Digital Ecosystems ... 30

2.6. Conditional Safety Certificates (ConSerts) .. 35

2.7. Digital Dependability Identities (DDIs) .. 37

2.8. Intrusion Tolerance Countermeasures ... 38

2.8.1. Attack model ... 40

2.8.2. Categories of system components targeted by attacks 40

2.8.3. System model and failure assumptions .. 41

2.8.4. Type of redundancy .. 41

3. Redundancy-Based Intrusion Tolerance Countermeasures for Design-Time Risk

Mitigation ... 43

3.1. Additional protection measures ... 45

3.1.1. Locality ... 45

3.1.2. Rejuvenation .. 45

3.1.3. Techniques to assure protection levels... 46

3.1.4. Confusion ... 47

Page 8 of 117

Deliverable 6.4: Mitigation Identification and Design

3.2. Attack model .. 49

3.3. Family of NVP-like Architectural Proposals ... 50

3.3.1. The reference N Version Programming ... 50

3.3.2. Random Participation ... 51

3.3.3. Deterministic Participation combined with rejuvenation 52

3.3.4. 𝑁 Version Programming with distributed voter ... 53

3.4. Family of RB-like Architectural Proposals .. 55

3.4.1. The reference Recovery Block with 𝑛 variants .. 55

3.4.2. Intrusion Recovery-Block .. 56

3.5. Family of Hybrid Architectural Proposals .. 59

3.5.1. N Self-Checking Programming ... 59

3.5.2. Intrusion Self-Checking Programming .. 59

3.5.3. Consensus Recovery Block .. 61

3.5.4. Intrusion Consensus Recovery Block .. 61

3.5.5. Self-Configuring Optimistic Programming .. 62

3.5.6. Intrusion SCOP .. 64

3.6. A practical summary of redundancy-based Intrusion Tolerance schemes 65

3.7. Redundancy-based intrusion tolerance from the different system components’

perspective... 68

3.8. Integration in ResilBlockly ... 70

4. Mitigating Risk during Development via Assurance Case Modelling 73

4.1. Workflow Overview .. 74

4.2. BIECO Tool Support for Dependability Assurance during Development 77

5. ConSerts Methodology for Dependability Risk Mitigation 79

5.1. Extending ConSert Creation for Safety-Security .. 80

5.2. Integration of Intrusion Tolerance Countermeasures 82

5.3. Incorporating Monitoring Evidence .. 83

5.4. Hardened MUD File as a mitigation measure .. 84

6. BIECO ConSert Modelling .. 86

6.1. Mapping BIECO Artifacts to DDIs ... 87

6.2. Modelling BIECO ConSerts using safeTbox ... 89

6.3. Generating Deployable ConSerts via conserts-rs .. 90

7. Exemplary Application on ICT Gateway .. 92

7.1. Hardened MUD File .. 108

8. Summary ... 109

Page 9 of 117

 Deliverable 6.4: Mitigation Identification and Design

9. Appendices ... 110

Appendix I. Details on Inequalities Addressing 𝑠 ... 110

Appendix II. Self-Checking Programming with Voter .. 111

10. Reference ... 113

Page 10 of 117

Deliverable 6.4: Mitigation Identification and Design

List of Figures

Figure 1 - IEC 61508 Lifecycle Overview.. 18

Figure 2 - Basic GSN Example .. 26

Figure 3 - Abstract GSN Module Example ... 28

Figure 4 – Abstract ACP Example .. 29

Figure 5 - Example of GSN Counter-Solution Defeating Goal .. 29

Figure 6 - Example of Abstract ConSert .. 36

Figure 7 - Representation of the Attack-Vulnerability-Intrusion-Error-Failure chain, and
categories of techniques to cope with it ... 39

Figure 8 - The proposed conceptual framework for redundancy-based Intrusion
Tolerance ... 39

Figure 9 - Origin of common mode vulnerabilities, exploitable by an attacker 42

Figure 10 - Diversity approaches to cope with correlation types 42

Figure 11 - Snapshot of a redundant-based intrusion tolerance configuration
encompassing 6 participating variants (pvi), 3 non-participating variants (npvi), 2
adjudicators (Ai), with indication of their protection level (Li) and site where they are
located (si). .. 48

Figure 12 - Basic configuration of N Version Programming (NVP) employing n=3 variants.
 .. 50

Figure 13 - Intrusion N Version Pprogramming (iNVP), in the example with n=3 variants.
 .. 51

Figure 14 - Snapshot of an execution of either iNVP-R or iNVP-D, where among n=6
variants only h=4 participate to the voting (the shaded variant does not participate), and
1 variant is under rejuvenation (dark gray) .. 53

Figure 15 - NVP with distributed adjudicator, here called iNVP_D. Two access control
layers (L0, often in embedded or IoT devices implemented through a Root-of-Trust) and
the adjudicator logic is distributed (orange) ... 54

Figure 16 - Basic configuration of n Recovery Blocks (RB) employing n=3 variants 55

Figure 17 - Basic iRB configuration, employing 3 variants and 2 protection layers 56

Figure 18 - Snapshot of an execution of iRB-R with 2 protection layers and 3 alternates,
where the first alternate is selected uniformly at random among 3 candidates following
the Random Dictator scheme ... 58

Figure 19 - Example of SCP configuration with two self-checking components, each one
exploiting two variants and a comparator ... 59

Figure 20 - iSCP with 2 protection layers and 4 variants grouped in 2 self-checking
components ... 60

Figure 21 - Basic configuration of the Consensus Recovery Blocks (CRB), instantiated for
n=3 variants ... 61

Figure 22 - An iCRB configuration, obtained adding 2 protection layers and extra variants
for confusion (among the n=5 variants, only h=3 participate to the vote, but all the 5 are
checked by the acceptance tests) ... 62

Page 11 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 23 - Example of SCOP for n=5. Here Young diagrams are exploited to represent
agreement among variants (squares represent results, same row represent agreement,
the rows are ordered according to the number of agreements) 63

Figure 24 - Example of the possibilities in the second phase of iSCOP (of the first kind)
if m=3, knowing the configuration at the end of the first phase and assuming that, instead
of one, two variants are executed and one of the results does not participate (in gray in
the picture). Notice that in 2 cases out of 8 listed accepting both new results would have
allowed to stop in the second phase ... 64

Figure 25 - ICT Gateway architecture .. 71

Figure 26 - Risk assessment of the simplex Security & Resilience component 71

Figure 27 - Risk Assessment of iRB and iNVP .. 72

Figure 28 - Assurance Case Workflow ... 75

Figure 29 - BIECO Tool Workflow Overview... 77

Figure 30 - Example of simplified ICT Gateway ConSert .. 81

Figure 31 - Example of simplified ICT Gateway ConSert w/ NVP 82

Figure 32 - Example diagram about a ConSert offering a service with a stricter MUD file
 .. 85

Figure 33 - Overview of the ODE v2 Metamodel.. 88

Figure 34 - Enterprise Architect Custom safeTbox Toolbox for ConSerts 89

Figure 35 - Example ConSerts XML (Ecore) file .. 90

Figure 36 - ConSerts Model to Runtime Code Conversion Process 90

Figure 37 - Sample of generated ConSerts code from XML .. 91

Figure 38 - ODE Profile in ResilBlockly ... 92

Figure 39 - Security Risk Analysis in ResilBlockly ... 92

Figure 40 - DDI Tool Adapter .. 93

Figure 41 - Model Exchange Overview ... 93

Figure 42 - Simplified model of ICT Gateway use case Smart Grid 94

Figure 43 - ICT Gateway, simplified internal view ... 95

Figure 44 - ICT Gateway HARA - Function Sheet .. 95

Figure 45 - ICT Gateway HARA - FHA Sheet .. 96

Figure 46 - ICT Gateway HARA - Risk Assessment Sheet .. 96

Figure 47 - ICT Gateway - Risk Assessment - Hazardous Event Assessment 97

Figure 48 - ICT Gateway HARA - Risk Assessment - Safety Goal Specification 97

Figure 49 - ICT Gateway CFT .. 98

Figure 50 - Safety & Resiliency CFT ... 99

Figure 51 - ICT Gateway - CFT Analysis Results ... 100

Figure 52 - ICT Gateway - Assurance Case Top Goal ... 101

Figure 53 - ICT Gateway - Availability Risk Module ... 102

Page 12 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 54 - ICT Gateway - HARA Module ... 103

Figure 55 - ICT Gateway - Functional Dependability Concept Module 104

Figure 56 - ICT Gateway using 2 variants for Safety & Resiliency NVP 105

Figure 57 - ICT Gateway Fault Tree including NVP ... 106

Figure 58 - ICT Gateway w/ NVP Example CFT Analysis Results 107

Figure 59 - Application of mitigation measure using a stricter MUD File 108

Figure 60 - SCPV with g=3 and n=6. ... 111

Page 13 of 117

 Deliverable 6.4: Mitigation Identification and Design

List of Tables

Table 1 - Overview of GSN Elements ... 24

Table 2 - Comparison of classical architectures. k is the number of omitted results.
Legend: arch=architecture, n=number of variants, decision=decision mechanism 66

Table 3 - Acronyms ... 66

Table 4 - Intrusion add-ons ... 67

Table 5 - Comparison of the architectures with respect to time constraints 67

Page 14 of 117

Deliverable 6.4: Mitigation Identification and Design

1. Introduction

In systems where dependability [2] (e.g., safety and/or security) concerns are critical,
and absolute proof of dependability is not feasible due to the underlying system and its
operational environment’s complexity, the established approach is to argue that overall
risk has been reduced to acceptable levels before the system is deployed into operation.
Such arguments rely on the mitigation of dependability risk via rigorous development
processes.

In more general terms, such approaches to controlling risk are also employed in domains
where systems are providing ‘mission-critical’ services instead of strictly dependability-
critical ones. For instance, while failure to deliver power to critical infrastructure (e.g.,
hospitals, residential areas in adverse weather) may not be directly safety-critical in the
short-term (e.g., the presence of back-up power protects against immediate danger), it
is certainly mission-critical in terms macroscopic and long-term consideration.

ICT systems are now ubiquitous across critical infrastructure, and while they may not
always have direct dependability implications, as highlighted in the earlier paragraph, the
risk they contribute to the overall infrastructure must also be assured to be acceptably
controlled. The emergence of ecosystem concepts such as smart grids [3] and smart
cities [4], and the ongoing advancement of the IoT paradigm [5] are further indicators of
the need for developing dependable ICT backbones.

In this deliverable, we present the BIECO approach towards the definition of appropriate
safety and security risk mitigation. The aim of this approach is to assure that the residual
risk present in dependability and mission-critical systems (or specific subsystems
thereof) is deemed acceptable by the end of development. Our proposed approach is
based on guidelines found in established functional safety standards and integrated with
those from corresponding security standards.

Specifically, we demonstrate how safety and security risk assurance can be constructed
to argue that risk has been adequately mitigated during development, following
established guidelines from both domains. Furthermore, we discuss how dynamic
mitigation of risk can be employed as part of the underlying system’s operation at
runtime.

Our approach links to the rest of BIECO by:

- Providing methods appropriate for systematically structuring safety (T6.2) and
security assurance claims (WP7) as part of assurance cases.

- Incorporating the risk assessment (T6.2) and security analysis (T6.1) process to
provide appropriate development-time evidence of risk mitigation.

- Developing more resilient systems through the concept of Intrusion-Tolerant
Architectures (WP6), intended to mask the effect of attack-induced failures, and
integrate the developed redundancy schemes in the risk management process
(WP6).

- Links failure and trust prediction concepts with dynamic risk management
(WP4).

- Links runtime risk management and resilient adaptation (WP4).

The remainder of the deliverable is structured as follows:

- Section 2 discusses some of the motivation behind the approach and provides
relevant background including previous and related work.

- Section 3 provides key considerations regarding the choice and application of
intrusion-tolerance countermeasures.

Page 15 of 117

 Deliverable 6.4: Mitigation Identification and Design

- Section 4 addresses the overall issue of dependability and security risk
mitigation during system development as part of BIECO.

- Section 5 presents a combined dependability and security approach for
managing risk at runtime.

- Section 6 discusses tool support for development and runtime dependability
risk mitigation.

- Section 7 provides a simplified example of how the tool support mentioned in
Section 6 can be used.

- Section 8 provides a summary of the deliverable.

Page 16 of 117

Deliverable 6.4: Mitigation Identification and Design

2. Motivation & Background

The BIECO project use cases involve ICT infrastructure that may be individual or
constituent systems of larger dependability or mission-critical systems. For example,
ICT gateways usually may not have direct catastrophic safety effects in case of failure
or attack, but if they are part of a larger critical infrastructure e.g., a smart grid, then their
role must be also considered accordingly. The implication of developing such systems
is that they are part of a larger ecosystem of stakeholders, technologies, devices, and
software, whose interactions need to be accounted for and managed appropriately.

When safety is a primary concern of a given application, then it stands to reason that
critical safety hazards (i.e., negative events in terms of safety) should be identified early
in the development process, so that important requirements are not discovered in later
stages, where major changes require increasing development resources. As such, when
safety issues are known, security, availability, reliability, and other related properties can
be analysed more effectively, using the knowledge of their effects on the impacts of
those safety issues.

That being said, safety is not always a primary concern; indeed, given the nature of ICT
systems, security is the more typical aspect to be considered. In particular, unique
security concerns such as privacy are usually orthogonal to safety and must be
considered regardless. In other cases where mission-critical systems are involved, e.g.,
power production and distribution, availability of the overall system (e.g. continuous
provision of power, despite failures and/or attacks) may be a primary objective on its
own. Our approach should therefore be flexible in addressing dependability aspects
interchangeably, depending on the application system being considered.

In both the security and safety domains, standardization is extensive, and enables us to
draw from established best-practice guidelines applied in industry. Functional safety
standards, such as IEC 61508 (general) and ISO 26262 (automotive), provide guidance
for identifying and managing safety risk, while maintaining adequate integrity of the
development process. On the security side, standards such as ISO 21434 provide
corresponding guidelines for addressing security risk for commercial vehicle
development.

Both ISO 26262 and 21434 include provisions for developing system elements ‘out of
context’ (EooC), which offer a useful development paradigm for constituent systems and
components that are developed asynchronously from the rest of their encompassing
system. Using this paradigm, development of ICT systems (e.g. gateways) can be
encapsulated using clearly specified interfaces, in terms of both functionalities, as well
as requirements.

To address dependability risk in complex systems, we can argue that the development
process has identified all relevant risks through sound analysis, designed and
implemented appropriate means of mitigating (or eliminating) these risks, and
confirmed that the above process has acceptably reduced the residual risk by the end of
development. Capturing such arguments in ad-hoc natural language has proven
inefficient and error-prone [6], and modern systems are large and complex enough to
require significant argumentation and documentation. Assurance cases structure clear,
comprehensive, and convincing arguments that the underlying system will operate
dependably (to a degree acceptable by stakeholders) [7]. These arguments typically
establish some high-level claims regarding desired dependability properties of the
system, decomposing them along strategies of argumentation, eventually down to
specific evidence of system design, implementation, and/or dependability-related
analysis, produced over the course of system development. Given their flexibility, they

Page 17 of 117

 Deliverable 6.4: Mitigation Identification and Design

are an appropriate medium for communicating how risk is mitigated, regardless of
whether the risk is related to safety, security, or other mission-critical aspects.

Typically, due to the uncertainty regarding the exact conditions of the operational
situation the system will experience at runtime, worst-case assumptions with regards to
the assessment and assurance of risk are established. The implication that such
assumptions have is that they often deactivate functionality or severely restrict its
performance in order to manage the impact of risk in worst-case conditions.

Our approach intends to improve upon this limitation by extending the risk assurance
process to account for operational conditions and adjust functionality, accordingly,
thereby avoiding worst-case assumptions when feasible. The models which enable this
extension are known as Conditional Safety Certificates (ConSerts). ConSerts capture
internal and external variability of the underlying system, and specify how it can adapt,
given its observed environment and relied-upon systems.

Both construction of integrated assurance case and ConSerts rely on combining risk
assurance models with dependability analysis techniques and models, which provide the
concrete evidence for arguing risk and assessing which adaptation is needed. Both the
assurance models, as well as the evidentiary models are often heterogeneous, both in
technique and tool chosen, meaning common metamodels that can integrate them are
needed. For our approach, we leverage the past experience from the AMADEOS and DEIS
projects and use the corresponding metamodels they produced.

As an example of how a security-specific concern can be addressed as part of our
flexible approach, we discuss its application for developing intrusion-tolerant systems.
In such systems, while there may be other defenses to prevent intrusions, there is also a
need to handle the continuous operation even in the presence of a successful intrusion.
System architectures featuring Intrusion-Tolerant Countermeasures (ITC) offer answers
in this regard, enabling the underlying system to robustly adjust its operation and
continue providing a dependable service. We discuss how our approach can integrate
ITC architectures in terms of assurance argumentation and ConSerts in 5.2.

As our approach needs to be practically applicable towards large and complex systems,
there is a need for appropriate model-based tooling. Such tools can assist development
by managing complexity, reducing effort and manual errors, and integrate with the rest
of the BIECO through the artifacts and services the produce and consume.

In the remainder of this section, we provide a brief overview regarding the status quo on
the following topics; in 2.1 and 2.2, we provide a brief summary of the development
lifecycle according to the safety and security standards ISO 26262 and ISO 21434
respectively. Section 2.3 addresses existing views on safety and security co-analysis. In
2.4, we discuss assurance cases and the associated notation systems. Goals in
ecosystems are then discussed in section 2.5. In 2.6, we present existing work on
ConSerts. In 2.7, we discuss the concept of the Digital Dependability Identity (DDI), which
can be used for exchanging model-based dependability information. Finally, in 2.8, we
discuss the concept of ITCs and set the basis for a conceptual framework to develop
redundancy-based solutions to mask the effect of attack-induced failures.

Page 18 of 117

Deliverable 6.4: Mitigation Identification and Design

2.1. Functional Safety Standard Development Lifecycle

The International Electrotechnical Commission (IEC) standard 61508 addresses
functional safety of Electric/Electronic/Programmable-Electronic (E/E/PE) (safety-
related) systems. Functional safety refers to the part of the overall safety (of the system
under development) that is provided by active safety measures. For IEC 61508, this
scope is further restricted to active safety measures implemented through E/E/PE
technologies. Numerous domain-specific standards have been produced by extending
the IEC 61508 concepts, and tailoring them for their corresponding domain e.g., the
Society of Automotive Engineers (SAE) Aerospace Recommended Practice (ARP) 4754-
A for aviation and the International Organization for Standardization (ISO) 26262 for
automotive.

The IEC 61508 further introduces two important concepts that are shared with numerous
other standards as well, namely a generic system development lifecycle, and Safety
Integrity Levels (SILs). The generic lifecycle model is widely referred to as the ‘V-model’,
an overview of which can be seen in Figure 1. In the figure, the ‘nominal’ phases are
identified in blue, and the assurance-related activities in orange.

Figure 1 - IEC 61508 Lifecycle Overview

According to the lifecycle, at the outset of a system development project, the concept
phase initiates. During the concept phase, the need and purpose of the underlying
system is specified, along with relevant assumptions e.g., regarding its operational
context. Once the high-level specification becomes more refined with functions, risk
assessment of the nominal functionality can be initiated.

The process outlined in the standard is heavily risk-based, as the choice of safety
measures, and the assurance activities associated with their development, depend on
the underlying system’s safety risk analysis. Such Hazard Analysis and Risk Assessment
(HARA) processes are conducted by identifying hazards, which are events that, if they
occur, may have negative effects in terms of safety. For each hazard, its contribution to
the overall risk of the system can be evaluated in terms of the impact and severity of its
effects, and the likelihood of its occurrence. Domain-specific factors and risk
classification systems allow the process to be tailored to the particular characteristics
of a given application. For example, ISO 26262 considers situational operations in more

Page 19 of 117

 Deliverable 6.4: Mitigation Identification and Design

detail e.g. driving on highways during rain. As a result of the HARA, from the set of
hazards and/or hazardous situations, corresponding high-level safety goals can be
specified; the system design through which they are satisfied is referred to as the safety
concept.

SILs can be assigned to hazards, hazardous situations, and to the corresponding safety
goals, according to their determined level of risk. Higher SILs indicate that the
corresponding hazard(s) are of higher risk. By extension, the safety functions designed
to mitigate higher SIL hazards must be associated with more stringent safety
requirements.

The safety concept specifies the set of safety measures that satisfy the corresponding
safety goals. Once functional safety requirements have been specified, and as the
(architecture) design phase of development assigns the nominal (and safety) functions
to concrete systems, concrete software and hardware requirements can be specified
and allocated. SILs from the functional level can also be distributed across the
constituent elements of the overall system i.e., lower-level subsystems and components.

As individual elements of the overall system are implemented, they are unit tested,
according to their specifications and SILs. As SIL increases, more rigorous testing
techniques and criteria are recommended, e.g. fault injection [8] [9] and Modified
Condition/Decision Coverage (MC/DC) [10]. Assuming successful unit validation,
(sub)system verification iterates alongside the integration process as larger subsystems
are composed. Eventually, the functional safety requirements of the safety concepts,
and their corresponding safety goals, are validated, ideally confirming that the residual
risk across all hazards is acceptably low.

Different kinds of cause-effect analyses allow higher-level goals/effects (e.g. protection
against specific hazard) to be linked to more detailed requirements/causes, qualitatively
(‘which failures can cause a hazard’) or quantitatively (‘how likely are failures to cause a
hazard’), and can be performed inductively (bottom-up) or deductively (top-down).
Typical examples include Fault Tree Analysis (FTA) [11], and Failure Modes and Effects
Analysis (FMEA) [12].

In many domains, and particularly in the automotive domain, systems are typically
developed in a distributed flow, either by outsourcing parts of development, or by
procuring commercial ‘off-the-shelf’ components. In either case, the elements provided
by the external supplier must be validated carefully before being integrated into the
system being developed. Element-out-of-Context (EooC) development formalizes this
development paradigm by establishing a clear interface between the element supplier
and the system manufacturer.

Under EooC development, suppliers establish at the outset assumptions regarding the
operational environment of the host system and derive corresponding requirements
under which the EooC can deliver its specified functionality. Effectively, this means
specifying functional safety requirements that are assumed will be present in the host
system. Development of the EooC can then proceed following the development lifecycle
processes outlined above, eventually validating the implemented EooC against the
assumptions and requirements of the presumed operational environment. Once the
EooC development completes, it can be evaluated and integrated into its host system’s
development lifecycle accordingly.

In parallel to the rest of the standard activities outlined above (and others not explicitly
mentioned here as well), a safety case is also prescribed for documenting the rationale
of the choices made regarding identification and management of safety-related risk, and

Page 20 of 117

Deliverable 6.4: Mitigation Identification and Design

documenting the activities and work products related to the standard. More information
regarding such cases is provided in Section 2.4.

Page 21 of 117

 Deliverable 6.4: Mitigation Identification and Design

2.2. Security Development Lifecycle

ISO 21434 is an automotive cybersecurity standard, closely aligned with the ISO 26262
processes. As such, ISO 21434 activities build upon the V-model lifecycle, and some of
the terminology is shared across the two standards.

ISO 21434 project-dependent activities begin at the point of specification of the system
under development. Once the target functionality is clear (and a determination of what
is cybersecurity-relevant is made), a Threat Analysis and Risk Assessment (TARA) can
be applied. The role of the TARA is to:

- identify the critical aspects of the system that need to be protected against
potential attacks (aka ‘assets’)

- identify the specific security properties of each asset that need to be protected
- assess the potential impact of each attack
- analyze the potential attack paths e.g., using Attack Tree Analysis (ATA) [13] or

Failure Mode and Effects Vulnerability Analysis (FMEVA) [14]
- assess the feasibility of each attack
- assess the risk of each threat scenario by combining the potential impact and

the feasibility of the attacks that realize it [15]

For each threat scenario whose risk is deemed significant, security goals are specified
to mitigate the effects of its impact or reduce the feasibility of the attacks that can realize
the scenario. As per the safety concept from ISO 26262, a security concept specifies
how security goals are met, by establishing corresponding security controls. Security
controls can then be used to specify security requirements that need to be implemented.

Finally, as per ISO 26262, developing elements out-of-context is also supported explicitly
in ISO 21434, as is developing a security case, which is responsible for collecting
argumentation regarding the choices made over the course of the security assurance,
and documentation of the corresponding activities and work products, including those
mentioned earlier in this section. More information on assurance cases can be found in
Section 2.4.

Page 22 of 117

Deliverable 6.4: Mitigation Identification and Design

2.3. Safety(/Dependability) and Security Co-Assurance

When developing systems that have dependability (e.g., safety, security, …) or mission-
critical characteristics (often availability-related), existing standards provide targeted
guidelines towards corresponding aspects (e.g. ISO 26262 for safety and ISO 21434 for
security). However, integrating crosscutting concerns efficiently and effectively is not
straightforward. System developers need to navigate the legal and regulatory landscape
which may introduce domain-specific restrictions, incorporate assurance methods from
different domains, specify requirements that also correctly account for cross-domain
interaction, arrive at an implementation that satisfies all above requirements and
stakeholders, and was developed rapidly enough to yield a return on the invested
resources.

A particular challenge of the above puzzle is the co-assurance of systems development
in terms of both safety and security. As indicated in sections 2.1 and 2.2, standards exist
for addressing safety and security individually, but they prescribe only partial guidelines
for handling detailed interactions across their activities. For instance, in ISO 21434:2021,
Annex D provides an example on determining whether a given element of the vehicle
under development is cybersecurity-relevant or not. One of the conditions for
considering an element relevant is whether the element contributes “to the safe
operation of the vehicle” (ISO21434:2021, page 57). The implication here is that the
determination of whether an element is safety-relevant, should happen at a stage where
this knowledge is already available from the safety assurance activities e.g., during the
concept phase of ISO 26262. Otherwise, if security analysis is applied beforehand, there
is risk of needing to repeat parts of the security lifecycle, as elements revealed to be
safety-critical need to be re-evaluated. Such scenarios could waste development effort
in the worst case, as re-design could be needed.

Such inefficiency can be addressed in terms of safety-security co-assurance, e.g., in [16],
the authors propose to synchronize the security lifecycle workflow such that a
preliminary HARA has already been conducted and safety goals have been specified. At
that point, safety goals can serve as assets to be protected in terms of security. An
additional benefit is that the potential impact of security-related threats to those safety
goals becomes clearer, and their risk can be more accurately evaluated.

In more general scenarios, where safety might not be relevant, this approach should be
adapted by prioritizing the development workflow to assess dependability/mission-
critical risks based on the priority of a given property for the application. For example, in
a nuclear power production plant, safety is arguably the top-priority property, and its
workflow should precede others'. In such cases, risks to safety should be identified early
in the development lifecycle, so that other sources of risk (e.g., security) that could
contribute to safety-related risks can be identified efficiently.

However, when considering systems where safety is not critical (e.g., an ICT gateway),
other properties can be prioritized ahead of the security, if they are relevant. For example,
if availability of a service provided by the ICT gateway is considered mission-critical, then
identifying sources of risk against its availability can provide appropriate input for the
security-specific TARA. This approach allows risks to be ‘triaged’, according to the
application needs, while still supporting analytical coverage of all relevant risks. As an
example of this mindset, see [17], where security risks are prioritized based on the
criticality of the devices they can impact. This means that security-specific risks not
directly contributing to other risks (e.g., privacy-related risks) can still be identified and
addressed as part of the proposed process.

Page 23 of 117

 Deliverable 6.4: Mitigation Identification and Design

2.4. Assurance Cases

The safety, or more generally, assurance case, aims to provide a structured argument
which should clearly, comprehensively, and correctly explain how the relevant risks of
the element under discussion have been addressed as part of its development process
[7]. The assurance case structures such arguments by establishing claims regarding the
high-level properties that the element should satisfy, and eventually linking them with
concrete evidence that supports the former. Graphical notations for representing such
cases help to manage the complexity of such arguments and simplify their construction
and management. The most well-known notations are the Goal Structuring Notation
(GSN)1 [7], Claims-Arguments-Evidence (CAE) [18], and the Structured Assurance Case
Metamodel (SACM) [19]. Due to the existing support for GSN in the BIECO tool safeTbox2,
our approach is illustrated using said notation; however, the approach could be directly
adapted to use the other notations as well, provided tool support for those is chosen or
developed instead.

An assurance case is most appropriate to use when stakeholders of a complex system
or process need to be convinced of its trustworthiness in detail. In such scenarios,
focusing only on individual pieces or sets of evidence is not sufficient to provide
confidence that all the relevant risks have been adequately addressed. A set of evidence
can only be considered adequate if it is clearly contributing to specific claims addressing
corresponding risks. Moreover, the assurance case must also convincingly argue that
the processes which identified said risks and produced the cited evidence are also sound
and correctly applied. Overall, the stakeholder must be convinced that all risks have been
adequately addressed, and that the risks not explicitly addressed are acceptably low. In
these terms, an assurance case generates stakeholder trust by clearly structuring and
distinguishing between the evidence that was provided, but also the process, reasoning,
and justification that led to the evidence creation.

Most assurance cases capture arguments mainly as part of the development-time
activities. As such, these arguments address the relationship between the identified risk,
safety goals and measures that mitigate them, and the verification and validation of the
designed and implemented system. By expanding on the above notion of risk, assurance
cases can flexibly be applied to address not only safety-related risk, but can also cover
other dependability aspects e.g., risk to security, availability, maintainability, etc [20].

An overview of GSN elements can be seen in Table 1. Goal elements establish claims,
usually regarding properties of the system that are proven as part of the assurance case,
e.g., “system is acceptably dependable”. Strategy elements capture lines of reasoning
which explain how Goals are supported by more detailed arguments, e.g., “argument of
system safety via mitigation of risk across all safety hazards”. Solutions encapsulate
references to specific pieces of evidence, usually produced as part of the development
assurance activities. For example, to argue that all relevant hazards have been identified
through appropriate means, a Solution citing the review of the risk analysis by an auditor
can be included. Context, Assumption, and Justification elements function
synonymously, providing relevant information regarding specific elements or the choice
of argumentation. Goals, Strategies, and Solutions are typically linked via “Supported By”
relationships, indicating how the subsequent elements support the former. Context,
Assumptions, and Justifications are typically linked via “In Context Of” relationships.

1 https://scsc.uk/gsn?page=gsn%202standard
2 https://safetbox.de/

https://scsc.uk/gsn?page=gsn%202standard
https://safetbox.de/

Page 24 of 117

Deliverable 6.4: Mitigation Identification and Design

Table 1 - Overview of GSN Elements (from [21])

GSN Graphical Element Depiction Definition

A goal, presents a claim, part of an
argument.

A strategy, provides the inference
between goals.

A solution, references an evidence
item.

A context, references contextual
information or statements.

An assumption, presents an
intentionally unsubstantiated
statement.

A justification, presents a
statement of rationale.

Page 25 of 117

 Deliverable 6.4: Mitigation Identification and Design

An undeveloped element
decorator, indicates a line of
argument that has not been
developed.

Can apply to goals and strategies.

For example, an undeveloped goal,
presents a claim which is left
undeveloped in the argument.

SupportedBy, for goal-to-goal, goal-
to-strategy, goal-to-solution, and
strategy-to-goal relationships.

InContextOf, for contextual
relationships, e.g. goal-to-context,
goal-to-assumption, goal-to-
justification, strategy-to-context,
etc.

Figure 2 shows a small abstract example of a GSN argument. Goal_182 establishes an
initial claim, which in this case is that the system satisfies some abstract property P. As
context to this claim, the description of the system and specification of the property can
also be associated via Context_186 and Context_187. The latter can further point the
reader to concrete documents outside of the GSN diagram. To support the claim, a line
of reasoning is offered in Strategy_183, with an attached justification. Finally, proof of
the property is claimed in Goal_184, and reference to the documentation serving as
evidence is provided in Solution_185.

Page 26 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 2 - Basic GSN Example

The 3rd version of the GSN community standard itself includes some additional notation
concepts which will be briefly mentioned here as useful building blocks for structuring
dependability assurance cases. These are assurance case modules, Assurance Claim
Points (ACPs), and dialectic assurance case development.

Assurance case modules encapsulate parts of argumentation so that they can be
isolated from the overall argument and cross-referenced as needed. This reduces the
complexity of both reviewing and managing the structure of an assurance case. An
example of GSN modules can be seen in Figure 3. The abstract from the example in
Figure 2 has been extended, now including an additional supporting claim of proof of
property P, through Away_Goal_192. Away_Goal_192 references an external goal,
Goal_191, which is found in Module_190. Note that Goal_191 is also annotated as
‘Undeveloped’, indicating further refinement is needed.

Page 27 of 117

 Deliverable 6.4: Mitigation Identification and Design

Page 28 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 3 - Abstract GSN Module Example

ACPs are used to argue why the inclusion of elements or connectors in the assurance
case is justified, embedding side-arguments on either the elements or the connectors
linking said elements to the rest of the assurance case. ACPs allow confidence
arguments to be seamlessly incorporated onto the main line of argument of an
assurance case. An example of how ACPs can be applied is seen in Figure 4, where the
example from Figure 3 has been further expanded to include ACPs annotated onto both
elements and relationships.

For instance, ACP3 annotates the “In Context Of” relationship between Goal_182 and
Context_186, which indicates that this relationship is further argued in the referenced
Goal_191. In this example, one could argue that the system description referenced has
been verified to be accurate, a side-argument that lends more credibility to the inclusion
of the corresponding context element. Similarly, ACP4 and ACP5 indicate how a solution
and justification element can also /be annotated with ACPs.

Page 29 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 4 – Abstract ACP Example

Dialectic assurance case development is supported through the annotation of existing
elements as being ‘defeated’, and “Defeated By” relationships. Elements that are
considered to be defeated are elements whose arguing power has been undermined or
eliminated due to the revelation of new information or lines of argument. The elements
that cause the defeat can be linked to the existing argumentation via “Challenges”
relationships. An abstract example of this extension can be seen in Figure 5, where CSn1
‘defeats’ goal G1.

Figure 5 - Example of GSN Counter-Solution Defeating Goal (from [21])

Page 30 of 117

Deliverable 6.4: Mitigation Identification and Design

2.5. Goal Structuring in Trust-based Digital Ecosystems

Within a digital ecosystem, systems and actors form coalitions for achieving common
and individual goals. In a constant motion of collaborative and competitive forces and
faced with the risk of malicious attacks, ecosystem participants require strong
guarantees of their collaborators' trustworthiness. Evidence of trustworthy behaviour
derived from runtime executions can provide these trust guarantees, given that clear
definition and delimitation of trust concerns exist. Without them, a base for negotiating
expectations, quantifying achievements and identifying strategical attacks cannot be
established and attainment of strategic benefits relies solely on vulnerable
collaborations.

For uplifting the assurance case from systems to the level of ecosystems we have
examined the relationship between goals and trust and we’ve created a formalism for
goal representation. We delimit the trust concerns with anti-goals. The anti-goals set the
boundaries within which we structure the trust analysis and build up evidence for
motivated attacks.

Engineering digital ecosystems around open adaptive systems has become the enabler
of technological advancements. Systems and devices from different manufacturers and
even from different application domains interact and collaborate to achieve higher level
goals, which would not be possible without such comprehensive collaboration.
Moreover, there is a trend towards more continuous engineering, i.e., organizations and
their developers dynamically enhance existing systems with runtime software updates
that are continuously monitored.

We anticipate a stronger uptake of the agent-based system paradigm. Correspondingly,
in the automotive domain for example, there would be smart software agents deployed
on vehicles, which could also be updated dynamically at runtime. These smart agents
can at the entry point of a highway collaborate with other vehicles for forming platoons.
When driving in a platoon, vehicles benefit from reduced fuel consumption due to
reduced air friction.

However, the complex dynamics of collaborative and competitive forces existing in an
ecosystem rise multiple trust concerns for all ecosystem participants. Especially when
competitive forces are hidden within declared cooperation and lead to malicious attacks.
At the lowest operational level, a vehicle accommodating a software update requires
strong guarantees of trust from the smart software agent. Actors with declared
collaborative goals that actually act in competition can insert malicious behaviour
together with the software update. Being received as black boxes by the host vehicle,
these updates can contain intentional malicious logic faults introduced with the scope
of causing harm.

In the scenario provided above, the smart software agent can suddenly accelerate or
decelerate and cause multiple car crashes within the platoon. Such a behaviour can be
caused by logic bombs [2] that remain dormant in the host for a certain amount of time,
and trigger when an event happens, or certain conditions are met.

Trust is an essential enabler for the emerging trend of digital ecosystems. Without trust,
user acceptance and thus market success would be impacted or even prevented.
Further, not only user trust is required, but also trust between companies and other
stakeholders (e.g., legislators and official bodies). Both aspects translate into the
requirement that systems in the field need to have a basis for computing trust be-tween
themselves for enabling cooperative relationships to form dynamically between formerly
unknown participants. But the creation of trust requires mechanisms for accounting
entities to their actions, responses, achievements and failures in a way that also enables

Page 31 of 117

 Deliverable 6.4: Mitigation Identification and Design

negotiations, decision making and ultimate identification of undesired behaviours. In this
sense, goals are concepts that enable analysis and modelling of stakeholders’ interests
and concerns [22]. A goal is evidence of an accepted objective fulfilled by system agents
in [23]. In the area of safety in particular, system functions, regarded in our work as
operational goals, have been formalized for enabling safety argumentation. The topmost
priority of trust evaluation of systems operating in the field is their safety. Also, in the
safety domain, a wide range of all possible deviations and formalization of operational
goals have been defined. Therefore, at the operational level, it is enough to consider
definition of anti-goals from safety as the one presented in [24]. For trust reasoning at
higher levels, however, we adapt the goal formalization from the safety domain by
considering a two-fold approach: identification of goal artifacts used in literature and
analysis of directive documents, such as the ones from the European Commission.

Digital ecosystems until now have been engineered with considerations of separated
trust concerns that have been focused on distinct areas such as robustness or user trust.
But the hybrid and complex nature of ecosystems dynamics characterized by
interactions among diverse actors such as users, businesses, official bodies, systems,
system components and developers require a unified consideration of trust concerns.
Ecosystems need an instrument for health self-regulation that can, for example support
a trustworthy reaction of a developer to user demands through provision of on-the-fly
software updates. Only through a self-regulating mechanism that enables continuous
scrutiny of its health, an ecosystem can grow well. The health of an ecosystem is an
indicator of how well the business performs [25]. In this work, we examine the
relationship between goals and trust, and we introduce a formalism for goal
representation. The formalism captures key aspects of goals, enables their expression
in a natural language and tracing between multiple levels of computation. We consider
goal evaluation to be the mechanism for self-regulating ecosystems, the one that can
bring transparency in the trust building process and enable re-considerations of tactics
and strategies. For this, we extend the previous platform for runtime prediction and trust
computation [26] by considering the goals of ecosystem entities. In this way, evidence
gained from runtime computations supports the tactical decisions of ecosystem entities
and their strategic analysis, which in turn supports reconfiguration. Provided as an
extension of a previous reference architecture for trust-based digital ecosystems we
have introduced in [27], the current work continues with the demonstration of concepts
expressiveness and reusability, by continuing with examples from the automotive and
energy domains.

Dynamic Goals analysis

Goals can be viewed as the motivation between entities and their actions. They give a
base for judging achievements and failures, as they enable negotiations and decision-
making. When represented in a machine-readable format, they support the automatic
reasoning of trust, through runtime computation of reputation. For enabling goal
representation, we continue with formalizing their definitions in three layers: strategic,
tactical, and operational. The strategic goals are given by high authorities, such as
governments and associations of organizations. From the tactical to the operational
level, we follow a top-down approach, in a 4C step-wise-refinement of goals: From
Cooperation to Collaboration (tactical), Coordination and ultimate Communication
(operational). We based our top-down argumentation and decomposition of goals on the
work of Jones [28]. In this sense:

• Cooperation is the work on a task that shares the profits or benefits of doing so.
It sets out a win-win benefit between two entities.

Page 32 of 117

Deliverable 6.4: Mitigation Identification and Design

• Collaboration is the willingness of an actor to work jointly with another one on a
given task. This can portray a mayor benefit for the entity requesting
collaboration and a minor benefit for the collaborating entity.

• Coordination is the process of causing parts to function together in a proper
order. There is no notion of benefit included here. At this level, systems,
components, processes and tasks at most implement coordination
mechanisms.

• Communication is the exchange of information and forms the basis for all the
other upper C’s concerns.

Starting from existing goal formalization practices used in the safety domain, such as
the Goal Structure Notation (GSN) [7] [6] [29], we continue with a two-fold approach for
formalizing goals for trust. We use the goal artifacts identified and mapping of goal
artifacts identified in the literature and safety formalism to information present in
directive documents that present strategic developments of industries in Europe. We’ve
then deepened the analysis of the European strategic goals by surveying directions into
two major domains to which the directive document is pinpointing: the automotive and
energy domains.

Formalization of Goals

For defining strategic goals, we have looked at the highest strategic directives in Europe
and we have surveyed the European Green Deal3. In this regard, the European
Commission is an actor of a digital ecosystem that states strategic goals for
organizations that take part in the ecosystem. For example, the European Commission
states that for achieving the target for 2030 of reducing greenhouse gas emissions by
at least 50% compared to 1990 levels, and no net emissions by 2050, it is essential for
all sectors of economy to work towards a sustainable future. Policies needs to be
revaluated for clean energy supply across the economy, industry, production and
consumption, to name a few. One of the main strategic goals of the European
Commission is to transform the European economy while creating a sustainable future.

For the strategic goal, we have identified five different artifacts, namely:

• The Ecosystem Entity is the non-cyber-physical part of the ecosystem, to which
a strategic goal is applied. It is the one that supports the consequences and/or
the benefits.

• The Response is the desired property that the ecosystem entity is planned to hold
over time.

• The Stimulus is the condition that triggers the initiation of the strategic goal.
• The Motivation is the incentive for creating the response of the strategic goal. It

is a trigger for adapting ecosystem entity own behaviour towards goal
achievement.

• The Quantified strategic benefit is a quantitative achievement of a goal.

In this way, a strategic goal can be expressed using natural language in the following
way:

“Ecosystem entity shall response when stimulus in the context of motivation with the
benefit(s) quantified strategic benefit.”

Following the above structure, the following strategic goal has been defined based on
the text in the “European Green Deal” document4.

3 https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
4 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640

https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640

Page 33 of 117

 Deliverable 6.4: Mitigation Identification and Design

“All sectors of EU economy shall adopt European Green Deal when tackling climate and
environmental challenges for creating a sustainable economy with the benefit(s) of
achieving no net emissions of greenhouse gases by 2050”.

For enabling the analysis of its fulfilment, we’ve further on decomposed strategic goals
into domain strategic goals. One of these sectors of EU economy is the automotive
domain which generates turnover of over 7% of EU GDP. One such group in the
automotive domain is, ACEA (European Automobile Manufacturers Association)5, a
group of 16 major European automobile manufacturers, advocates of automobile
industry. The association acts as a portal to provide expert knowledge on vehicle related
regulation in the field of modern transportation. ACEA transforms strategic goals of
governments into strategic goals of automotive companies. For example, ACEA provides
action plans that supports the achievement of targets defined in European Green Deal
with respect to mobility.

Tracing between strategic goals and domain strategic goals is achieved through
decomposition of the response of the strategic goal into:

a) more concrete statements that become the motivation for individual domain
specific strategic goals and

b) concrete responses of the entities that act in specific domains.

The template for defining domain strategic goals is:

“Ecosystem entity shall response for motivation with the benefit(s) quantified strategic
benefit.”

In the energy domain, we’ve defined the following domain strategic goals:

(Smart Grid) Domain Strategic Goal 1: European member states shall update national
energy and climate plans by 2023 for contributing to EU-wide targets with the benefit(s)
of reaching the 2030 climate ambition.

(Smart Grid) Domain Strategic Goal 2: The Trans-European Networks – Energy (TEN-E)
Regulation shall foster the deployment of innovative technology and infrastructure for
upgrading existing smart infrastructure with the benefit(s) of transitioning to clean
energy at affordable price.

If at the strategic level, authorities define goals for the benefit of organizations, citizens
and other ecosystem participants, at the tactical level, goals are defined for enabling
system cooperation in the field. These are open declarations of an ecosystem
participant, that other ecosystem participants can relate to.

For enabling tracing, the response of domain strategic goals is refined into tactical
activities and the motivation into common benefits. For definition of tactical goals in the
energy domain, we have surveyed the Smart Grids Task Force Expert Group 4 -–
Infrastructure Development [30] that specifies the KPI (Key Performance Indicators) of
cooperation within the energy sector and we have surveyed literature papers that
describe tactics for cooperation, like the ones presented in [31] and [32].

(Smart Grid Tactical Goal 1): Distributed Energy Resources shall form coalitions when
they can only provide fluctuant energy for satisfying the energy demands of users.

(Smart Grid Tactical Goal 2): Distributed Energy Resources shall transmit and distribute
energy when they overproduce for reducing congestion risks in transmission networks.

The ultimate trust evaluation relies on runtime computations that create evidence of
correct operation in the field. For achieving tactical goals, at the operational level,

5 https://www.acea.be/about-acea/who-we-are

https://www.acea.be/about-acea/who-we-are

Page 34 of 117

Deliverable 6.4: Mitigation Identification and Design

systems and system components respond to stimulus and operate in certain contexts.
The stimulus of tactical goals become the context of operational goals. System
functions that implement operational goals are activated in established context. The
context of operational goals is a combination of internal and external states of the
system.

We have defined the following template for natural language expression of operational
goals.

• Ecosystem Entity is a system component, hardware resource or software
component that implements a system function.

• Response is the output provided by the system function.
• Stimulus is the input provided to the system function.

• Context is the environmental part that starts the execution of a system function.

With the following template, goals can be defined at operational level:

“Ecosystem Entity shall response when stimulus in context of context”.

In the smart grid domain, through the deployment of software smart agents, connectors
boxes within a Distributed Energy Resource (DER) can autonomously form coalitions for
satisfying the tactical goals such as provision of flexible amounts of energy. For this, at
the operational level, the following goals need to be fulfilled:

(Smart Grid) Operational Goal 1: The connector box, part of a DER shall transmit state
information when it receives a triggered request.

(Smart Grid) Operational Goal 2: A Virtual Power Plant shall start a broadcast for bids
when it receives information about deficit of energy production.

The considerations outlined above (across the current section) can be used to inform
the decomposition of assurance arguments, highlight areas of further investigation with
respect to safety and security (e.g., where goals require further development or
supporting evidence), and identify means of managing safety and security risks at the
according strategic/tactical/operational level.

Page 35 of 117

 Deliverable 6.4: Mitigation Identification and Design

2.6. Conditional Safety Certificates (ConSerts)

Conditional Safety Certificates (ConSerts) [33] [34] capture modular, conditional, and
pre-assured safety concepts, that enable dynamic reconfiguration of the underlying
system based on observed changes of the operational context. As a reminder, safety
concepts specify how a given system addresses safety risks e.g. by mitigating their
effects.

However, when following the standard guidelines of e.g., ISO 26262, safety concepts
must be specified during development, and depend on assumptions regarding the
operational context. Due to the uncertainty regarding the exact conditions experienced
during operation, typically worst-case assumptions are adopted. The implication is that
the corresponding safety concepts typically restrict operation and/or system
performance in order to maximize the likelihood of transitioning to a safe state of
operation. This limitation is even more severe when considering adaptive systems, or
systems operating in highly dynamic environments.

ConSerts aim to address this limitation, by enabling systems to adapt dynamically to
changing conditions, while still assuring the safety of the adapted states of operation.
To achieve this, safety concepts are modularized by viewing the functional architecture
of their corresponding system as a set of service contracts between required and
provided services of a Service-Oriented Architecture (SOA). Additionally, variability due
to the system providing a service, the services it depends on, or its environment are used
to gradate the guaranteed and demanded services in terms of functional and non-
functional qualities.

An example of an abstract ConSert can be seen in Figure 6. In the figure, a ConSert of a
hypothetical system providing a service X (as noted at the top of the figure) is depicted.
The service has been specified in the form of a contract, providing a set of guarantees,
which depend on the set of satisfied demands from services required by service X. In the
case of this example, service X poses demands to service Y.

Specifically, service X can be offered at 3 levels of guaranteed quality (with the last being
no guarantees) and can provide some level of guarantee if service Y can satisfy its
corresponding demands. The guarantee and demand logic specified in the contract is
depicted using Boolean logic gates, which in the case of the example is a logical ‘AND’
gate, meaning all supporting elements (linked at the bottom of the gate) must be logically
‘True’ for the gate to satisfy the linked guarantees.

In summary, service X can be provided with guaranteed level 1, if service Y satisfies a
demand of level 1, and the system has confirmed from its own runtime evidence (RtE)
that a predicate is valid. The logic of the predicate is specified externally to the ConSert.
A similar situation holds when service X is provided at guaranteed level 2, depending on
service Y being provided at guaranteed level 2 and the RtE predicate being satisfied. If
neither level of guarantee can be provided, the service can still be provided (in this case)
without guarantees. As the RtE and the demands provided by Y are updated at runtime,
the guarantees of X are updated accordingly.

Page 36 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 6 - Example of Abstract ConSert

Page 37 of 117

 Deliverable 6.4: Mitigation Identification and Design

2.7. Digital Dependability Identities (DDIs)

In the context of dependability-critical systems development, the paradigm of model-
based engineering has been widely acknowledged [35] [36] [37] [38], promising a central
model around which nominal development and dependability-related development
processes can be synchronized and performed more efficiently, especially when
supported by appropriate software tools. However, due to the complex and varying
applications, a plethora of highly diverse domains, models, methods, and tools are
available, making interoperability across organizations or even across teams within
organizations challenging.

A particular challenge can be found in the coordination of safety and security assurance
processes, as these topics are often highly correlated in systems integrating both
electronic and physical components, as well as communication infrastructure over
potentially open channels. For the model-based paradigm to be effective, both the safety
and the security concerns must be captured and expressed using terms that, if not
common, are at least accurately translatable across both safety/dependability and
security engineering teams, such that they can collaborate and exchange information
and results efficiently.

Digital Dependability Identities (DDIs) [39] [34] [40] [41] are modular, composable, and
executable models of dependability regarding a specific system (or system-of-systems).
During development, DDIs can act as exchangeable models that compose partial
dependability analyses of the underlying system into a complete dependability
assurance case. Such DDIs can be iteratively constructed as information from
development processes becomes available, ideally by extracting directly from results of
associated tools. Therefore, DDIs can serve as appropriate intermediate models for
managing the complexity of the information exchanged during dependability-related
development processes. Additionally, they allow capturing and translating concerns
across domains, (e.g. safety and security) consistently, thereby alleviating
communication across corresponding processes, teams, and tools.

Page 38 of 117

Deliverable 6.4: Mitigation Identification and Design

2.8. Intrusion Tolerance Countermeasures

Borrowing from the well-known Fault Tolerance principles, Intrusion Tolerance aims to
guarantee that a system works correctly even when some of its parts are compromised.
Similar to Fault Tolerance, Intrusion Tolerance consists of several techniques aimed at
counteracting an error from turning into a failure. The specific emphasis on intrusion
instead of the generic fault refers to the malicious characterization of an intruder
launching an attack, exploiting at best the acquired knowledge. Here, we refer to the
more sophisticated chain illustrated in Figure 7 than the classical fault-error-failure in [2].
As illustrated in the figure, an attacker exploits a system/component vulnerability to
launch an attack that, if successful, leads to an intrusion, seen as an internal fault. This
fault may generate one or more errors that, if not properly managed, can lead to the
failure of the service provided by the system/component. This is in line with the AVF fault
model in [42] [43].

To avoid/mitigate the potential failures, Intrusion Prevention [44] and Tolerance are put
in place to cope with the attacks and their consequences. Prevention is the first defense
against intrusions, but since prevention cannot be assured to be totally effective,
intrusion tolerance is also needed. In Figure 7, small "holes" within the area illustrating a
defense technique represent weaknesses of the technique itself in accomplishing its
task. Attack removal and vulnerability removal are radical measures to cope with the
source of the intrusion, so avoiding that similar attacks can be perpetrated again.

Intrusion tolerance techniques primarily include intrusion detection [44] [45], intrusion
removal [46] and masking of intrusion-induced errors [43].

In this deliverable, the focus is on the last category of Intrusion Tolerance means, where
redundancy of components is exploited a first line of defence while the other techniques
collect enough knowledge to deal more radically with the presence of the intrusion.
Moreover, here the emphasis is on a single component that is selected for higher
protection through redundancy-based IT, where replicated components (variants) do not
interact with each other, but only provide their output to the component in charge of
collecting and manipulating variants results. Hence, tolerance paradigms applicable in
contexts where multiple interacting components are in place are out of scope. For
example, solutions resilient to byzantine faults in distributed systems have been deeply
investigated, where the ability of the redundant components to interact with each other
is exploited for tolerance purposes (see [47] for a survey). Another example is secure
multi-party computation, a sub-field of cryptography with the goal of creating methods
for parties to jointly compute a function over their inputs while keeping those inputs
private (e.g., [48]). Again, interaction among involved components is the differentiating
aspect with respect to the approach pursued in the current work.

Page 39 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 7 - Representation of the Attack-Vulnerability-Intrusion-Error-Failure chain, and categories of
techniques to cope with it

Based on the long-dated experience with fault tolerance, and considering the
peculiarities of an intentional attack, the proposed general conceptual framework for
Intrusion Tolerance develops along four major dimensions, as shown in Figure 8.

Figure 8 - The proposed conceptual framework for redundancy-based Intrusion Tolerance

Page 40 of 117

Deliverable 6.4: Mitigation Identification and Design

These dimensions can be considered the ingredients to work with in the design of
redundancy-based Intrusion Tolerance mechanisms when facing a specific application
context.

2.8.1. Attack model

The attack model indicates how the cyber-attack is characterized. From the intrusion
tolerance perspective, essentially what is relevant is to know the consequences of the
attack, more than the dynamics on which vulnerabilities it exploits and the path to the
successful intrusion. These last are vital information to accomplish the attack detection
and treatment, but less relevant to carry out masking of the generated intrusion. Attack
consequences are then connected with the security attribute that is primarily impacted,
namely the well-known triad: confidentiality, integrity and availability. As a brief recall
from [2]: i) confidentiality is preserved in absence of unauthorized disclosure of
information; ii) integrity is preserved in absence of improper system alteration; and iii)
availability is preserved with readiness for correct service. Similar to [49], the
manifestation of a successful attack on the compromised components can be
summarized as follows:

• Functionality Change, which is the delivered results are incorrect. This means that
the compromised components experience a failure in the value domain. The
impact is mainly on the integrity property.

• Performance Degradation, which is the results are delivered late or, in the extreme
case, they are omitted. This means that the compromised components
experience a usage failure at a specific moment. The impact is mainly on the
availability property.

• Information Leakage/Improperly Accessed, that is sensitive information are
revealed. The impact is mainly on the confidentiality property

Intrusion tolerance techniques, by masking the presence of compromised components,
are mainly directed to preserve integrity and availability. Regarding confidentiality, such
techniques are not effective; attack prevention is the reference approach for this
property. Therefore, confidentiality is left out from the conceptual intrusion tolerance
framework under development in this work.

2.8.2. Categories of system components targeted by attacks

Cyber-attacks can be launched to all the components of an ICT system, and typically an
attack develops through several of them to be successful and lead to an intrusion. From
the attacker perspective, the ICT components can be considered as belonging to three
major categories:

• Computing element, which is a component that is devoted to performing some
kind of functionality, to provide a service to the requesting entity (a user or
another component). Operating systems primitives, software applications and
enterprise software are typical examples of this category.

• Communication element, which is the means through which information is
delivered to/from computing elements, users and storage. The internet and the
several wireless networks technologies are typical examples of this category.

• Data storage element, which includes different storage technologies used to
retain digital data within a computer system architecture. The term storage may
refer both to a user's data generally and, more specifically, to the integrated
hardware and software systems used to capture, manage and prioritize the data.
This includes information in applications, databases, data warehouses, archiving,
backup appliances and cloud storage.

Page 41 of 117

 Deliverable 6.4: Mitigation Identification and Design

2.8.3. System model and failure assumptions

Without going into details, such system models range from monolithic structures to
distributed interacting components of different granularities, including SOA (Service
Oriented Architecture) [50], microservice and SoS (Systems-of-Systems) paradigms [51].
A discussion on pros and cons with each system model is out of the scope of this study.
What is relevant to notice is that the architectural solution is typically chosen on the
basis of the functional and non-functional requirements, as well as cost implications.
Since flexibility and scalability are among the most relevant requirements to drive the
selection of the system architecture, the current trend is to increasingly evolve from the
monolithic structure to forms of distributed computation. However, in addition to other
considerations, it needs to be mentioned that there are long-lived systems, originally
developed as a monolithic architecture, which cannot undergo significant redesign, but
need to be enhanced from the resilience perspective. Therefore, the interest in
monolithic-based solution appears to be still significant.

Another important aspect associated to the structure and operation of an ICT system is
the assumed failure model for the system components (due to accidental faults and/or
intentional attacks). In line with the considerations on the effects of attacks, experienced
failures can be in the value domain (an incorrect value is delivered/transmitted/stored)
or in the time domain (a value that violates the time constraints is delivered/transmitted).

2.8.4. Type of redundancy

Another relevant dimension is the type of redundancy to adopt, that is the
characterization of the forms of redundancy that can be put in place. When the
redundancy is obtained employing just replicas, i.e. identical copies, if the attacker is
successful in compromising one replica, it is expected that the intrusion is immediately
successful in all the other replicas, due to the common vulnerabilities. Therefore,
diversity is advocated, as a basic and powerful instrument to mitigate intrusion
propagation. In practice, instead of replicas, the redundant structure adopts variants,
which are functionally equivalent components developed with some form of diversity.

As shown in Figure 9, common mode vulnerabilities when designing, implementing and
deploying redundancy to protect a system component can have different origins. In the
figure, three major sources are identified:

• functional influences, which has primarily to do with the same design
vulnerabilities present in the redundant components, or the adoption of a
common execution environment exposing the same vulnerabilities. An intruder
can exploit these vulnerabilities so that the affected components provide the
same incorrect output, or the same late/unresponsive behaviour. A variety of
means to cope with functional influence have been proposed in the literature
(e.g., in [52]), some of which are reported in Figure 10 (e.g., different development
teams, different programming languages, compilers, run-time supports, etc.) As
will be discussed when presenting the redundant schemes, the usage of diverse
components adds some difficulties to the definition of the redundant structure,
namely the need to account for correct outputs resulting in non-coincident
values.

• locational influences, which exposes all the redundant components located in the
same physical or logical partition of a system to be isolated by an attacker (e.g.,
through intrusion in the communication network), without the possibility to
receive inputs and to provide outputs to the adjudicator unit. As shown in Figure
10, locational influence mainly consists of adopting redundant (diverse)

Page 42 of 117

Deliverable 6.4: Mitigation Identification and Design

communication channels, and/or distribution of the redundant components in
different physical/logical sites.

• administrative influences, resulting in potential massive intrusions by exploiting
social engineering, when the redundant components are subject to the same
security management policies. Diversity measures to cope with such problem
include the adoption of different security management policies for the different
redundant components, and possibly different administrative domains, as shown
in Figure 10. Of course, some form of coordination among such different
policies/administration domains turns out to be needed.

Based on the conceptual framework depicted in Figure 8, in Section 3 classical
redundancy-based fault tolerant approaches are revisited from the security perspective.

Figure 9 - Origin of common mode vulnerabilities, exploitable by an attacker

Figure 10 - Diversity approaches to cope with correlation types

Page 43 of 117

 Deliverable 6.4: Mitigation Identification and Design

3. Redundancy-Based Intrusion Tolerance Countermeasures for Design-Time
Risk Mitigation

Slightly extending the taxonomy in [53] [54], diversity-based fault tolerance scheme to
mask the presence of errors is characterized by four major design issues: i) decision on
the measures to adopt for enforcing diversity in the redundant structure under
development; ii) selection of variants to employ in the redundant configuration (e.g., how
many variants to employ, each developed according to which diverse methodology, thus
showing a required reliability level); iii) decision on the execution pattern of the selected
versions; iv) decision on the adjudicator function to adopt for selecting the only output
from the set provided by the employed variants. The designer mainly addresses these
issues based on specific needs of the application under development (including
dependability requirements, as well as other requirements in the time domain and
operational context), available development environment facilities, and reference fault
tolerance architectures.

Approaches to obtain diverse functionally equivalent versions of the component that
needs redundancy have been already addressed in Section 2.8.

Regarding the execution model for the variants, both sequential and parallel execution
are implemented in the reference schemes. When adopting sequential execution, as
typically done in the Recovery Block approach, a reliable checkpointing mechanism is
needed, to save the state of the system before any variant starts executing and from
which an alternate variant starts its execution, should the previous variant fail. Parallel
execution implies concurrent execution of the variants, thus requiring adequate
computer resources and the use of mechanisms to assure that the same input is
provided to all the variants.

The adjudicator component plays a very critical role in the overall redundant
organization, being the entity that takes the final decision on the outcome of the
redundant computation. A variety of adjudication functions have been proposed in the
literature. They belong to two major categories: Voters and Acceptance Tests.

Voters make a judgement on the set of variants results and are typically employed when
the variants follow the parallel execution pattern. Several kinds of voters have been
proposed to select the outcome from the set of results provided by the variants, such as
majority voter, consensus voter, median voters [53] [54]. Note that the presence of
diversity requires more sophisticated voting solutions than simple bitwise comparison
(correct variant results are expected to be not perfectly coincident).

Acceptance tests make an absolute judgement on each single-variant result. This kind
of adjudicator is typically used when the execution of variants is sequential. Popular
acceptance tests are based on satisfaction of requirements or reasonableness test (see
[54] for more examples). Hybrid adjudicator forms that employ combinations of voter
and acceptance test have been also explored, such as in [55]. A final observation on the
discussed adjudicator categories is that voters are universally applicable, since they are
based on syntactic comparison, while acceptance tests have to do with the semantic of
the function performed by the variant, and a sufficiently accurate test of its result can be
difficult or impossible to define. In [56], an optimal adjudicator function was proposed,
that has the highest theoretically possible probability of producing a correct result for
any input to a particular redundant component. It exploits probabilistic knowledge about
errors/faults in the subcomponents of the fault tolerant component. Although not
exploitable as a practical adjudicator, the concept of optimal adjudication is useful both
as an upper bound on the probability of correct adjudged output obtainable and as a
guide for design decisions.

Page 44 of 117

Deliverable 6.4: Mitigation Identification and Design

To help addressing omission failures experienced by variants, the adjudicator
component is typically equipped with a timeout mechanism that terminates the waiting
on a variant’s result, after a predefined time interval determined on the basis of
maximum execution time for the variant under consideration. In the following, it is
assumed that each addressed intrusion tolerance scheme adopts a timeout for this
purpose.

At first sight, it could seem unnecessary to tailor 𝑛 Version Programming [57] (more
general mr), Recovery Blocks [58] [55], 𝑛 self checking, etc, to the security context
because, at least from [2] on, it is clear that fault-tolerance already addresses intentional
faults (namely attacks). Nevertheless, in Section 2.8 it has been discussed how the
peculiarity of intrusions requires the employment of forms of diversity to better protect
the system/component under development. In classical redundancy-based fault
tolerance schemes, diversity is advocated to cope with design faults resulting in
common mode failures, but its need in addressing accidental faults is less
stringent/radical than in case of intrusions (among the diversity approaches depicted in
Figure 10, measures addressing functional influences are mainly considered).

The stronger role played by diversity is a first distinctive aspect of redundancy-based
intrusion tolerance schemes with respect to corresponding fault tolerance ones. To
further enhance the efficacy of offered Intrusion Tolerance solutions, a few other
features that have been proposed to support fault tolerance and/or security properties
in general are exploited.

Page 45 of 117

 Deliverable 6.4: Mitigation Identification and Design

3.1. Additional protection measures

As additional protection measures to enhance the efficacy of Intrusion Tolerance
schemes, the concepts of rejuvenation, locality, access control and confusion have been
selected as promising candidates. A brief recall of each of them, with considerations on
their employment in the proposed IT schemes, is in the following.

3.1.1. Locality

Location diversity, consisting of placing several physical components of a system in
different sites, is recognized since long time as a good practice to cope with physical
threats, like natural disasters (e.g., floods or fires) or basic service outages (e.g.,
electrical outage). When deliberate attacks are considered, as in intrusion tolerance, this
measure becomes even more relevant. Interestingly, location diversity can be easily
joined with diverse administration domains characterizing the different sites, so further
improving the defense against attackers [59]. In the following it is assumed that the
defender has 𝑠 sites at disposal and can distribute the variants among the sites. Utility
functions (e.g., input scatter, output gather, acceptance tests, adjudicator, etc) are
deployed on a special site not counted.

Notice, though, that scattering data and code among on-premises and/or commercial
data centre to improve on system resilience, has the potential drawback to degrade
confidentiality, depending on the accessibility conditions to the chosen diverse sites, as
discussed in [60] for embedded systems and in [61] in the context of Byzantine Fault
Tolerance. Thus, side effects of location diversity have to be carefully analysed and
managed. Being the subject too application specific, it is not addressed here.

3.1.2. Rejuvenation

For long-living systems, rejuvenation [62] enhances fault-tolerance: once in a while, each
replica is subject to some form of clearance/rejuvenation in order to reduce its failure
rate or the frequency of intermittent faults, so that the entire fault-tolerance scheme is
improved.

While relevant to contrast any kind of malfunctions producing erroneous behaviours of
a system/component that tend to increase along time, the benefit of rejuvenation is
essential in the context of intrusion-tolerance, where an intelligent attacker may have
enough time to successfully accomplish its intrusion. In fact, if clearance actions are
effective enough, rejuvenation reduces the time window for an attack to be successful
to be just the time between two consecutive clearances. To this purpose, rejuvenation
should:

• take place with high frequency, so that the attacker has to act as quickly as
possible, potentially making mistakes that trigger intrusion and information leak
detectors that are in place,

• be coupled with diversity, i.e., each rejuvenation introduces as many changes as
possible for reducing the correlations between pre- and post- clearance, ideally
generating a completely new variant.

In [63] the authors make a distinction between proactive and reactive rejuvenation
policies in the context of distributed systems, where the interaction among components
allows some form of reciprocal diagnosis based on perceived behaviours and
consequent triggering of a rejuvenation phase in case there is the suspicion of a
malfunctioning component. Instead, when focusing on individual component replication
as addressed in this work, rejuvenation can be mainly applied as a proactive defensive
measure. However, to account for potential self-checking features a variant of the
redundant scheme could be equipped with, the rejuvenation can be either scheduled at

Page 46 of 117

Deliverable 6.4: Mitigation Identification and Design

predefined time intervals or activated when some critical event is perceived (e.g., the
variant itself could apply internal checks to reveal suspicious behaviour). Of course,
rejuvenation is a costly operation and resorting to it with high frequency can become too
onerous, especially when applied for contrasting attacks. In fact, the rejuvenated variant
is expected to be significantly diverse from the original one; acting at functional level
should assure higher degree of diversity, although simpler automatic diversity forms (like
change in name or position of files in the filesystem) or obfuscation techniques (e.g.,
compile the program in sophisticated, and always different, ways that make reverse
engineering difficult) can be considered as well. In general, a trade-off needs to be
carefully analysed between several involved aspects to find the suitable rejuvenation
strategy (mainly in terms of rejuvenation frequency, degree of diversity for the
rejuvenating variant, time needed to accomplish the rejuvenation, desired level of benefit
from rejuvenation).

Of course, since rejuvenation does not guarantee full independence between pre and
post versions of the variant from the attacker perspective, it cannot be the only defence
mechanism in place.

In this deliverable, 𝑟 indicates the maximum number of variants per site that can be under
rejuvenation at each instant of time. The rejuvenation procedure requires an interval of
time to be completed; therefore, when under rejuvenation, a variant skips one or more
executions performed by the redundancy scheme it is involved in, until the rejuvenation
phase completes.

3.1.3. Techniques to assure protection levels

Access control policies are typically applied to selectively restrict access to resources
that play different roles, and a variety of access models have been developed to grant or
reject an access request.

Access control in computer security has been widely investigated (e.g., [64] with
reference to IoT technology). Through authentication and authorization, access control
policies make sure users are who they say they are and that they have appropriate
access to the intended resource. According to the criticality of a component, more or
less stringent rules are applied to grant the access.

The redundancy-based solutions for Intrusion Tolerance that will be detailed in the
following include components of different criticality: the functionally equivalent variants
show lower criticality than adjudicator components responsible for selecting the
outcome from the variants’ outputs. From this we derive that the adjudicator component
needs higher protection level than individual variants, in terms of reducing the ability to
an intruder to access it as a resource to compromise. So, the need of adequate
protection mechanisms and access control techniques is even more exacerbated in
intrusion tolerance context, to avoid defeating the effort of costly redundancy.

For embedded or IoT systems, it is common to exploit a Root-Of-Trust to enhance
security, and also fault-tolerance architectures can be complemented with such a
mechanism [49]. Other solutions, such as resorting to a distributed adjudicator
component to avoid the single point of intrusion are possible.

For our purposes, two layers of protection will be considered, indicated as 𝐿0, 𝐿1, where
𝐿0 is the most stringent one. Of course, more a fine-grained solution with higher number
of protection levels could be of interest in specific contexts/application domains. In
more general terms, deciding which part of the intrusion-tolerant architecture has to be
assigned a given layer is crucial, having profound consequences not only on
implementation choices but also on the attack model, and then on the analyses the
defender performs to oppose the strongest defence to potential attackers.

Page 47 of 117

 Deliverable 6.4: Mitigation Identification and Design

In the literature, there are proposals in several directions when addressing intrusion
tolerance in specific contexts, such as:

• the adjudicator together with variants-adjudicator communication channels are
in 𝐿0, whereas the variants are in 𝐿1 [49];

• adjudicator and variants are in 𝐿0 but the communication channels are in 𝐿1 [60];
• if the adjudicator is a simple voter, then its logic can be distributed onto the

variants located in 𝐿1, and only the interface with the output can be placed in 𝐿0
[65].

Clearly none of the above is always better than the others, it depends on the context and
the available resources. For instance, having most of the architecture in 𝐿0 and only the
communication channels in 𝐿1 can appear from one hand too expensive, and on the other
hand insecure because for an attacker it is easier to address the communications than
the logic because this way almost no domain specific knowledge is required. However,
this may not be the case because in some contexts (e.g., cyber-physical systems) both
variants’ and adjudicators’ logic can be simple enough to be implemented in
microcontrollers that are relatively cheap and easy to protect, or heavy and complex but
implemented in containers that run on machines physically located in secure places, and
communication channels can in turn be made intrusion-tolerant to reduce exposition to
attacks.

3.1.4. Confusion

An accidental fault just happens. Conversely, an intentional fault (an attack) is the result
of rational choices made by one or more adversaries, and usually strikes the variant that
the attackers hypothesize to be the weakest ones. Thus, in intrusion-tolerant systems it
is common to find confusion strategies aimed at decreasing the confidence the
attackers have in their decisions or increase the attack cost. Available strategies have
been developed for different mitigation purposes and so show different degrees of
effectiveness. For instance, replacing some variants with camouflage ones, i.e.,
components that perform no operations but mimic the interactions that operating
variants have with the environment [66], can add a sufficient level of confusion only if
the attackers have limited resources, in particular of time. For a cyber-physical
infrastructure, such as a Smart Grid, where the attackers can study the system and plan
the intrusions for years, and where it is expected that foreign adversaries are willing to
invest huge resources in the attack, camouflages are less effective. In the referred
context, camouflages are of great help to set up honeypots aimed at gaining information
about the attacks or to do detection, but to tolerate intrusions the most effective choice
is to use extra but working variants and configure the tolerance scheme such that the
adjudicator component decides (probabilistically or deterministically) which results to
consider among the set of received ones. Of course, this solution is not always
applicable due to its high cost, but is beneficial as much as for the analogous in
distributed computing [67] [61].

Moreover, they are proposed as conceptual schemes, without any direct connection to
specific application domains, each one typically characterized by consolidated design
practices and agreed standards. Therefore, whether and which protection mechanisms
suggested above are appropriate to be employed in a specific system design certainly
depend on their consistency with recommendations dictated in the referred application
domain.

To conclude this overview of security enhancing features, a graphical vision of the above
concepts employed in redundancy-based fault intrusion is provided in Figure 11, where
a configuration example is illustrated. It involves: 9 variants, of which 6 are predefined
to be those whose outputs are considered by the adjudicator (named as participating

Page 48 of 117

Deliverable 6.4: Mitigation Identification and Design

variants and labelled as pvi), and the remaining 3 are ignored by the adjudicator (named
as non-participating variants and labelled as npvi), and 2 adjudicator components
(labelled as Ai). A protection level is associated to each component (labelled as Li) and
distributed in four different sites (labelled as si). Periodic rejuvenation phases are also
indicated. Note that, for visualisation purpose, this example has to be considered as a
snapshot of the scheme configuration taken at a certain moment of its execution.

Finally, in Sections 3.3, 3.4 and 3.5 several redundancy-based intrusion tolerance
schemes are described. It is clarified that such proposed schemes are not meant to be
an exhaustive intrusion tolerance set; rather, they are examples of how the features
discussed in this section can be exploited to adapt the traditional fault tolerance
organization to cope with intentional attacks. So, there is openness to other interesting
alternatives.

Figure 11 - Snapshot of a redundant-based intrusion tolerance configuration encompassing 6
participating variants (pvi), 3 non-participating variants (npvi), 2 adjudicators (Ai), with indication of their

protection level (Li) and site where they are located (si).

Page 49 of 117

 Deliverable 6.4: Mitigation Identification and Design

3.2. Attack model

The assumptions on the attack model are detailed in the following. The first statement
is that only cyberattacks are considered. Therefore, an ICT component, even when
composed of a physical device and software managing/controlling its operational life,
can be compromised only through the software part. An attacker has ability to:

• intrude the variants and
o alter their result (value failure). The best strategy for the attacker is to try

to compromise as much variants as possible, making them deliver the
same (wrong) result, thus inducing a common-mode failure. 𝑓 indicates
the number of value failures (possibly of kind common-mode) generated
during an execution of an intrusion tolerant scheme.

o make their result unavailable, that is the compromised variants
experience an omission failure. 𝑘 indicates number of omission failures
generated during an execution of an intrusion tolerant scheme.

• isolate 1 site among the 𝑠 where the variants are deployed. The effect is that the
results of all the variants located on that site became unavailable, and the
adjudication function perceives an omission failure from these variants. The
assumption of no more than 1 site under potential isolation by an attacker is in
line with the works in [67] [61], and is made here for the sake of simplifying the
presentation, but can be relaxed without invalidating the following developments.

The considered intrusion tolerant architectures can tolerate 𝑓 arbitrary value failures
(common-mode value failures, in the worst case) and 𝑘 omission failures
(comprehensive of both those intentionally caused by the attacker and those due to
accidental causes).

The protection layer 𝐿0 is assumed to be unattackable, so those functionalities put under
this protection layer (namely, adjudication functions and possibly some of the variants)
do not experience successful cyberattacks. However, variants subject to higher
protection from cyberattacks can be still affected by accidental faults. Instead, for what
concern the adjudication functions, given their higher simplicity and reliability, their
failure (both in selecting a wrong result and in not recognizing the exiting of a correct
result) is not directly accounted for in the proposed redundant architectures. Of course,
their reliability needs to be considered when assessing the ability of the scheme to
satisfy desired dependability properties.

Page 50 of 117

Deliverable 6.4: Mitigation Identification and Design

3.3. Family of NVP-like Architectural Proposals

This section is dedicated to the family of redundancy architectures that follow the N-
Version Programming (NVP) organization. After a brief description of the classical NVP
fault tolerant architecture [57], a few solutions obtained from its adaptation in the
context of intrusion tolerance are discussed.

3.3.1. The reference N Version Programming

As depicted in Figure 12, the N Version Programming (NVP)6 comprises an adjudicator
that receives all the results from the variants (or, after a timeout, works with those that
are available) and, in the original formulation in [57], checks if there is a majority among
the results. The variants are usually executed in parallel, although sequential execution
has been investigated (the corresponding architecture is often called 𝑛VS) in contexts
where computational resources are limited. If there is a majority, then this is the elected
result that is sent in output. Otherwise, depending on the failure model, the component
can switch to a benign failure state (e.g., in the context of Safety) or send in output a
default value or choose one of the results exploiting other kinds of information, such as
past knowledge about recurring errors (e.g., in the context of Reliability). This kind of
adjudicator is called simple voter.

Figure 12 - Basic configuration of N Version Programming (NVP) employing n=3 variants.

Other kinds of adjudicators, such as variants of the simple majority (as presented in [54]),
or exploiting more complex syndromes, such as additional information of the reliability
of the variants (as for the optimal adjudicator in [56]) have been adopted. Actually,
sophisticated adjudication functions can be defined, exploiting available information
about the variants under execution to help selecting the (assumed to be) correct result
(including previous disagreement with selected output, time to last
rejuvenation/recovery) While keeping the voter simple in its logic certainly favours
correctness of this critical component with respect to unintentional design faults,
exploiting additional information at cost of introducing higher complexity appears
appropriate in the context of Intrusion Tolerance, since it enhances the defender ability
to perform rational choices.

6 The term “𝑛 Version Programming” is not used in the software context only, but is commonly adopted in
mixed software and hardware contexts. Notice that for pure hardware, the terms “𝑛 Modular Redundancy”
or “static redundancy” are often preferred.

Input

Variant 1

Variant 2

Variant 3

Adjudicator Output

Page 51 of 117

 Deliverable 6.4: Mitigation Identification and Design

The NVP configuration appropriate in a certain application context, in terms of number
of variants to employ and the adjudicator component to adopt, depends on the failure
model that is intended to be tolerated. For instance, if the goal is to tolerate 𝑚 failures
(both benign and catastrophic), a suitable configuration requires 𝑛 = 2𝑚 + 1 variants
with the simple voter as adjudicator.

Many specific NVP-like redundant schema have been proposed in the literature, as those
reported in the survey [53], which focuses on fault tolerant Service-Oriented
Architectures. Efficient organizations have been also pursued, for instance by
performing results comparisons as soon as they arrive, so to wait for only 𝑚 to agree,
thus improving on time performance, particularly relevant in real-time systems.

Of course, this scheme is fully recursive, meaning that a variant can in turn be
implemented following the NVP schema.

Starting from the classic NVP fault tolerant organization just recalled, a few adaptations
to the fault intrusion context are proposed in the following. A first, immediate NVP-based
intrusion tolerance alternative, referred as basic iNVP and depicted in Figure 13, can be
simply obtained by introducing protection mechanisms at level of communication
channels (mainly to detect side-channel information leak) and encapsulating the voter
component within a secure module (root-of-trust), as proposed in [49]. While this is
certainly viable, in the following we concentrate on more sophisticated solutions, and
therefore expected to be more resilient and/or less expensive (although this kind of
quantitative assessment of resilience vs cost metrics is out of the scope of this work).

Figure 13 - Intrusion N Version Pprogramming (iNVP), in the example with n=3 variants.

3.3.2. Random Participation

Random Participation of ℎ among 𝑛 variants (iNVP-R) resembles the NVP structure and
logical operation, but introduces a form of confusion to make the attacker’s life harder.
More variants than those strictly needed to tolerate the assumed fault model are
employed, and the adjudicator chooses uniformly at random ℎ results among the 𝑛
provided by the variants at each execution, and then performs the simple vote only with
them. The variants have no feedback about whether their result has been selected or
not. Those variants whose result is not selected are called non-participating variants.

Notice that there are (𝑛
ℎ
) possible ways to select ℎ results among the 𝑛 available.

The idea at the heart of this redundancy architecture is that choosing uniformly at
random the participating variants makes it impossible for the attackers to know if the

Input

Variant 1

Variant 2

Variant 3

Adjudicator Output

L1

L0

Page 52 of 117

Deliverable 6.4: Mitigation Identification and Design

resources invested in compromising a specific variant are wasted and then, to maintain
the same probability of overall attack success, the attackers are required to invest on
average more resources (other probability distributions could provide a clue about the
defender strategy, thus it is better to avoid using them). Of course, this enhancement
against attackers is paid in terms of additional variants that need to be fully operative
(so more expensive than simple camouflage elements); this number of extra variants
(𝑛 − ℎ) can vary and a quantitative analysis is needed to operate a suitable choice that
results in a good tradeoff among contrasting aspects (dependability assurance and
implied cost, depending on the criticality of the application).

3.3.3. Deterministic Participation combined with rejuvenation

The proposed deterministic strategy (iNVP-D) is similar to iNVP-R, but the choice of the
non-participating variants is made deterministically instead of randomly. In addition, it is
equipped with a rejuvenation, which brings the positive effects briefly discussed in
Section 3.1. The idea is that a number 𝑛 − ℎ of variants is selected at each execution as
excluded by the final voting, and identity of such non-participating variants changes from
one execution to another. In such an organization, the higher knowledge from the
attacker’s perspective is countered by the defender’s power to accomplish rejuvenation
of variants, so that those participating to the vote include those more recently
rejuvenated.

Of course, rejuvenation can be profitably applied to variants also in the previous iNVP-R
strategy. However, since the choice of the participating variants is random, rejuvenation
cannot be fully controlled to bring the highest benefit. Possible alternatives include to
randomly choose the variant(s) to rejuvenate, or to sequentially rejuvenate variants
according to some predefined order. Which one would bring higher benefit can be
assessed through an analysis carried out for this purpose?

As an example, consider the architecture depicted in Figure 14 that comprises 6 variants
and can be representative of both iNVP-R and iNVP-D. In the figure, the snapshot of an
execution is shown, where variant 6 is under rejuvenation, and, among the five remaining
in service, only the results coming from ℎ = 4 of them are considered by the voter
(variant 2 does not participate). The voter is assigned the protection level 𝐿0 (highest
protection level, given the higher criticality of the voter with respect to the other
components), while the variants and communication channels are assigned the
protection level 𝐿1.

Page 53 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 14 - Snapshot of an execution of either iNVP-R or iNVP-D, where among n=6 variants only h=4
participate to the voting (the shaded variant does not participate), and 1 variant is under rejuvenation (dark
gray)

3.3.4. 𝑵 Version Programming with distributed voter

As evident from Figure 13, the adjudicator is a single point of failure in the architecture.
One way to protect it is to put it in a highly restrictive layer, e.g., 𝐿0 in Figure 13. Depending
on the complexity of the adjudicator, resorting to a full 𝐿0 protection level could be
infeasible/inconvenient. Therefore, an alternative, here called 𝑖𝑁𝑉𝑃𝐷, is to distribute its
logic in such a way that only a small kernel of the adjudication algorithm needs to be
protected in 𝐿0 and the rest can stay in 𝐿1. For the simple voter, in [65] a distributed
algorithm is presented in Figure 15, where only an interface is in 𝐿0 and the rest of the
logic is distributed among the variants, that are in 𝐿1. Notice that it is possible to consider
iNVP-R also in this case by modifying the interface logic (when a non-participating
variant ask for writing its result, the interface acknowledge the writing but does not
perform it).

L0L1

Input

Variant 1

Variant 2

Variant 3

Variant 4

Variant 5

Simple
 voter

Output

Variant 6

C
hoose uniform

ly at random
 4 over 5 of the available results

Page 54 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 15 - NVP with distributed adjudicator, here called iNVP_D. Two access control layers (L0, often in
embedded or IoT devices implemented through a Root-of-Trust) and the adjudicator logic is distributed
(orange)

The interface is designed to be sufficiently small and simple, deployed in an embedded
system or for IoT devices, hosted within a Root-of-Trust, and in any case to be formally
verifiable (through model checking, theorem proving, etc). Notice that this architecture
is the one, among all discussed in our work, which requires less objects under 𝐿0. Usually,
fault-tolerance architectures are designed in layers [68], where components at one layer
abstract their details and offer APIs to the layer immediately above it, so the adjudicator
can be implemented exploiting well-known principles, tools and tweaks elaborated over
the decades in the distributed system community, or even through off-the-self
components. Notice, though, that exposing part of the adjudicator’s logic to higher risk
of attack is not recommended in all circumstances (e.g., is not recommended for a
safety-critical component).

Input Output

D
is

t.
A

dj
ud

.
D

is
t.

A
dj

ud
.

D
is

t.
A

dj
ud

.
D

is
t.

A
dj

ud
.

D
is

t.
A

dj
ud

.

Impl. 1

Impl. 2

Impl. 3

Impl. 4

Impl. 5

Variant 1

Variant 2

Variant 3

Variant 4

Variant 5

Interface

L0

L1

Page 55 of 117

 Deliverable 6.4: Mitigation Identification and Design

3.4. Family of RB-like Architectural Proposals

This section is dedicated to the family of redundancy architectures that follow the
Recovery Blocks (RB) organization. After a brief description of the classical RB fault
tolerant architecture [55], a solution obtained from its adaptation in the context of
intrusion tolerance is discussed.

3.4.1. The reference Recovery Block with 𝒏 variants

The basic schema of Recovery Block (RB)7 [55] is depicted in Figure 16. In its logical
organization, the 𝑛 variants constituting the RB are executed sequentially, according to
a predefined order. The first variant is typically called primary alternate, followed by the
secondary alternate if only two variants are employed, or second alternate, third alternate
and so on in case of multiple variants. The adjudicator takes the form of an acceptance
test (AT), applied to each individual result provided by the primary or an alternate (just
one AT can be employed, or each variant is associated to a specific AT). On entry to a
recovery block, the state is saved to permit backward error recovery (i.e., to establish a
checkpoint). The primary is executed first, and then its AT checks the produced result. If
the check is successful, the RB terminates its execution by releasing this (assumed to
be) correct outcome and the taken checkpoint is deleted. Otherwise, the first alternate
is executed after restoring the state to the taken checkpoint, repeating the AT on the
obtained result, and so on, until a successful check is encountered (RB terminates with
a judged to be correct outcome) or all the alternates have completed their computation
(RB terminates with a default outcome, or just a notification that no correct outcome
was found). Of course, this schema is fully recursive, meaning that a variant can in turn
be implemented following the recovery block structure.

Figure 16 - Basic configuration of n Recovery Blocks (RB) employing n=3 variants

Notice that, when dealing with replicas, a single acceptance test is sufficient, but the
presence of diversity among variants, as advocated for intrusion tolerance purposes,
may require that a specific acceptance test is employed for each variant, depending on
the resulting degree of diversity. In fact, as already discussed, correct variants may

7 The equivalent in hardware only contexts are “stand-by sparing” or “passive redundancy”.

Input Variant 1

Variant 2

Variant 3

Output

R1Acceptance Test 1

R2Acceptance Test 2

R3Acceptance Test 3

R1 is not acceptable

Checkpoint

Recovery

R2 is not acceptable

Recovery

R3 is not acceptable Failure

Page 56 of 117

Deliverable 6.4: Mitigation Identification and Design

produce different but equally acceptable results, and RB alternates typically differ in
terms of execution speed and (degradable) accuracy.

As for the NVP adjudicator, here the acceptance test is a crucial component. On the one
hand, the acceptance test must be simple enough to assure higher correctness than the
variant it checks, but on the other hand not so trivial as to ignore the variants’ specificities
and guarantee significance of the performed check. Coverage of an acceptance test,
such that reliance can be put on the result of its check, depends on the application
domain it is called to operate upon. Therefore, resorting to an RB structure strongly
depends on the availability of acceptance tests characterized by enough coverage.

With respect to NVP, RB can be more efficient in computing resources, since in most
cases only the primary is executed, while NVP exercises all the variants. However, this
advantage poses also an additional implementation problem: how to synchronize the
internal states of alternates that performed executions with those that did not. In fact,
while the sequential execution paradigm of the RB variants (possibly involving a subset
of the variants only) is fully adequate in case of stateless components, a problem arises
when the variants exploit their internal state in the computations they perform over time.
In this latter case, synchronization at state level is needed, to assure consistency of the
computations. Parallel Recovery Block, where the primary and all the alternates are
executed although only a subset of them would be strictly needed to assure termination
of the RB execution, is a simple although costly solution to cope with consistency of
alternates’ internal state.

3.4.2. Intrusion Recovery-Block

RB for intrusion tolerance purposes (iRB) requires high protection of crucial elements,
so a first simple solution consists in enclosing the checkpoint update/restore
mechanism, the acceptance test and the switch that selects in turn the alternates under
the protection level 𝐿0, and the variants in 𝐿1, as depicted in Figure 17 (similar to what
proposed in [49]).

Figure 17 - Basic iRB configuration, employing 3 variants and 2 protection layers

Input Variant 1

Variant 2

Variant 3

Output

R1Acceptance Test 1

R2Acceptance Test 2

R3Acceptance Test 3

R1 is not acceptable

Checkpoint

Recovery

R2 is not acceptable

Recovery

R3 is not acceptable Failure

L0L1L0

Page 57 of 117

 Deliverable 6.4: Mitigation Identification and Design

An alternative to the redundancy architecture depicted in Figure 17 is placing also the
first alternate in 𝐿0. This is more expensive but guarantees that the most crucial variant
from the attack perspective is adequately protected. Notice that the checkpoint
mechanism, the acceptance tests and the switch need to be in 𝐿0, otherwise the
attackers can alter the scheme output even without compromising the variants.

To contrast the potential ability of an attacker to monitor the communications between
the variants and the switch to identify the primary alternate (reading the content is
unnecessary, only knowing the sender and the receiver is enough), the parallel execution
of all the alternates appears as another suitable solution. In fact, it increases attacker’s
confusion and also saves in overall execution time in case the primary fails the
acceptance test, but requires more execution resources than the pure sequential
execution.

As for the intrusion tolerance alternatives based on the NVP scheme, also in the case of
the iRB scheme the random selection helps in increasing attacker’s confusion, while
rejuvenation phases enhance the health of the alternates, so as to nullify the effort
previously made by the attacker to compromise the rejuvenated variant.

A more protected alternative, called here iRB-R, the primary is made redundant (𝑛RD
variants) and all the variants are executed, but the results of only one, selected at
random, is verified by the acceptance test. This strategy is inspired by the Random
Dictator approach described (Kwiat et al. 2010), and is applicable when available
alternates have comparable performance and accuracy levels (to avoid penalizing
quality of service indicators perceived by the user of the redundant structure).

The Random Dictator approach [69], where one variant among the ℎ is selected at
random as the primary alternate every time a result is needed, as depicted in Figure 18,
exploits this direction.

Regarding rejuvenation, it can be selectively performed to have the most recently
rejuvenated alternate to act as the primary at each execution. To partially compensate
the cost of rejuvenation operations, a simpler RB structure composed of only the primary
and secondary alternates would be sufficient, provided that: the two alternates have
similar performance and accuracy levels, and the time needed to rejuvenate an alternate
is shorter than the time needed to the other alternate to process an input.

Page 58 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 18 - Snapshot of an execution of iRB-R with 2 protection layers and 3 alternates, where the first
alternate is selected uniformly at random among 3 candidates following the Random Dictator scheme

As for the previous family of NVP-like techniques, it is clarified that the just discussed
RB-like solutions are not meant to be an exhaustive intrusion tolerance set; rather, they
are examples of how the features discussed in 3.1 can be exploited to adapt the RB
tolerance organization to cope with intentional attacks. So, there is room to investigate
other interesting alternatives.

Input Variant 1,2

Variant 2

Variant 3

Output

R1,2

R1,2 is not acceptable

R2Acceptance Test 2

R3Acceptance Test 3

Checkpoint

Recovery

R2 is not acceptable

Recovery

R3 is not acceptable Failure

L0L1L0

Variant 1,1

Variant 1,3

Acceptance Test 1,1

Acceptance Test 1,3

Acceptance Test 1,2

R
andom

 D
ictator

Page 59 of 117

 Deliverable 6.4: Mitigation Identification and Design

3.5. Family of Hybrid Architectural Proposals

NVP and RB are recognized as the two extremes of redundancy-based fault tolerance
techniques: exploitation of maximum execution resources to achieve minimum
execution time (NVP) and minimum execution resources to be potentially payed by
maximum execution time (RB). In between, hybrid solutions that try to combine the best
aspects of each of the two have been proposed in the literature. Three of them have been
selected, briefly recalled in the following (SCP [70], CRB and SCOP [71]), and for each of
them an alternative suitable to address intrusion tolerance is presented.

3.5.1. N Self-Checking Programming

The N Self-Checking Programming (SCP)8 architecture consists in the parallel execution
of 𝑛SC self-checking components, ordered according to some criteria (typically, based on
performance and accuracy considerations). The outcome of the NSCP structure is the
result provided by the first self-checking component, starting from the first one in the
ordered list. A self-checking program results from the addition of redundancy into a
program to check its own dynamic behaviour during execution [72]. As reported in [70],
a self-checking component consists of either a variant and an acceptance test or two
variants and a comparison algorithm.

In Figure 19, a NSCP configuration is depicted, where four variants are involved and
organized in two self-checking components, each one resulting from the association of
two variants with a comparison algorithm, such that an output is produced only if the
comparison between the results of the two variants is successful.

Figure 19 - Example of SCP configuration with two self-checking components, each one exploiting two
variants and a comparator

3.5.2. Intrusion Self-Checking Programming

Borrowing ideas from intrusion tolerant NVP and RB, a basic architecture for the
intrusion tolerance counterpart of SCP, called iSCP, consists in exploiting different
protection layers to enhance defence against attacks.

8 The equivalent in hardware only context is “active dynamic redundancy”.

Input

Variant 1

Variant 2

Variant 3

Output

if C
1

2 th
e

n
 R

1 e
lse

if C
3

4 th
e

n
 R

3 e
lse

 E
R

R
O

R

C12Compare 1 and 2

R1

Variant 4

C34Compare 3 and 4

R3

Page 60 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 20 - iSCP with 2 protection layers and 4 variants grouped in 2 self-checking components

Notice that the configuration in Figure 20 guarantees tolerance of 1 arbitrary intrusion,
and 2 intrusions only if manifested with non-coincident errors. When tolerance to
multiple arbitrarily compromised variants is needed, the approach of iSCP is to define a
self-checking component as in Figure 19, where at least one variant is assigned the
highest protection level 𝐿0, as for the comparator component. This is because the
common mode failure between the two coupled variants is expected to be not a rare
event when intentional attacks are considered, and so a phenomenon that need to be
mitigated from the security perspective (as also pointed out in [49]). In this case, it is
relevant to distinguish 𝑎 value failures due to accidental causes from 𝑖 value failures due
to intentional attacks, so that 𝑓 = 𝑎 + 𝑖, and assume that the wrong results produced by
accidental causes are different from the ones produced by intrusions (otherwise the
attacker needs to read the accidentally wrong value). Since variants in 𝐿0 are protected
against attacks, but can still suffer from an accidental fault, tolerance abilities of this
architecture are: 𝑎 ≤ 1 and 𝑖 that depends on 𝑛 and 𝑎 as reported in Table 4 (within a
self-checking couple, at most one variant can be affected an accidental fault and at most
one by an intrusion).

In case the self-checking component results from a couple variant and acceptance test,
for the same reason discussed above it is appropriate that the acceptance test receives
a higher protection (𝐿0).

An alternative iSCP architectural solution able to tolerate the presence of 𝑓
compromised versions would be to increase the redundancy within a self-checking
component (i.e., each self-checking component comprises 𝑔 ≥ 2 variants, whose results
are submitted to a majority voter), resembling an iNVP structure, to enhance its tolerance
ability. Unfortunately, the resulting number of needed variants is significantly higher than
for the corresponding iNVP alternative with the same tolerance abilities, so not
competitive and therefore not considered in this study (see Appendix II for details).
Confusion strategies could be further added but are not investigated here.

Input

Variant 1

Variant 2

Variant 3

Output

if C
1

2 th
e
n

 R
1 e

lse
if C

3
4 th

e
n

 R
3 e

lse
 E

R
R

O
R

C12Compare 1 and 2

R1

Variant 4

C34Compare 3 and 4

R3

L0L1

L0

L1

L0

Page 61 of 117

 Deliverable 6.4: Mitigation Identification and Design

3.5.3. Consensus Recovery Block

The Consensus Recovery Block (CRB), depicted in Figure 21, reduces the importance of
the acceptance test used in RB and is able to handle the case where NVP does not
employ a sophisticated voter able to recognize multiple correct outputs [55]. In CRB the
variants are ranked, and, on invocation, all variants are executed in parallel, and their
results submitted to a voter. The original formulation of the scheme [73] assumes that
there are no common mode failures, so erroneous results do not coincide. Therefore,
agreement between the outcomes of two variants is sufficient to deliver this value as
the final result. However, in a more general formulation, which is comprehensive of less
restrictive failure model assumptions, the voter can be based on a simple majority (so
the architecture can tolerate 𝑓 = 𝑚 − 1 = ⌈(𝑛 − 1)/2⌉) or another plurality criterion to
consider an outcome to be successful. If there is no majority, then the result of the
variant with the highest ranking is submitted to the corresponding acceptance test. If
this fails then the next variant in the order is selected. This continues until all variants
are exhausted or one passes the acceptance test.

Figure 21 - Basic configuration of the Consensus Recovery Blocks (CRB), instantiated for n=3 variants

Notice that this schema is, on one hand, a parallel recovery block with a pre-test about
consensus, and on the other hand an NVP with an adjudicator that is more sophisticated
than the simple voter.

3.5.4. Intrusion Consensus Recovery Block

As for the other proposed intrusion tolerant alternatives to basic fault tolerance
strategies, also for an intrusion version of CRB (iCRB) a first measure to adopt is higher
protection of the most critical components of the scheme, i.e. the implementation of the
two-step logic (voter and acceptance test, which are assigned protection level 𝐿0) with
respect to variants (which are assigned protection level 𝐿1).

Since CRB is a hybrid between NVP and RB, protection techniques already discussed
when presenting intrusion tolerance alternatives of NVP and RB could be considered for
iCRB proposals. In particular, the architecture depicted in Figure 22 is suggested, where
confusion aspects obtained through addition of extra variants whose outputs are not

Input

Variant 1

Variant 2

Variant 3

Majority

N
o m

ajority

Simple

Voter

Output

R1
Acceptance

Test 1

R2
Acceptance

Test 2

R3
Acceptance

Test 3

Failure

Page 62 of 117

Deliverable 6.4: Mitigation Identification and Design

considered by the voter component are exploited. If the employed variants have
degradable quality of service, the added non-participating redundancy could be inserted
in the ranking in different position from one execution to another. Instead, if comparable
variants are employed, the outputs considered by the voter can be randomly chosen at
each execution, to enhance the attacker’s confusion level. Then, in case the voting phase
is not successful and acceptance tests are activated, the output of previously non-
participating variants can be checked by the respective acceptance test (provided they
are available) or not, depending on the degree of reliance that can be put on them.

If affordable from the overall budget perspective, the presence of extra redundancy
favours the usage of rejuvenation actions, as a further protection measure, with
expected benefits as already previously discussed. In addition, changing the logic of the
overall adjudication function to have the acceptance test applied to the result selected
by the voter, in case this happens, strengthen the scheme to a greater extent. In fact,
taking advantage of the availability of both the voter and the acceptance test, making
such double checks enhances the chance to counteract potential intrusions.

Figure 22 - An iCRB configuration, obtained adding 2 protection layers and extra variants for confusion
(among the n=5 variants, only h=3 participate to the vote, but all the 5 are checked by the acceptance tests)

3.5.5. Self-Configuring Optimistic Programming

With the aim of improving the cost-effectiveness of fault-tolerant software (diminishing
the waste of resources) in [71] the Self-Configuring Optimistic Programming (SCOP) has
been presented. The idea is to maintain the logic of NVP unaltered but schedule the

Input

Variant 1

Variant 2

Variant 3 Majority

N
o m

ajority

Simple
Voter

Output

R1
Acceptance

Test 1

R2
Acceptance

Test 2

R3
Acceptance

Test 3

Failure

Variant 4

Variant 5

R4
Acceptance

Test 4

R5
Acceptance

Test 5

C
hoose uniform

ly at random
 3 out of 5 results

L0L1

Page 63 of 117

 Deliverable 6.4: Mitigation Identification and Design

execution of the variants in phases, instead of the parallel execution of all the variants,
to promote efficiency. The scheme is based on an optimistic vision, since high quality
versions are typically employed to build redundant organization for critical domains. The
idea is to start executing the minimum number of variants that, if all correct, satisfy the
adjudicator criterion and the scheme terminates. If this is not the case, a new execution
is started, involving the minimum number of variants among the ones remaining to be
executed, such that, if successful, will contribute together with the variants already
executed in the previous phases to satisfy the adjudicator criterion and terminate the
overall execution. This pattern is repeated until a successful result is found, or all the
variants are exhausted.

The example in Figure 23 helps to figure out how SCOP works; more details are in [71].

Figure 23 - Example of SCOP for n=5. Here Young diagrams are exploited to represent agreement among
variants (squares represent results, same row represent agreement, the rows are ordered according to the
number of agreements)

Consider 𝑛 = 5. The majority is 𝑚 = 3, so in the first phase only 3 variants are executed,
and their results passed to the adjudicator. If there is a majority, i.e., the three results
agree, then the result is sent in output without executing the other two variants. If there
is no agreement among the three variants of the first phase, but there is agreement
among two of them, then in the second phase another variant is executed, and its result
compared with the already available ones. A third phase maybe needed involving the last
available variant, if the result of the variant executed at the second phase does not
contribute to obtain a majority value. Instead, if the three variants of the first phase
produce three different results, then two variants are executed in the second phase.

End of phase 1 End of phase 2 End of phase 3

Page 64 of 117

Deliverable 6.4: Mitigation Identification and Design

Therefore, this SCOP configuration most likely terminates after only one phase (involving
three variants), but in the worst case may need three phases, involving all the variants.

3.5.6. Intrusion SCOP

The introduction of access control layers follows the same approach as in Figure 15.
The novelty relies on the fact that the very nature of SCOP promotes the application of
confusion. In fact, at the beginning of each phase, at least two strategies are feasible:

• execute more variants than needed and select uniformly at random a subset of
results of required cardinality.

• select at random just the required number of variants, choosing among a surplus of
available ones, and execute only them.

In both cases, the attacker is not able to precisely determine which are the 𝑚 variants
whose results are considered by the voter. Notice that the former, when forcing SCOP to
comprise a single phase, is equivalent to iNVP-R. The latter produces even more
combinations with respect to SCOP, as shown in Figure 24, for a specific case.

Figure 24 - Example of the possibilities in the second phase of iSCOP (of the first kind) if m=3, knowing
the configuration at the end of the first phase and assuming that, instead of one, two variants are executed
and one of the results does not participate (in gray in the picture). Notice that in 2 cases out of 8 listed
accepting both new results would have allowed to stop in the second phase

As for iNVP, choosing variants at random is not always appropriate when introducing
also the rejuvenation process. An alternative is designing a more complex adjudicator
that selects the value to send in output working on more informative syndromes. For
instance, being not all the variants’ results required in the first phase, a subset of variants
can be rejuvenated, and the last rejuvenation time of a variant can help in deciding
whether its result is reliable or not, so it is useful to include it in the syndrome.

+ + =

Page 65 of 117

 Deliverable 6.4: Mitigation Identification and Design

3.6. A practical summary of redundancy-based Intrusion Tolerance schemes

To better support the understanding and selection of the appropriate intrusion tolerance
scheme to adopt for specific purposes, in the following the solutions introduced in the
previous sections are schematized from a practical perspective. In particular, indications
about redundancy levels, degrees of confusion and of variants under rejuvenation, as
well as relation with available sites are provided.

First, Table 2 reports the number of variants that are needed by each of the five fault
tolerance schemes considered in this study, to tolerate 𝑓 (in the worst case common-
mode) value failures and 𝑘 omission failures, occurring simultaneously. Of course, 𝑓 or
𝑘 can be 0, in case only omission failures or only value failures are assumed, respectively.
Also, indication about the kind of decision function adopted by the scheme is included.
For NVP, the simple majority voting is assumed, and for SCP the self-checking
component is obtained through comparison of two variants’ outcomes. Observe that,
when only omission failures are considered, the decision function based on voting is
simplified to be just the selection of the received variant’s value (in accordance with the
omission failure assumption, if a variant output is issued, it is correct). Moreover, similar
formulations can be easily derived for determining the number of required variants for
NVP and SCP if a different voting function or a different realization of a self-checking
component than considered in Table 2 are adopted, respectively.

Table 4 is dedicated to the new proposed intrusion tolerant alternatives to the schemes
in Table 2. They are recalled in Table 3. These schemes take advantage of additional
features to better cope with intentional attacks, as deeply discussed in Section 3.2.
Specifically, they consist in: i) additional redundancy used as a stratagem to confuse the
attacker; ii) distribution of the variants on more sites; and iii) periodic rejuvenation of
variants, to contrast potential partial compromise of a variant already in place, or anyway
to nullify potential gathered knowledge by an attacker about a variant. As previously
introduced, ℎ indicates the number of variants considered by the adjudicator (therefore,
𝑛 − ℎ indicates the number of additional redundancies for confusion), 𝑠 indicates the
number of available sites, and 𝑟 indicates the number of variants under rejuvenation. The
formulas in Table 4 for the number of variants required by each scheme include these
parameters ℎ, 𝑠, 𝑟, in addition to 𝑓, 𝑎, 𝑖, 𝑘 connected with the failure types.

The central information shown in Table 4 are the number 𝑛 of needed variants to tolerate
𝑓 + 𝑘 failures, expressed in terms of 𝑓, 𝑘, 𝑠 and 𝑟, and considerations about additional
redundancy for confusion. Regarding the latter, there is no exact indication on the
amount of extra redundancy needed, since this choice is left to the system designer.
What is expected is that a higher number of extra redundancies for confusion should
correspond to a higher defence ability (and therefore higher dependability); however, this
needs to be confirmed by quantitative analysis, that is planned as a future research
study. So, it is only indicated that, if the total number 𝑛 of variants grows with extra
variants, the needed number variants for tolerating 𝑓 + 𝑘 failures reported on the left
column represents the number of variants whose results are considered by the
adjudication function, that is ℎ. Additionally, the population of variants under
rejuvenation is chosen by the system designer, trading between the cost of rejuvenation
and benefits in prolonging the life of correctly operating variants; so only its number 𝑟 is
accounted for in the formulas.

iNVP with simple majority voting requires

𝑛 = 2𝑓 + 𝑘 + 1

variants to tolerate 𝑓 (in the worst case common-mode) value failures and 𝑘 omission
failures, being the majority 𝑚 = ⌈(𝑛 + 1)/2⌉, as reported in Table 2.

Page 66 of 117

Deliverable 6.4: Mitigation Identification and Design

If the defender has 𝑠 sites, the best strategy is to distribute as uniformly as possible the
variants among the sites. Thus, there are ⌈𝑛/𝑠⌉ variants on the largest site, and then 𝑘 ≥
⌈𝑛/𝑠⌉. Applying standard properties of ceil function (details are in Appendix I) it is
possible to relate 𝑛 directly to 𝑓 and 𝑘 (datum), and 𝑠 and 𝑟 (designer choice), as in Table
4. However, the uniform distribution is not a compelling requirement, so other
deployment policies can be adopted. As a general rule, the necessary condition to
prevent the occurrence of a system failure, following the isolation of one site by an
attacker, is that less than the number of variants whose results are needed to satisfy the
adjudication function are allocated to any single site (a majority of variants, in case a
majority voting is employed in the scheme, as for the case presented).

When confusion is adopted, ℎ = 2𝑓 + 𝑘 + 1 and 𝑛 ≥ ℎ (i.e., the total number of variants
is always greater than the participating ones), in both deterministic and random
strategies.

iRB requires a smaller number of variants, 𝑛 ≥ 𝑓 + 𝑘 + 1, with respect to iNVP and 𝑛 does
not change when the isolation of a site is considered as long as 𝑛 > 𝑠, that is usually the
case. For degradable systems, where the variants in iRB are ordered according to results’
accuracy, the best strategy to distribute the variants among sites is to deploy the primary
on one site, the second alternate on another site, and so on till the first 𝑠 variants are
assigned and distribute the remaining 𝑛 − 𝑠 round robin among the sites. Confusion is
mainly applied to the primary, and, calling 𝑛RD the number of variants in the iRB, implies
that 𝑛 ≥ 𝑓 + 𝑘 + 𝑛RD. In this case, the 𝑛RD − 1 additional variants have to be deployed on
different sites.

Table 2 - Comparison of classical architectures. k is the number of omitted results.
Legend: arch=architecture, n=number of variants, decision=decision mechanism

arch 𝑛 decision

NVP 2𝑓 + 𝑘 + 1 Relative, simple majority
RB 𝑓 + 𝑘 + 1 Absolute, based on ATs
SCP 2(𝑓 + 𝑘 + 1), with 𝑓 ≤ 1 Relative, compare 2 results
CRB 2𝑓 + 𝑘 + 1 First relative and then absolute

SCOP 2𝑓 + 𝑘 + 1 Relative, simple majority

For iSCP, when 𝑓 = 0, to tolerate 𝑘 omission failures, that in the worst case are
distributed one per couple in 𝑛SC − 1 self-checking components, 2(𝑘 + 1) variants are
required. If in addition there is 𝑓 = 1 value failure, then the required number of variants
became 𝑛 = 2(𝑘 + 1 + 𝑓). To tolerate 𝑎 ≤ 1 accidental and 𝑖 intentional failures, iSCP
then requires

𝑛 = 2(𝑘 + 1 + 𝑎 + 𝑖).

Table 3 - Acronyms

Acronym Full name Section Figure

iNVP intrusion N Version Programming 3.3 Figure 12

iNVP-R iNVP with Random Participation 3.3 Figure 14

iNVP-D iNVP with Deterministic Participation 3.3 Figure 14

iRB intrusion Recovery Block 3.4 Figure 17

iSCP intrusion Self-Checking Programming 3.4 Figure 20

iCRB intrusion Consensus Recovery Block 3.4 Figure 22

iSCOP intrusion Self-Configuring Optimistic Programming 3.5 Figure 24

iCRB comprises two phases, but to determine the number of variants only the first phase,
where iCRB behaves as iNVP, is relevant. Thus, 𝑛 ≥ 2𝑓 + 𝑘 + 1. When considering 𝑠 sites,
the number of required variants is reported in Table 4. For confusion in iCRB, even though

Page 67 of 117

 Deliverable 6.4: Mitigation Identification and Design

the results of those variants that do not participate to the vote are considered in the
second phase, being 𝑛 ≥ ℎ ≥ 2𝑓 + 𝑘 + 1 ≥ 𝑓 + 𝑘 + 1, the same reasoning as for iNVP
applies.

Table 4 - Intrusion add-ons

Scheme 𝑛 Confusion
iNVP, iNVP-R and

iNVP-D
2𝑓 +max{𝑘, ⌈

2𝑓+1

𝑠−1
⌉} + 𝑟 + 1 where 𝑠 > 1

Naturally integrable.
Substitute ℎ for 𝑛

iRB 𝑓 + 𝑘 + 𝑛RD if 𝑛 > 𝑠
Mainly applied to the

primary

iSCP
𝑛 = (𝑎 + 𝑖 +max{𝑘, ⌈

2𝑎+2𝑖+2

𝑠−2
⌉} + 1) + 𝑟,

where 𝑠 > 2 and 𝑎 ≤ 1
Not investigated

iCRB 2𝑓 +max{𝑘, ⌈
2𝑓+1

𝑠−1
⌉} + 𝑟 + 1 where 𝑠 > 1 Same as NVP

iSCOP 2𝑓 +max{𝑘, ⌈
2𝑓+1

𝑠−1
⌉} + 𝑟 + 1 where 𝑠 > 1

Naturally integrable.
Several options

Finally, considerations about performance are summarized in Table 5. Since the
execution logic of the intrusion tolerant alternatives is the same as the original fault
tolerant schemes from which they derive, the table is based on the original schemes. In
fact, the intrusion tolerance ability is mainly obtained through additional redundancy and
protection measures, and the execution time may result longer due to the impact of
these additions, but the execution model is unchanged (that is, sequential of parallel
execution of the variants).

Without going in the detail of a huge variety of system organizations and application
domains, the time requirements are abstracted at the level of hard time constraints and
soft time constraints. The former indicates that violation of the time requirement has
potentially heavy consequences for the system where the scheme is embedded, while
the latter indicates a lower criticality of the time requirement. Therefore, roughly it can
be suggested that schemes based on parallel execution are adequate for hard time
constraints, while schemes structured in sequential phases are risky from the hard time
perspective. However, this is an indication, but not a definitive discrimination among the
considered schemes. Indeed, while parallel execution allows to predetermine the worst-
case execution time of the slowest variant and so be sure of the maximum time required
by an execution of the scheme, mechanisms structured in phases have variable
execution time depending on the failures really experienced during the execution (they
afford longer execution time in unfavourable scenarios, but save in executed variants in
the more frequent favourable scenarios where no failures occur). However, also for
these sequentially based solutions, the worst-case execution time can be computed and,
if adequate for the hard time constraint imposed by the application at hand, there is no
objection on adopting one of them.

Of course, when soft time constraints are in place, any of the presented schemes can be
applicable, and the choice will be in general operated in accordance to some other
criterion.

Table 5 - Comparison of the architectures with respect to time constraints

Arch Hard time constraint Soft time constraint

𝑁VP OK (parallel exec.) OK

RB KO (sequential exec.) OK

SC OK (parallel exec.) OK

CRB OK (parallel exec.) OK

SCOP KO (sequential exec.) OK

Page 68 of 117

Deliverable 6.4: Mitigation Identification and Design

3.7. Redundancy-based intrusion tolerance from the different system
components’ perspective

This section concentrates on discussing the redundancy-based intrusion tolerance
solutions, developed in 3.3, 3.4 and 3.5, from the perspective of the different system
components of an ICT system, to which such schemes are intended to be applied.

Recalling from [74], the ICT components that can be considered the target of a
cyberattack are grouped in the following three categories:

• Computing element, which is a component that is devoted to performing some kind
of functionality, to provide a service to the requesting entity (a user or another
component). Operating systems primitives, software applications and enterprise
software are typical examples of this category.

• Communication element, which is the means through which information is delivered
to/from computing elements, users and storage. The internet and the several
wireless networks technologies are typical examples of this category.

• Data storage element, which includes different storage technologies used to retain
digital data within a computer system architecture. The term storage may refer both
to a user’s data generally and, more specifically, to the integrated hardware and
software systems used to capture, manage and prioritize the data. This includes
information in applications, databases, data warehouses, archiving, backup
appliances and cloud storage.

These three component categories are characterized by hardware/physical supports
and software programs, either devoted to performing specific functionalities (computing
element category) or to manage/control the operation of the hardware/physical support
(communication and data storage categories).

It is underlined that the interest in this work is on cyberattacks, so the impact of an attack
on a physical component can only occur through the software facilities that control/act
on it. Direct physical attack to corrupt a portion of a physical medium (as it could be a
memory cell or sector) is considered out of scope.

Following this observation, in principle any of the proposed redundancy-based intrusion
tolerance schemes would be adequate for enhancing resilience of ICT components
belonging to the three categories, considering the aspects discussed in Section 3.1 to
support the most suitable selection among the several alternatives. However, while
functional components employed at application level are typically developed as ad-hoc
components to accomplish the activity the application is called to perform, the software
supporting the operation of physical devices, as well as operating systems, libraries and
the execution environment are typically off-the-shelf components. This implies that, to
obtain the diversity advocated to be a fundamental aspect characterizing redundancy-
based intrusion tolerance, full control by system developer is possible for in-house
developments, while for the other software components the only option is to rely on what
is available on the market. Luckily, there is a wide range of options made available by
ICT companies, each one embedding some peculiar aspects that make their products
equivalent from the service point of view, but with differences in terms of how such
service is provided. Open-source repositories also help significantly, especially for what
concerns libraries and execution environments. Therefore, the diversity principle the
intrusion tolerance schemes are based on can be easily satisfied. Moreover, resorting to
employ a variety of pairs of physical devices, managing software, as it would be for
communication networks and data storage components, enhances system resilience
also against faults affecting the hardware part.

Page 69 of 117

 Deliverable 6.4: Mitigation Identification and Design

Concluding from this discussion, it can be inferred that the presented redundancy-based
intrusion tolerance schemes can be profitably exploited to protect ICT components. The
highlights elaborated in Section 3.6 help a system designer in selecting a suitable
solution for the faced requirements and constraints.

Page 70 of 117

Deliverable 6.4: Mitigation Identification and Design

3.8. Integration in ResilBlockly

The developed intrusion tolerant architectures can be profitably integrated within the risk
assessment process carried on in BIECO, as one of the means to improve resilience of
components evaluated as being ‘unacceptably critical’ from the risk analysis evaluation.
In the following, the integration with the Risk Assessment performed through the
ResilBlockly methodology and tool is discussed, taking a specific component of the ICT
Gateway Use Case as application example.

First, the process resorting to the selection and application of the ITC to a selected
component, in place of the original creation (referred as simplex component) is
described.

Redundancy-based intrusion tolerant architectures are considered either when
designing new components or for strengthening already existing ones. In both cases, a
model of the component is built, following ResilBlockly supported formalisms. The
derived model is then analysed in ResilBlockly. In this section the focus will be only on
Risk Assessment, meaning that weaknesses and vulnerabilities of the simplex
component are identified by the modeler (either searching in the CWE and CVE
databases or manually defining them) and then their severity and likelihood are declared,
as detailed in Section 3 of BIECO D6.2. In particular, redundancy-based architectures can
be employed to address weaknesses (vulnerabilities are better addressed by other
intrusion tolerance techniques) [67] [49]. If the risk assessment outcome is such that the
simplex component requires to be made more robust in order to have the overall
application fulfil the security requirement, the next step is performed.

The second step is to select one or more intrusion tolerant architectures among those
detailed earlier in Section 3, or customized starting from fault tolerant architectures and
following similar ideas. Which one to choose highly depends on system requirements
and context of the application where the simplex component operates, but also on its
identified weaknesses, in terms of severity and likelihood. In general, more than one
architecture could in principle fit the application’s needs. For each architecture, the
number n of variants is then set, following the indications sketched in Section 3.6.
Knowledge of the probability that a given weakness is exploited in the simplex
component (a numerical value, more precise than likelihood) evaluated studying logs,
also of similar components belonging to other applications, and adjudicator/acceptance
tests coverage are assumed, as well as reliability or probability of undetected failure of
the overall architecture. There is extensive literature on how to analyse a redundancy-
based architecture but, with the focus of this section being on ResilBlockly, here only
probability of undetected failure will be considered because it directly relates to the
likelihood in the Risk Assessment. Once the selection of the ITC architecture is made,
the model of the simplex component is updated to consider its new redundant version,
and a new risk analysis is performed in ResilBlockly.

The third step is then to compare performance (time, computational resources, etc),
severity and likelihood obtained from the analysis of the simplex component with those
of the redundant counterpart analysed in the second step. This kind of A/B comparison
can end up in a decision on the configuration to choose or highlight the need of
redefining the number of redundant variants n and re-iterate the second step. If carefully
set up, it is expected that such iteration process closes in a couple of iterations.

As a case study, let’s consider the ICT Gateway detailed in BIECO D6.2 (and depicted in
Figure 25) and focus on the Security & Resilience component (S&R). This component
runs on a separate server and is responsible to detect malicious activities. Upon
detection of a malicious activity, it raises alerts to GUI and applications, that in turn can

Page 71 of 117

 Deliverable 6.4: Mitigation Identification and Design

restart other ICT Gateway components. Thus, if S&R is intruded then it can raise false
alerts that lead to a higher probability of outages or losses.

Figure 25 - ICT Gateway architecture

Starting from the model of the ICT Gateway, in ResilBlockly it is possible to list the
weaknesses of the simplex S&R and indicate severity (in this case 10, the worst case)
and likelihood (in this case Moderate), as depicted in Figure 26. As an example, the CWE
weakness 693 called “Protection Mechanism Failure” is analysed.

Figure 26 - Risk assessment of the simplex Security & Resilience component

Without going into the details of their selection process, iRB (Section 3.4) and iNMR
(Section 3.3) are the two redundancy-based intrusion tolerant architectures to consider

Page 72 of 117

Deliverable 6.4: Mitigation Identification and Design

for replacing the simplex version of the S&R component. Their models are then built and
values to their parameters are assigned.

In order to declare the weakness likelihood, a qualitative value, it is recommended to
perform first a quantitative analysis (e.g., evaluate the probability of delivering wrong
results) to support the choice. Notice that the correspondence between probabilities
range and likelihood highly depends on the context in which the system is deployed and
has to fixed in advance. For the purpose of example only, it is assumed that ℙfail, is the
probability of a variant failure, ℙnoncoverage, the probability that the acceptance tests

wrongly accept the results, and 𝜅 ∈ [0,1), the degree of diversity of the variants are
known (as estimated in other studies). In particular, the higher 𝜅 is, and the more diverse
the variants are. Thus, following the simple analysis detailed in [49], ℙufail, the probability
of undetected failure, of iRB is

ℙufail = ℙfail ⋅ ℙnoncoverage

 And ℙufail of iNVP, assuming the probability of failure of adjudicator extremely low with
respect to the other number involved, is

ℙufail = {
ℙfail(1 −

⌊𝑛/2⌋

⌊(1 − 𝜅)(𝑛 − 1)⌋
) if⌊𝑛/2⌋ ≤ ⌊(1 − 𝜅)(𝑛 − 1)⌋,

0 otherwise.

The value of ℙufail together with the information of Table 4 are exploited to compare
several configurations of iNVP and iRB. Consider for instance s=2 sites, k=1 and f=1
(tolerance of one omission and one value failure), r=1 (rejuvenation of one variant at a
time), nRD = 3, ℙfail = 0.9, ℙnoncoverage = 0.0001, and 𝜅 = 0.45. Then n=5 for iRB and

ℙufail is about 10−4, and n=7 for iNVP and ℙufail is almost zero. Thus, it is possible to
update the assessment in ResilBlockly as in Figure 27, where the custom weakness for
iRB is “Acceptance Tests Coverage is not Perfect, then Wrong results can be Accepted
as Correct”, and “A majority of variants fail producing the same incorrect result” for iNVP,
and the likelihoods are now set to low and very low, respectively. The final choice on
which configuration to select is done considering performance. Indeed, assuming the
information of Table 5 is enough in the context of Smart Grids to make the decision, the
presented configuration of iNVP has to be selected.

Figure 27 - Risk Assessment of iRB and iNVP

Page 73 of 117

 Deliverable 6.4: Mitigation Identification and Design

4. Mitigating Risk during Development via Assurance Case Modelling

In this section, we discuss how assurance cases that argue in terms of dependability
risk mitigation can be constructed using elements from BIECO concepts and tools. In
sections 2.1, 2.2 and 2.3, we discussed how guidance from standards for safety and
security can be leveraged to provide a combined approach for safety and security
assurance. For mission-critical applications, where different dependability properties are
more relevant, the approach can be adjusted to address risk with respect to those
properties instead.

Page 74 of 117

Deliverable 6.4: Mitigation Identification and Design

4.1. Workflow Overview

The assurance case is a central artifact of this process, as it can capture the rationale
arguing how the residual risk to the system’s mission has been rendered acceptably low
by the end of development. Our proposed approach can be described in terms of the V-
model lifecycle, as described in sections 2.1 and 2.2:

1. System definition. In this stage, a (possibly preliminary) specification of the
system and its operational environment needs to be established.

2. Initiate Dependability Assurance Case. The assurance case can be maintained
from the early stages of development and be progressively updated as more
information becomes available. The intent is to use it as a live document, which
can monitor the progress of the development assurance, and coordinate the
activities across the system stakeholders.

3. Dependability Hazard Analysis and Risk Assessment (HARA). In this stage,
based on the system and environment specification, identification of the relevant
events that could cause unacceptable violation of the application’s dependability
properties takes place. These can be referred to as ‘dependability hazards. Each
dependability hazard that is considered relevant for the application is then
assessed in terms of the overall risk it presents to the application, in terms of its
impact and likelihood of occurrence. Depending on the application domain,
domain-specific risk rating systems may be used e.g., for the automotive domain
safety hazards are rated in terms of their estimated severity, exposure, and
controllability. Hazards may also be further refined in terms of the operational
situations they could occur. The combinations of a given hazard with relevant
operational situations are also referred to as Hazardous Events (HEs). From this
point onwards, we will refer to both hazards and HEs as HEs. The set of rated
HEs can be prioritized in terms of risk, and specific HEs can be excluded if their
risk is argued to be acceptably low.

4. Dependability Goal Specification. In this stage, goals for protecting against the
violation of the dependability HEs identified as relevant and of sufficient risk need
to be specified. Dependability goals are typically high-level requirements that,
when implemented correctly, tolerate, mitigate, or eliminate the associated HEs.
A goal may be simultaneously addressing multiple HEs.

5. Dependability Concept Specification. In this stage, the means necessary for
achieving the dependability goals specified previously are specified. The means
should be specified in terms of technologies or procedures that have been
established to satisfy the corresponding goals. Where such measures are
implemented using dedicated system functionality, corresponding functional
dependability requirements should be specified and assigned to specific
elements of the system architecture. Functional requirements are
implementation-independent specification, and can be later refined into technical
requirements, considering specific design and implementation within the target
system. This refinement requires that the target system either has a preliminary
or mature architecture designed, so that its key subsystems and/or components
have been already identified.

6. Dependability Hardware (HW) and Software (SW) Requirement Specification.
From the technical requirements identified previously at the level of subsystems,
detailed HW and SW requirements can be assigned to components of the
corresponding type.

7. Implementation. While not explicitly part of the approach, technical
implementation is expected to occur as the set of detailed component
requirements is completed.

Page 75 of 117

 Deliverable 6.4: Mitigation Identification and Design

8. HW & SW Requirements Verification. As component implementation completes,
they are verified against the corresponding requirements specified for them.

9. Dependability Concept Verification & Validation. Technical dependability
concepts are verified as components are integrated into subsystems. Then,
functional dependability concepts are verified and validated as the sets of higher-
level requirements for the corresponding dependability measures are
implemented.

10. Dependability Goal Verification & Validation. The initial dependability goals are
finally verified and validated to be correctly designed, implemented, and yielding
acceptable residual dependability risk across the application.

An overview of this approach can be seen in Figure 28. The V-model lifecycle is shown,
flowing from top-left, starting with the System Definition stage, descending towards the
Implementation stage at the centre, and ending at the top-right, at the System Validation
stage. Dashed arrows represent types of arguments that can be captured within the
assurance case, based on [75]. The included types are:

- Rationale, which are arguments capturing the reasoning with which higher-level
specifications, requirements, or activities, are linked to lower-level ones.

- Satisfaction, which are arguments that evaluate whether the dependability
requirements have been satisfied by corresponding work products. For example,
satisfaction arguments can be made to establish that the dependability goals are
satisfied by reviewing their validation results.

- Means, which are arguments that explain why the assurance activities which
yielded requirements and other work product results were performed in an
appropriate manner.

- Organizational Environment arguments address the question of whether the
organization developing the target system has an appropriate culture for doing
so. As an example of such requirements, Part 2 of ISO 26262 provides guidance
regarding appropriate management of functional safety, and Part 5 of ISO 21434
similarly specifies guidelines for organizational cybersecurity management.

Figure 28 - Assurance Case Workflow (based on [75])

As mentioned in Section 2.3, in cases where safety (or a different dependability property)
is mission-critical, the above process can prioritize performing HARA that targets that
property, specify corresponding dependability goals for the identified HEs, and then

Page 76 of 117

Deliverable 6.4: Mitigation Identification and Design

provide those goals as input for the security-focused TARA. The TARA can then
simultaneously address the potential attacks against the safety/dependability
properties, while still identifying security-specific issues (e.g., privacy).

Page 77 of 117

 Deliverable 6.4: Mitigation Identification and Design

4.2. BIECO Tool Support for Dependability Assurance during Development

BIECO tools can be used the above approach as follows (and correspond to the phases
described in Figure 28):

- ResilBlockly (BIECO D6.2) can support the above process from the security
perspective, by:

o Modelling the system architecture, an activity consistent with the System
Definition phase.

o Identifying potential security threats against the target system, an activity
consistent with the Dependability HARA (TARA) phase.

o Identifying specific Weaknesses or Vulnerabilities of the target system,
an activity which can be used to derive relevant security requirements.

- safeTbox9 can instead focus on the safety/dependability aspects, by:
o Modelling the system architecture, an activity consistent with the System

Definition phase. To avoid potential redundancy and/or duplication errors,
the system model from ResilBlockly can be imported to maintain a
consistent architecture.

o Identifying potential safety/dependability HEs against the target system,
corresponding to the Dependability HARA phase.

o Specifying dependability goals to protect against the identified HEs, as
per the corresponding phase of the workflow.

o Modelling the assurance case, using the GSN notation.
o Qualitative and quantitative analysis of fault trees, which enables

investigation of sources of dependability-related failure, specification of
corresponding requirements, and verification of said requirements.

To understand the relationship of the tools in BIECO, we reproduce the overview of the
BIECO tool workflow from D2.3 (p. 31) in Figure 29.

Figure 29 - BIECO Tool Workflow Overview

As indicated in the figure, information from ResilBlockly regarding e.g., security threats,
attack paths, simulation results, and extended MUD files processed by the tool, can be
propagated from the tool to safeTbox. For details regarding the use of ResilBlockly, the

9 https://safetbox.de/

https://safetbox.de/

Page 78 of 117

Deliverable 6.4: Mitigation Identification and Design

reader is referred to BIECO D6.2, its user’s manual. More details on the information
import/export across tools is provided in Section 6.1.

Once the information is imported into safeTbox, safeTbox can be used to extend the
existing model and complete the assurance case. Section 7 contains a basic example of
using safeTbox to model the artifacts mentioned in section’s 4.1 workflow.

Page 79 of 117

 Deliverable 6.4: Mitigation Identification and Design

5. ConSerts Methodology for Dependability Risk Mitigation

In this section, the methodological aspects of our approach towards mitigating risk with
ConSerts will be discussed. We begin with an overview of how the method extends the
engineering workflow based on the guidelines from related standards, as outlined in
sections 2.1 and 2.2. We then discuss how ConSerts can be tailored for systems
employing ICTs. Finally, we explain how ConSerts acquire evidence for reconfiguration,
via generic monitor integration, but also specific opportunities for integration with
BIECO’s resilience concepts from WP4, and the extended MUD files from WP7.

Page 80 of 117

Deliverable 6.4: Mitigation Identification and Design

5.1. Extending ConSert Creation for Safety-Security

ConSerts view the system from the perspective of a Service-Oriented Architecture (SOA).
In this sense, the emphasis is on the relationship between interrelationships across
systems, rather than the structure of the systems themselves.

Therefore, the ConSert workflow for a given system consists of:

1. Provided Services Specification. Specifying the set of services provided by the
system.

2. Service Contract Specification. For each provided service, a service contract
specifies the set of supplied services which are required by the system to provide
the given service.

3. Service Dependability Concept. ConSerts are predefined modular certificates,
and their certification refers to both their functional and their non-functional
aspects, the latter notably including dependability properties as well. At this step,
the dependability concept phase, which is part of the system development
lifecycle (seen in Figure 28, Section 4.1), can be extended. To deliver its provided
service while managing the associated dependability risks, a clear understanding
of the measures (and corresponding requirements) in place to control those risks
is needed. The ConSerts approach builds upon this understanding in the
following steps.

4. Variability Analysis. Dependability concepts are often defined according to
worst-case assumptions regarding the operational situation. This limits the
flexibility of the system’s adaptation. To address systems in dynamic conditions,
and effectively adapt to them, the variability of operational situations must be
considered, in combination with the adaptation capabilities of the system itself.
Such adaptation options can be, for example, considered from the situation
analysis executed during development (e.g., as part of HARA). The important
distinction here is the extension of the analysis scope beyond the worst-case
situations. Examples of how such analyses can be applied for the automotive
domain can be found in [34], [76], and [77].

5. Contract Endpoint Specification. Based on the contract and the combinations of
operational situations and service adaptation capabilities, the required set of
demands from external services, and RunTime Evidence (RtE) associated with
each provided service can be specified.

As an example of how this can be modelled, Figure 30 shows a ConSert featuring a
provided service (“Grid Outage Detection”), which can be offered at 3 levels of guarantee
(“Normal”, “Degraded Availability”, and no guarantee). The service imposes demands on
a required service, “AMI Grid Information”, for “Normal” and “Low” availability
accordingly.

Page 81 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 30 - Example of simplified ICT Gateway ConSert

Page 82 of 117

Deliverable 6.4: Mitigation Identification and Design

5.2. Integration of Intrusion Tolerance Countermeasures

When system architectures feature Intrusion Tolerant Countermeasures, e.g., N-Version
Programming (NVP) (sections 2.8 and 3 provide detailed background and analysis on
available options), the corresponding ConSert could take advantage of the degree of
consensus reached across the variants to estimate the level of confidence with respect
to the provided service.

An example of how this can be depicted can be seen in Figure 31, where the ConSert
shown previously has been slightly adapted. It now features two RtEs which evaluate
whether all variants have achieved consensus regarding the response of the Grid Outage
Detection service, or only the minimal majority. In the former case, the system can
provide the service normally, with confidence that unanimous agreement across the
variants is unlikely to hide potential intrusions. In the latter case, it is possible that
intrusion has occurred, therefore a more conservative service guarantee could be
provided in that case. The choice of these guarantees depends on the service
dependability concept established during development, as per the workflow described
in Section 5.

Figure 31 - Example of simplified ICT Gateway ConSert w/ NVP

Page 83 of 117

 Deliverable 6.4: Mitigation Identification and Design

5.3. Incorporating Monitoring Evidence

The RtEs found within ConSerts represent monitoring of relevant local conditions by the
host system. However, ConSerts RtE monitors are not typically interested in directly
monitoring nominal perception information. Instead, an RtE monitor focuses on yielding
evidence in favor (or against) the integrity of services or information relied-upon by the
provided service.

For example, if we consider a robot navigating through a physical environment, its visual
perception could provide it with an estimation of nearby objects. A corresponding
ConSerts RtE monitor would not directly evaluate the presence of nearby objects, but
instead focus on evaluating whether the response of perception sensor is reliable or not.

In BIECO, WP4 is responsible with predicting system failures, and in particular, the
method of using predictive simulation to anticipate the behavior of systems under the
control of a software smart agent received as a black box, whose internals are not
known. Execution of simulation models in a predictive simulated environment (BIECO
WP5) can feed evidence of trust to the monitoring components. In case the predictive
simulation outputs a trusted behavior of a component, then the trusted behavior
signature is passed to the conformity monitoring part of the Auditing Framework (BIECO
WP5), that evaluates the level of conformity between the trusted behavior execution in a
simulated environment and the real-world execution. In case the predictive simulation
detects a hazardous situation, a triggering for the system’s internal re-configuration will
enable the system to reach a safe state and assure its resilience. This work could be
used as RtE for ConSerts and will be explored further as part of the planned work of
BIECO in T4.3.

Page 84 of 117

Deliverable 6.4: Mitigation Identification and Design

5.4. Hardened MUD File as a mitigation measure

One of the potential mitigation measures to carry out when a system or service cannot
provide the demanded guarantee is the configuration of a stricter or hardened MUD File
for the involved component.

As discussed in previous deliverables, the Manufacturer Usage Description (MUD)
standard describes the network behaviour profile recommended by the manufacturer to
properly function. This profile establishes a set of policies to take in account in order to
limit the threat surface on a device and its connections. Section 5 of BIECO D6.1 goes
deeper into the MUD standard and the MUD model.

The idea behind this mitigation strategy is to provide an alternative MUD File to the
original one defined by the manufacturer when required service conditions are not
guaranteed. If under more restrictive conditions it is possible to offer this service, a
stricter MUD File will be deployed so that service will work with several network
limitations compared to the original MUD File of the involved components. Specifically,
these limitations are focused on the traffic coming from/to the device, number of
communications, services allowed to access from the device, required algorithms for
cryptography, authentication mechanisms, application protocols to be used in the
communications and limit the accessible resources. More specific information on the
possible security configuration characteristics that could be limited can be found in
BIECO D6.2.

Consequently, incorporating these restrictive measures benefits the security context of
the requested service in two ways. First, these measures reduce the risk of attacks when
offering a service that does not comply with the security conditions, and secondly, they
increase control over the established connections and over which entities, components
or devices these connections are made.

Page 85 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 32 - Example diagram about a ConSert offering a service with a stricter MUD file

Figure 32 shows a conceptual application example of this potential mitigation measure.
In this case, a newcomer CS is providing a service that is going to be used by an existing
CS. The upper ConSert should consider the conditions from the bottom ConSert in order
to confirm the possibility of offering the safety guarantees of his services. Since only
“SG5” is able to be provided with safety guarantees, the upper service offered by the
existing CS is “SG2” (provided with mitigation measures such as stricter MUD File). This
decision flow is marked by the green boxes.

Page 86 of 117

Deliverable 6.4: Mitigation Identification and Design

6. BIECO ConSert Modelling

In this section, we focus on the modelling of ConSerts in BIECO. Specifically, we begin
by mapping BIECO concepts from which ConSerts shall draw upon. Then, we present the
modelling approach for constructing ConSerts in the safeTbox tool. Finally, we discuss
how ConSerts can be exported for later use as models, whose usage can include
generating corresponding software components that implement the reconfiguration
logic for the system the components are integrated with.

Page 87 of 117

 Deliverable 6.4: Mitigation Identification and Design

6.1. Mapping BIECO Artifacts to DDIs

Figure 33 provides an overview of the 2nd version of the Open Dependability Exchange
(ODE) metamodel [40]. The ODE consists of the Structured Assurance Case Metamodel
(SACM), which is highlighted in purple in the figure, and the remainder, referred to as the
ODE Product Packages, highlighted in green. We should stress that we are not
attempting to provide a detailed discussion of the ODE and its elements here; such a
description can be found in [40], and a detailed specification of the ODE can also be
found in its open source repository10.

The ODE enables integrating assurance cases via SACM (which also supports GSN
models) with concrete system dependability assurance artifacts. For example, within an
ODE model, i.e., a DDI, a system can be represented using the ODE::Design::System
element11. A given System can be associated with dependability requirements, including
security, and dependability analyses e.g., HARA, TARA, FTA, ATA etc. The corresponding
ODE::Dependability and ODE::FailureLogic metamodelling packages contain
metamodelling elements for capturing such aspects.

As a DDI is compiled with increasing information during development, it can become
valuable as a medium for synchronizing assurance activities. This can be especially the
case across interdisciplinary teams e.g., safety and security, where shared terminology
and overlapping methods may pose coordination challenges.

The use of a common model such as the DDI can also support interoperability between
tools, as less effort needs to be spent producing pairwise-specific import/export
mechanisms for each tool or invent custom formats for ad-hoc interoperation. In this
regard, the common tool adapter developed to support interoperability and automate
DDI-related activities is particularly suited for tool exchange. Further details are provided
in Section 7, Figure 40.

10 https://github.com/Digital-Dependability-Identities/ODE
11 The notation is interpreted as the metamodeling element named System from the metamodeling package
named Design of the ODE profile

https://github.com/Digital-Dependability-Identities/ODE

Page 88 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 33 - Overview of the ODE v2 Metamodel

Page 89 of 117

 Deliverable 6.4: Mitigation Identification and Design

6.2. Modelling BIECO ConSerts using safeTbox

To produce ConSerts models, such as those seen in Figure 30 and Figure 31, a prototype
extension of safeTbox has been developed by Fraunhofer IESE. SafeTbox itself is an
‘add-in’ extension of the modelling tool Enterprise Architect (EA). The prototype
extension extends the built-in EA UML profile to introduce new modelling elements for
ConSerts e.g., ConSerts diagrams, Guarantees, Demands, etc.

Figure 34 shows the options the user has to model elements on each ConSert diagram.
Guarantees and Demands have already been introduced in Section 5. Invariants can be
included in a ConSert diagram to represent preconditions that must be valid for the
ConSert to be valid. Invariants can be checked at runtime, and the host application can
then determine how to address the situation e.g., falling back to a fail-safe state,
switching to a back-up ConSert, and/or informing the user, if possible.

Figure 34 - Enterprise Architect Custom safeTbox Toolbox for ConSerts

Page 90 of 117

Deliverable 6.4: Mitigation Identification and Design

6.3. Generating Deployable ConSerts via conserts-rs

In [78], the conserts-rs command-line tool is introduced. The tool can be used to parse
XML representations of ConSerts models, such as the one seen in Figure 35, and
generate source code that can be integrated into a variety of platforms. The process for
converting from models to code can be seen in Figure 36, and a sample of the code
generated from the XML example is shown in Figure 37.

Figure 35 - Example ConSerts XML (Ecore) file

Figure 36 - ConSerts Model to Runtime Code Conversion Process

Page 91 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 37 - Sample of generated ConSerts code from XML

The tool is written in the Rust12 programming language, which enables (among other
features), memory-safe and minimal-overhead code. Although the tool also outputs Rust
code, it can flexibly target many platforms, including:

- Robot Operating System (ROS)13
- Embedded Systems via the Real-Time Interrupt Concurrency Framework14
- C/C++ via Foreign Function Interface15

The generated code still needs to be instrumented with the host platform, which is
platform-specific. For instance, the generated code can be executed as a ROS node and
interact with the existing application through the ROS publish/subscribe topic
mechanism. Instead, integration into a C++ would involve invoking host application code
to instrument the ConSerts RtEs.

12 https://www.rust-lang.org/
13 https://www.ros.org/
14 https://rtic.rs/0.5/book/en/
15 https://doc.rust-lang.org/nomicon/ffi.html

https://www.rust-lang.org/
https://www.ros.org/
https://rtic.rs/0.5/book/en/
https://doc.rust-lang.org/nomicon/ffi.html

Page 92 of 117

Deliverable 6.4: Mitigation Identification and Design

7. Exemplary Application on ICT Gateway

In this section, the approach is illustrated by applying it on a simplified model of the
BIECO ICT Gateway use case (see Net2DG project, D1.316).

Figure 38 shows how the ODE profile17 (the metamodel of DDIs) can be seen in
ResilBlockly’s profile designer after being imported. Using the ODE profile, models that
are very close to DDIs can be exported, which facilitates the import process into tools
supporting DDIs, such as safeTbox.

Figure 38 - ODE Profile in ResilBlockly

Using the profile, a similar model (being an instance of the ODE metamodel) can be
created to depict the subject system i.e., the ICT Gateway. Once complete, a security risk
analysis can also be performed, to identify corresponding weaknesses and
vulnerabilities that might threaten the system. For instance, Figure 39 shows 2
weaknesses having been specified for part of the system under development, and their
corresponding risk evaluated as ‘High’ and ‘Moderate’.

Figure 39 - Security Risk Analysis in ResilBlockly

The model exchange process can be seen in Figure 41. Step 3 is currently required due
to minor incompatibility in the exported format, and involves applying ODE-specific types
to the generically-exported ones from ResilBlockly. Step 4 can be executed using the
‘common tool adapter’ developed as part of the DEIS project [79]. An overview of the
adapter can be seen in Figure 40. The adapter allows any tool which supports file,

16 http://www.net2dg.eu/wafx_res/Files/Net2DG_D1.3_30.08.2019_with%20disclaimer.pdf
17 https://github.com/Digital-Dependability-Identities/ODE

http://www.net2dg.eu/wafx_res/Files/Net2DG_D1.3_30.08.2019_with%20disclaimer.pdf
https://github.com/Digital-Dependability-Identities/ODE

Page 93 of 117

 Deliverable 6.4: Mitigation Identification and Design

network, or remote procedure call interoperation (via the Apache Thrift framework 18) to
transform to/from DDIs, and execute scripts in the Epsilon language19 on the provided
DDIs. The typical usage of the adapter is for generating DDI files, using the ODE profile 20
specified in the Eclipse Modelling Framework (EMF) [80].

Figure 40 - DDI Tool Adapter (from [41])

Figure 41 - Model Exchange Overview

The imported model can be further tailored and expanded upon in safeTbox. This is
depicted in Figure 42, where the Smart Grid Production System (top left) produces power
for the Consumer(s) (top right). The Distribution Service Operator (DSO) organization
transfers the power to their consumers through the Distribution System (i.e., the smart
grid). A given operator working for the DSO organization monitors the activity of the grid
through information propagated by the ICT Gateway. The ICT Gateway collects grid
information through the Internet. Depending on the information observed, the operator
can decide to control the production system and/or the distribution system to avoid
power outage. The specific functionality of interest is the monitoring and detection of
power outage in the grid.

18 https://thrift.apache.org/
19 https://www.eclipse.org/epsilon/doc/eol/
20 https://github.com/Digital-Dependability-Identities/ODE

https://thrift.apache.org/
https://www.eclipse.org/epsilon/doc/eol/
https://github.com/Digital-Dependability-Identities/ODE

Page 94 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 42 - Simplified model of ICT Gateway use case Smart Grid

As our scope for the model is very simple, Figure 43 describes the ICT Gateway
simplifying its interface to include only the Safety & Resilience component. In contrast,
a more detailed model would also consider the other components, as listed in Figure 25.

Page 95 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 43 - ICT Gateway, simplified internal view

Based on the preliminary model, an initial (dependability) HARA can be performed.
safeTbox follows a spreadsheet approach for the HARA, as seen in Figure 44. The
spreadsheet seen captures functions used, which in this case is the “Grid Outage
Detection” of the gateway.

Figure 44 - ICT Gateway HARA - Function Sheet

In the Functional Hazard Analysis (FHA) sheet, seen in Figure 45, the individual failure
modes with which the function can fail are distinguished, the malfunctions that arise
from each case are specified, and the potential system-level effects of the failures are
also recorded. Each entry can be mapped (if relevant) to one or more hazards i.e., events
with negative impact on the application, resulting from the associated malfunctions.

Page 96 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 45 - ICT Gateway HARA - FHA Sheet

The final HARA sheet is the Risk Assessment sheet, whose overview is seen in Figure
46. The sheet’s rows correspond to the Hazardous Events (HEs) (combinations of
Hazards and Operational Situations), which are evaluated in terms of specific risks. This
is seen in more detail in Figure 47, where the risk factors related to the Grid Outage
Detection HEs are evaluated. Once an HE risk has been evaluated, corresponding goals
can be set to protect against it, as seen in Figure 48.

Figure 46 - ICT Gateway HARA - Risk Assessment Sheet

Page 97 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 47 - ICT Gateway - Risk Assessment - Hazardous Event Assessment

Figure 48 - ICT Gateway HARA - Risk Assessment - Safety Goal Specification

Once the set of dependability goals have been specified, they need to be refined into
detailed requirements. Towards this end, iterative cause analysis can be used e.g., via
(Component) Fault Tree (CFT) Analysis, seen in Figure 49. In the figure, the triangle
elements in black indicate output failure modes, whereas yellow triangle elements
indicate input failure modes. Squares link failure modes to a given component’s ports,
thereby linking the architectural diagram, e.g., seen in Figure 42, and its causal failure
logic. CFTs are hierarchical, as depicted by the “Safety & Resiliency” sub-CFT, whose
details are encapsulated in the diagram of Figure 50. The latter figure also features 2
basic events i.e., fundamental causes that could trigger system/component failure. The
basic events are linked via a Boolean logic OR gate, therefore either could trigger the
system failure i.e., “Grid Outage Detection Omission/Late”. The green analysis results
shown in Figure 49 capture this logic, and detailed results of the analysis can be reviewed
in Figure 51.

Page 98 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 49 - ICT Gateway CFT

Page 99 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 50 - Safety & Resiliency CFT

Page 100 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 51 - ICT Gateway - CFT Analysis Results

Using the information from the previous steps taken, an assurance case can be modelled
using the GSN notation, as seen in Figure 52. Note that the assurance case is similarly
simplified, focusing on illustrating the tool usage for applying the approach. The Top-
Goal in the figure claims that the ICT gateway is acceptably dependable. The argument
is based on addressing relevant dependability properties e.g., availability (Strategy_83).
This is justified given that the overall Smart Grid application is also directly affected by
availability of the ICT Gateway (Justification_85). Finally, Away_Goal_95 references an
external goal (Goal_84), claiming that the residual risk against availability of the ICT
gateway has been shown to be acceptably low.

Page 101 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 52 - ICT Gateway - Assurance Case Top Goal

Figure 53 continues down this line of argument, which addresses the two hazards
identified during the HARA. The line of argument proceeds through Figure 53 to address
the goal of “Grid Outage Detection” being highly available, which addresses the
corresponding HE from the HARA analysis (Figure 48).

It should also be noted that the HARA, provided as context to the overall claim, is
associated with an ACP that provides a claim regarding the quality of the Means (see
Section 4, Figure 28) with which it was conducted (Figure 54).

Page 102 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 53 - ICT Gateway - Availability Risk Module

Page 103 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 54 - ICT Gateway - HARA Module

Finally, Figure 55 argues why the Functional Dependability Concept addresses the
associated dependability goal, in this case using NVP to reduce risk of service
unavailability. This claim is verified by comparing the CFT analysis results before (Figure
51) and after the inclusion of the redundant variants, as seen in Figure 56 and Figure 57.

Page 104 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 55 - ICT Gateway - Functional Dependability Concept Module

Page 105 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 56 - ICT Gateway using 2 variants for Safety & Resiliency NVP

Page 106 of 117

Deliverable 6.4: Mitigation Identification and Design

Figure 57 - ICT Gateway Fault Tree including NVP

Page 107 of 117

 Deliverable 6.4: Mitigation Identification and Design

Figure 58 - ICT Gateway w/ NVP Example CFT Analysis Results

Page 108 of 117

Deliverable 6.4: Mitigation Identification and Design

7.1. Hardened MUD File

Smart grids provide electricity to a wide range of the population. A failure in this type of
system not only implies a power cut in homes, but also in highly sensitive buildings such
as a hospital, where a failure in the electricity supply could have fatal consequences for
the lives of many people. Ensuring its operation under certain safety conditions is crucial
for supplying electricity. It is important to mention that given the importance of the
continuous operation of this type of system, allowing its execution even though not all
conditions can be guaranteed is a possibility that should be considered.

If the necessary conditions described in the ConSerts to ensure a dependable execution
of the ICT Gateway cannot be fulfilled, the ICT Gateway could be still executed under
more restrictive conditions established by the hardened MUD file. In this sense, the
hardened MUD could, for example, establish a lower limit of simultaneous connections
(“num-connections”) per device until the conditions of the grid return to a safe mode to
offer the service without restrictions.

Specifically, we present in Figure 59 a hardened MUD file for the ICT gateway, restricting
the number of simultaneous connections allowed with the MQTT and HTTP protocols
as well as the persistent connection time (“Keep-Alive”).

On the one hand, the left part of Figure 59 contains the original MUD File configuration
that would be used in a situation where the service could be offered with all security
guarantees. On the other hand, the right side of Figure 59 shows the hardened MUD File
used in our risk situation that forces us to offer the service with mitigation measures, in
this case, a more restrictive configuration.

Figure 59 - Application of mitigation measure using a stricter MUD File

Page 109 of 117

 Deliverable 6.4: Mitigation Identification and Design

8. Summary

In this deliverable, we have provided an overview of our approach towards supporting
safety and security assurance of ICT systems in terms of risk mitigation. Our approach
aims to address risk originating from developmental or systematic errors (e.g., software
implementation or documentation mistakes), or anticipated risk from random hardware
errors, or anticipated risk from malicious actors against our system (e.g., specific
security attacks).

Towards this end, we focus our approach on modelling assurance cases that can
structure respective arguments of adequate risk mitigation during system development.
Assurance cases are well-known in specific industrial domains e.g., automotive, and are
also part of corresponding industry standards e.g., ISO 26262. Assurance cases can
appropriately leverage the domain-specific analysis evidence garnered from each
domain and translate the implications of the evidence in terms of overall risk.
Additionally, assurance cases also enable the construction of combined safety and
security risk argumentation, meaning that both aspects (and more e.g., availability) can
be considered holistically, minimizing the risk of overlooking critical crosscutting
concerns.

Furthermore, our approach considers how adaptive systems, operating in dynamic
environments, should respond to changing conditions (including in terms of security)
with regards to safety. We leverage the concept of Conditional Safety Certificates to not
merely specify such adaptations (as would be the ad-hoc approach), but further
guarantee that these adaptations certifiable in terms of safety.

To realize our approach, we intend to exploit and extend the above concepts in the
context of BIECO’s ongoing research and use cases, and we have already illustrated in
this deliverable our current plan. In short, our approach:

- Provides methods appropriate for systematically structuring safety (T6.2) and
security assurance claims (WP7) as part of assurance cases.

- Incorporating the risk assessment (T6.2) and security analysis (T6.1) process to
provide appropriate development-time evidence of risk mitigation.

- Developing more resilient systems through the concept of Intrusion-Tolerant
Architectures (WP6), intended to mask the effect of attack-induced failures, and
integrate the developed redundancy schemes in the risk management process
(WP6)

- Links failure and trust prediction concepts with dynamic risk management
(WP4).

- Links runtime risk management and resilient adaptation (WP4).

Page 110 of 117

Deliverable 6.4: Mitigation Identification and Design

9. Appendices

Appendix I. Details on Inequalities Addressing 𝒔

For all the intrusion tolerant architectures, when considering 𝑠 > 1 sites (without special
constraints, so that the best strategy is to distribute as evenly as possible the variants
among the sites), the following inequality assures that the architectures continues to
behave as expected if 1 sites is disconnected:

𝑘 ≥ ⌈
𝑛

𝑠
⌉.

Of course, the value of 𝑛 depends on the architecture and is reported in Table 2. For
instance, 𝑛 = 2𝑓 + 𝑘 + 1 for NVP and then (exploiting the definition of the ceil function)

𝑘 ≥
2𝑓 + 𝑘 + 1

𝑠
.

Writing on the left-hand side only 𝑘 brings

𝑘 ≥
2𝑓 + 1

𝑠 − 1
,

and imposing that 𝑘 must be an integer results in writing

𝑘 ≥ ⌈
2𝑓 + 1

𝑠 − 1
⌉.

When the 𝑟 variants under rejuvenation are also considered, the value of 𝑛 reported in
Table 4 are obtained.

Similar manipulations apply for the other architectures. Only SCP requires 𝑠 > 2.

Page 111 of 117

 Deliverable 6.4: Mitigation Identification and Design

Appendix II. Self-Checking Programming with Voter

Consider a group of 𝑔 variants in each self-checking component. A simple voter
assesses whether there are ⌈(𝑔 + 1)/2⌉ agrees among the results. Figure 60 illustrates
the case 𝑓 = 1 (and then 𝑔 = 3) and 𝑘 = 2 that requires 𝑛 = 6 variants.

Figure 60 - SCPV with g=3 and n=6.

Where there are 𝑓 value failures and no omission (𝑘 = 0), 𝑔 = 2𝑓 + 1 guarantees a
correct output because ⌈(𝑔 + 1)/2⌉ = 𝑓 + 1, so 𝑛 = 𝑔 ⋅ 𝑛SC = (2𝑓 + 1) ⋅ 𝑛SC. Actually, in
this case 𝑛SC can be chosen equal to 1, and the architectures reduces to an NVP.

When there are 𝑓 value failures and 𝑘 omissions, the worst scenario is when there is a
self-checking component with 𝑓 value failure and 1 omission (so there is no majority),
𝑛SC − 2 self-checking components with 𝑓 + 1 omissions each (no majority) and 1 self-
checking component with 𝑓 omission (there is a majority of correct results), as
represented in the following for 𝑓 = 2 and 𝑘 = 12, where 𝑖 is an intentional failure, 𝑜 an
omission and 𝑐 is a correct result.

SC1 SC2 SC3 SC4 SC5
𝑖 𝑜 𝑜 𝑜 𝑜
𝑖 𝑜 𝑜 𝑜 𝑜
𝑜 𝑜 𝑜 𝑜 𝑐
𝑐 𝑐 𝑐 𝑐 𝑐
𝑐 𝑐 𝑐 𝑐 𝑐

Input

Variant 1

Variant 2

Variant 4

Output

if C
1

2
3 th

e
n

 R
1 e

lse
if C

4
5

6 th
e

n
 R

4 e
lse

 E
R

R
O

R

C123Compare 1, 2 and 3

R1

Variant 5 C456Compare 4, 5 and 6

R4

Variant 3

Variant 6

L1 L0

Page 112 of 117

Deliverable 6.4: Mitigation Identification and Design

In this case, 𝑘 = (𝑓 + 1)(𝑛SC − 2) + 𝑓 + 1 and then

𝑛SC = ⌈
𝑓 + 𝑘 + 1

𝑓 + 1
⌉,

that corresponds to

𝑛 = 𝑔 ⋅ 𝑛SC = (2𝑓 + 1) ⋅ ⌈
𝑓 + 𝑘 + 1

𝑓 + 1
⌉ + 𝑟.

The problem is that SCPV requires a huge number of variants compared with NVP. For
instance, the previous case requires 25 variants whereas NVP with 𝑓 = 2 and 𝑘 = 12
requires 17 variants.

Page 113 of 117

 Deliverable 6.4: Mitigation Identification and Design

10. Reference

[1] Accenture Technology Vision, “The Post-Digital Era is Upon Us, are you ready for

what is next?,” Accenture, 2019.

[2] A. Avizienis, J. Laprie, B. Randell and C. Landwehr, “Basic concepts and taxonomy
of dependable and secure computing,” IEEE Transactions on Dependable and
Secure Computing, vol. 1, no. 1, pp. 11-33, 2004.

[3] X. Yu, C. Cecati, T. Dillon and M. Simoes, “The New Frontier of Smart Grids,” IEEE
Industrial Electronics Magazine, vol. 5, no. 3, pp. 49-63, 2011.

[4] M. Batty, K. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. Wachowicz,
G. Ouzounis and Y. Portugali, “Smart cities of the future,” The European Physical
Journal Special Topics, vol. 214, no. 1, pp. 481-518, 2012.

[5] X. Liu, C. Qian, W. Hatcher, H. Xu, W. Liao and W. Yu, “Secure Internet of Things
(IoT)-Based Smart-World Critical Infrastructures: Survey, case study and research
opportunities,” IEEE Access, vol. 7, pp. 79523-79544, 2019.

[6] T. Kelly, Arguing Safety 一 A Systematic Approach to Managing Safety Case. PhD
Thesis., York, UK: University of York, 1998.

[7] T. Kelly, “A Systematic Approach to Safety Case Management,” SAE Transactions,
vol. 113, pp. 257-266, 2004.

[8] M. Hsueh, T. Tsai and R. Iver, “Fault injection techniques and tools,” Computer, vol.
30, no. 4, pp. 75-82, 1997.

[9] H. Ziade, R. Ayoubi and R. Velazco, “A survey on fault injection techniques,”
International Arab Journal of Information Technology, vol. 1, no. 2, pp. 171-186,
2004.

[10] K. Hayhurst, D. Veerhusen, J. Chilenski and L. Rierson, “A Practical Tutorial on
Modified Condition/Decision Coverage,” NASA Langley Technical Report Server,
2001.

[11] S. Kabir, “An overview of fault tree analysis and its application in model-based
dependability analysis,” Expert Systems with Applications, vol. 77, pp. 114-135,
2017.

[12] A. Segismundo and P. Augusto Cauchick Miguel, “Failure mode and effects
analysis (FMEA) in the context of risk management in new product development:
A case study in an automotive company,” International Journal of Quality &
Reliability Management, vol. 25, no. 9, pp. 899-912, 2008.

[13] B. Kordy, L. Pietre-Cambacedes and P. Schweitzer, “Dag-based attack and
defense modeling: don't miss the forest for the attack trees,” Computer Science
Review, Vols. 13-14, pp. 1-38, 2014.

[14] C. Schmittner, T. Gruber, P. Puschner and E. Schoitsch, “Security Application of
Failure Mode and Effect Analysis (FMEA),” In International Conference on
Computer Safety, Reliability, and Security, pp. 310-325, 2014.

[15] E. Cioroaica, S. Kar and I. Sorokos, “Comparison of Safety and Security Analysis
Techniques,” In Computational Intelligence in Security for Information Systems
Conference, pp. 234-242, 2021.

[16] D. Forster, C. Loderhose, T. Bruckschlogl and F. Wiemer, “Safety goals in vehicle
security analysis,” 17th ESCar Europe: Embedded Security in Cars, pp. 74-88, 2019.

[17] A. Cook, H. Janicke, R. Smith and L. Maglaras, “The industrial control system cyber
defence triage process,” Computers & Security, vol. 70, pp. 467-481, 2017.

[18] R. Bloomfield and J. Rushby, “Assurance 2.0: A Manifesto,” arXiv preprint, 2020.

Page 114 of 117

Deliverable 6.4: Mitigation Identification and Design

[19] R. Wei, T. Kelly, X. Dai, S. Zhao and R. Hawkins, “Model-based system assurance
using the structured assurance case metamodel,” Journal of Systems and
Software, vol. 154, pp. 211-233, 2019.

[20] R. Hawkins, T. Kelly, J. Knight and P. Graydon, “A new approach to creating clear
safety arguments,” Advances in systems safety, pp. 3-23, 2011.

[21] The Assurance Case Working Group, “Goal Structuring Notation Community
Standard (Version 3),” Safety-Critical Systems Club C.I.C., York, UK, 2021.

[22] E. Yu, “Towards modelling and reasoning support for early-phase requirements
engineering,” Proceedings of ISRE '97: 3rd IEEE International Symposium on
Requirements Engineering, pp. 226-235, 1997.

[23] A. Cailliau and A. van Lamsweerde, “Assessing requirements-related risks thorugh
probabilistic goals and obstacles,” Requirements Engineering, vol. 18, no. 2, pp.
129-146, 2013.

[24] P. Fenelon, J. McDermid, M. Nicolson and D. Pumfrey, “Towards integrated safety
analysis and design,” ACM SIGAPP Applied Computing Review, vol. 2, no. 1, pp. 21-
32, 1994.

[25] S. d. S. Amorim, F. Neto, J. McGregor, E. de Almeida and C. F. Chavez, “How has
the health of software ecosystems been evaluated?: A systematic review,”
Proceedings of the 31st Brazilian Symposium on Software Engineering, pp. 14-23,
2017.

[26] E. Cioroaica, T. Kuhn and B. Buhnova, “(Do Not) trust in ecosystems,” Proceedings
of the 41st International Conference on Software Engineering: New Ideas and
Emerging Results, pp. 9-12, 2019.

[27] E. Cioroaica, .. S. Chren, B. Buhnova, T. Kuhn and D. Dimitrov, “Reference
architecture for trust-based digital ecosystems,” IEEE International Conference on
Software Architecture Companion (ICSA-C), pp. 266-273, 2020.

[28] S. Jones, “A discussion of issues and systems relevant to computer supported
cooperative work,” Stirling University, Department of Computing Science, Stirling,
UK, 1990.

[29] I. Habli, W. Wu, K. Attwood and T. Kelly, “Extending argumentation to goal-oriented
requirements engineering,” International Conference Conceptual Modelling, pp.
306-316, 2007.

[30] S. Giordano, S. Vitiello and J. Vasiljevska, “Definition of an assessment framework
for projects of common interest in the field of smart grids,” JRC Science and policy
report, 2014.

[31] S. vad de Hoef, Coordination of heavy-duty vehicle platooning, PhD Thesis,
Stockholm, Sweden: KTH Royal Institute of Technology, 2018.

[32] R. Janssen, H. Zwijnenberg, I. Blankers and J. de Kruijff, “Truck platooning: Driving
the future of transportation,” TNO, Netherlands, 2015.

[33] D. Schneider and M. Trapp, “Conditional safety certification of open adaptive
systems.,” ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol.
8, no. 2, pp. 1-20, 2013.

[34] J. Reich, D. Schneider, I. Sorokos, Y. Papadopoulos, T. Kelly, R. Wei, E. Armengaud
and C. Kaypmaz, “Engineering of Runtime Safety Monitors for Cyber-Physical
Systems with Digital Dependability Identities.,” In International Conference on
Computer Safety, Reliability, and Security., pp. 3-17, 2020.

[35] A. Joshi, S. Miller, M. Whalen and M. Heimdahl, “A proposal for model-based
safety analysis,” 24th Digital Avoinics Systems Conference, vol. 2, p. 13, 2005.

Page 115 of 117

 Deliverable 6.4: Mitigation Identification and Design

[36] E. Althammer, E. Schoitsch, H. Eriksson and J. Vinter, “The DECOS Concept of
Generic Safety Cases - A Step towards Modular Certification,” 35th Euromicro
Conference on Software Engineering and Advanced Applications, pp. 537-545,
2009.

[37] S. Voss, B. Schatz, M. Khalil and C. Carlan, “Towards modular certification using
integrated model-based safety cases,” in Proceedings of the Internal Workshop on
Verification and Assurance (Verisure), 2013.

[38] A. Retouniotis, Y. Papadopoulos, I. Sorokos, D. Parker, N. Matragkas and S.
Sharvia, “Model-connected safety cases,” in International Symposium on Model-
Based Safety and Assessment, 2017, pp. 50-63.

[39] D. Schneider, M. Trapp, Y. Papadopoulos, E. Armengaud, M. Zeller and K. Hofig,
“WAP: Digital Dependability Identities,” IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE), pp. 324-329, 2015.

[40] G. Regan, F. Caffery, P. Paul, I. Sorokos, J. Reich, E. Armengaud and M. Zeller,
“Securing a Dependability Improvement Mechanism for Cyber-Physical Systems,”
Advances in Software Engineering, Education and e-Learning, pp. 511-522, 2021.

[41] J. Reich, I. Sorokos and M. Zeller, “An Eclipse Epsilon-Based Safety Engineering
Tool framework for the Creation, Integration and Validation of Digital
Dependability Identities,” Model-Based Safety and Assessment, p. 252, 2020.

[42] Alladi, Tejasvi, V. Chamola and S. Zeadally, “Industrial Control Systems:
Cyberattack Trends and Countermeasures,” Computer Communications, no. 155,
pp. 1-8, 2020.

[43] P. E. Verissimo, N. F. Neves and M. P. Correia, “Intrusion-Tolerant Architectures:
Concepts and Desigm,” Architecting Dependable Systems, vol. 3, no. 36, 2003.

[44] K. Scarfone and P. Mell, “Intrusion Detection and Prevention Systems,” in
Handbook of Information and Communication Security, 2010, pp. 92-177.

[45] A. Khraisat, L. Gondal, P. Vamplew and J. Kamruzzaman, “Survey of intrusion
detection systems: techniques, datasets and challenges,” Cybersecurity, vol. 2, no.
1, 2019.

[46] P. Sousa, A. Bessani and R. Obelheiro, “The FOREVER service for fault/intrusion
removal,” in Proceedings of the 2nd workshop on Recent advances on intrusiton-
tolerant systems, 2008.

[47] T. Distler, “Byzantine Fault-tolerant State-machine Replication from a Systems
Perspective,” ACM Computing Surveys, vol. 54, no. 1, 2022.

[48] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I. Pagter, N. P. Smart
and R. N. Wright, “From Keys to Databases Real-World Applications of Secure
Multi-Party Computation,” The Computer Journal, vol. 61, no. 12, pp. 1749-1771,
2018.

[49] M. Rodriguez, K. A. Kwiat and C. A. Kamhoua, “Modeling fault tolerant
architectures with design diversity for secure systems,” in IEEE Military
Communications Conference (MILCOM), 2015.

[50] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design, 2005.

[51] A. Ceccarelli, A. Bondavalli, B. Froemel, O. Hoeftberger and H. Kopetz, “Basic
Concepts on Systems of Systems,” in Cyber-Physical Systems of Systems:
Foundations -- A Conceptual Model and Some Derivations: The AMADEOS Legacy,
2016, pp. 1-39.

[52] B. Littlewood and L. Strigini, “A discussion of practices for enhancing diversity in
software designs,” Centre for Software Reliability, City University, DISPO-LS-DI-TR-
04-V1-1d, 2000.

Page 116 of 117

Deliverable 6.4: Mitigation Identification and Design

[53] A. S. Nascimento, C. M. F. Rubira, R. Burrows and F. Castor, “A Systematic Review
of Design Diversity-Based Solutions for Fault-Tolerant SOAs,” in Proceedings of
the 17th International Conference on Evaluation and Assessment in Software
Engineering, 2013.

[54] L. L. Pullum, Software Fault Tolerance Techniques and Implementation, 2001.

[55] B. Randell and J. Xu, “The evolution of the recovery block concept,” in Software
fault tolerance, 1995, pp. 1-22.

[56] F. Di Giandomenico and L. Strigini, “Adjudicators for diverse-redundant
components,” in Proceedings Ninth Symposium on Reliable Distributed Systems,
1990.

[57] A. Avizienis, “The N-Version Approach to Fault-Tolerant Software,” IEEE
Transactions on Software Engineering, vol. 11, no. 12, pp. 1491-1501, 1985.

[58] B. Randell, “System Structure for Software Fault Tolerance,” IEEE Transactions on
Software Engineering, Vols. SE-1, no. 2, p. 220–232, 1975.

[59] R. Obelheiro, A. Bessani, L. Lung and M. Correia, “How Practical are Intrusion-
Tolerant Distributed Systems?,” Department of Informatics, University of Lisbon,
DI-FCUL TR 06–15, 2006.

[60] I. Gashi, A. Povyakalo and L. Strigini, “Diversity, Safety and Security in Embedded
Systems: Modelling Adversary Effort and Supply Chain Risks,” in 12th European
Dependable Computing Conference (EDCC), 2016.

[61] M. Khan and A. Babay, “Toward Intrusion Tolerance as a Service: Confidentiality
in Partially Cloud-Based BFT Systems,” in 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN21), 2021.

[62] T. Dohi, K. S. Trivedi and A. Avritzer, Handbook of Software Aging and
Rejuvenation: Fundamentals, Methods, Applications, and Future Directions, 2020.

[63] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves and P. Verissimo, “Highly Available
Intrusion-Tolerant Services with Proactive-Reactive Recovery,” IEEE Transactions
on Parallel and Distributed Systems, vol. 21, no. 4, pp. 452-465, 2010.

[64] J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su and B. Fang, “A Survey on Access Control in the
Age of Internet of Things,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 4682-
4696, 2020.

[65] B. Hardekopf, K. Kwiat and S. Upadhyaya, “Secure and fault-tolerant voting in
distributed systems,” in IEEE Aerospace Conference Proceedings, 2001.

[66] L. Wang, S. Ren, B. Korel, K. A. Kwiat and E. Salerno, “Improving System Reliability
Against Rational Attacks Under Given Resources,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 44, no. 4, pp. 446-456, 2014.

[67] A. Babay, T. Tantillo, T. Aron, M. Platania and Y. Amir, “Network-Attack-Resilient
Intrusion-Tolerant SCADA for the Power Grid,” in 48th Annual IEEE/IFIP Int.
Conference on Dependable Systems and Networks (DSN), 2018.

[68] P. Jalote, Fault tolerance in distributed systems, 1994.

[69] K. Kwiat, A. Taylor, W. Zwicker, D. Hill, S. Wetzonis and S. Ren, “Analysis of binary
voting algorithms for use in fault-tolerant and secure computing,” in 5th
International Conference on Computer Engineering Systems, 2010.

[70] J.-C. Laprie, J. Arlat, C. Beounes and K. Kanoun, “Definition and analysis of
hardware- and software-fault-tolerant architectures,” Computer, vol. 23, no. 7, pp.
39-51, 1990.

Page 117 of 117

 Deliverable 6.4: Mitigation Identification and Design

[71] A. Bondavalli, F. Di Giandomenico and J. Xu, “A Cost-Effective and Flexible
Scheme for Software Fault Tolerance,” Computer Systems: Science & Engineering,
vol. 8, 1993.

[72] M. R. Lyu, Software Fault Tolerance, 1995.

[73] R. K. Scott, J. V. Gault and D. F. McAllister, “The consensus recovery block,” in
Total System Reliability Symposium, 1985.

[74] F. Di Giandomenico and G. Masetti, “Basic Aspects in Redundancy-Based
Intrusion Tolerance,” in 14th International Conference on Computational
Intelligence in Security for Information Systems and 12th International Conference
on European Transnational Educational, 2021.

[75] MISRA Consortium, “Guidelines for Automotive Safety Arguments,” HORIBA MIRA
Ltd., Nuneaton, UK, 2019.

[76] J. Reich and M. Trapp, “SINADRA: Towards a Framework for Assurable Situation-
Aware Dynamic Risk Assessment of Autonomous Vehicles,” 16th European
Dependable Computing Conference (EDCC), pp. 47-50, 2020.

[77] J. Reich, M. Wellstein, I. Sorokos, F. Oboril and K. Scholl, “Towards a Softwar
Component to Perform Situation-Aware Dynamic Risk Assessment for
Autonomous Vehicles,” Communication in Computer and Information Science
Dependable Computing - EDCC 2021 Workshops, vol. 1462, 2021.

[78] A. Schmidt, J. Reich and I. Sorokos, “Live In ConSerts: Model-Driven Runtime
Safety Assurance on Microcontrollers, Edge, and Cloud,” 17th European
Dependable Computing Conference (EDCC), pp. 61-66, 2021.

[79] Y. Papadopoulos, I. Sorokos, J. Reich and R. Wei, “DEIS-Project Dissemination,” 10
October 2019. [Online]. Available: https://deis-
project.eu/fileadmin/user_upload/DEIS_Engineering_tools_for_creation__integra
tion_and_maintenance_of_Digital_Dependability_Identities_V2_Whitepaper.pdf.
[Accessed 25 November 2021].

[80] D. Steinberg, F. Budinsky, E. Merks and M. Paternostro, EMF: Eclipse Modeling
Framework, Pearson Education, 2008.

