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Executive Summary 

In this deliverable, we detail the BIECO approach towards assuring that safety, security, 
and other ICT risks have been adequately mitigated and controlled during development. 
The approach leverages guidelines based on international safety and security standards 
(e.g., ISO 26262 and ISO 21434). We further build upon this foundation by incorporating 
other BIECO contributions, in terms of methods (e.g., Attack Tree Analysis), models 
(predictive models and extended MUD files), and tools (ResilBlockly, safeTbox). Our 
contributed advancement is in operationalizing an integrated safety-security co-analysis 
process to yield risk mitigation assurance artefacts. 

 

 

 

 

 

Project Summary 

Nowadays most of the ICT solutions developed by companies require the integration or 
collaboration with other ICT components, which are typically developed by third parties. 
Even though this kind of procedures are key in order to maintain productivity and 
competitiveness, the fragmentation of the supply chain can pose a high security risk, as 
in most of the cases there is no way to verify if these other solutions have vulnerabilities 
or if they have been built considering the best security practices. 

In order to deal with these issues, it is important that companies make a change on their 
mindset, assuming an “untrusted by default” position. According to a recent study [1] 
only 29% of IT business know that their ecosystem partners are compliant and resilient 
with regard to security. However, cybersecurity attacks have a high economic impact 
and it is not enough to rely only on trust. ICT components need to be able to provide 
verifiable guarantees regarding their security and privacy properties. It is also imperative 
to detect more accurately vulnerabilities from ICT components and understand how they 
can propagate over the supply chain and impact on ICT ecosystems. However, it is well 
known that most of the vulnerabilities can remain undetected for years, so it is necessary 
to provide advanced tools for guaranteeing resilience and also better mitigation 
strategies, as cybersecurity incidents will happen. Finally, it is necessary to expand the 
horizons of the current risk assessment and auditing processes, taking into account a 
much wider threat landscape. BIECO is a holistic framework that will provide these 
mechanisms in order to help companies to understand and manage the cybersecurity 
risks and threats they are subject to when they become part of the ICT supply chain. The 
framework, composed by a set of tools and methodologies, will address the challenges 
related to vulnerability management, resilience, and auditing of complex systems. 
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1. Introduction 

In systems where dependability [2] (e.g., safety and/or security) concerns are critical, 
and absolute proof of dependability is not feasible due to the underlying system and its 
operational environment’s complexity, the established approach is to argue that overall 
risk has been reduced to acceptable levels before the system is deployed into operation. 
Such arguments rely on the mitigation of dependability risk via rigorous development 
processes. 

In more general terms, such approaches to controlling risk are also employed in domains 
where systems are providing ‘mission-critical’ services instead of strictly dependability-
critical ones. For instance, while failure to deliver power to critical infrastructure (e.g., 
hospitals, residential areas in adverse weather) may not be directly safety-critical in the 
short-term (e.g., the presence of back-up power protects against immediate danger), it 
is certainly mission-critical in terms macroscopic and long-term consideration.  

ICT systems are now ubiquitous across critical infrastructure, and while they may not 
always have direct dependability implications, as highlighted in the earlier paragraph, the 
risk they contribute to the overall infrastructure must also be assured to be acceptably 
controlled. The emergence of ecosystem concepts such as smart grids [3] and smart 
cities [4], and the ongoing advancement of the IoT paradigm [5] are further indicators of 
the need for developing dependable ICT backbones. 

In this deliverable, we present the BIECO approach towards the definition of appropriate 
safety and security risk mitigation. The aim of this approach is to assure that the residual 
risk present in dependability and mission-critical systems (or specific subsystems 
thereof) is deemed acceptable by the end of development. Our proposed approach is 
based on guidelines found in established functional safety standards and integrated with 
those from corresponding security standards. 

Specifically, we demonstrate how safety and security risk assurance can be constructed 
to argue that risk has been adequately mitigated during development, following 
established guidelines from both domains. Furthermore, we discuss how dynamic 
mitigation of risk can be employed as part of the underlying system’s operation at 
runtime. 

Our approach links to the rest of BIECO by: 

- Providing methods appropriate for systematically structuring safety (T6.2) and 
security assurance claims (WP7) as part of assurance cases. 

- Incorporating the risk assessment (T6.2) and security analysis (T6.1) process to 
provide appropriate development-time evidence of risk mitigation. 

- Developing more resilient systems through the concept of Intrusion-Tolerant 
Architectures (WP6), intended to mask the effect of attack-induced failures, and 
integrate the developed redundancy schemes in the risk management process 
(WP6). 

- Links failure and trust prediction concepts with dynamic risk management 
(WP4). 

- Links runtime risk management and resilient adaptation (WP4). 

The remainder of the deliverable is structured as follows: 

- Section 2 discusses some of the motivation behind the approach and provides 
relevant background including previous and related work. 

- Section 3 provides key considerations regarding the choice and application of 
intrusion-tolerance countermeasures. 
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- Section 4 addresses the overall issue of dependability and security risk 
mitigation during system development as part of BIECO. 

- Section 5 presents a combined dependability and security approach for 
managing risk at runtime. 

- Section 6 discusses tool support for development and runtime dependability 
risk mitigation. 

- Section 7 provides a simplified example of how the tool support mentioned in 
Section 6 can be used. 

- Section 8 provides a summary of the deliverable. 
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2. Motivation & Background 

The BIECO project use cases involve ICT infrastructure that may be individual or 
constituent systems of larger dependability or mission-critical systems. For example, 
ICT gateways usually may not have direct catastrophic safety effects in case of failure 
or attack, but if they are part of a larger critical infrastructure e.g., a smart grid, then their 
role must be also considered accordingly. The implication of developing such systems 
is that they are part of a larger ecosystem of stakeholders, technologies, devices, and 
software, whose interactions need to be accounted for and managed appropriately. 

When safety is a primary concern of a given application, then it stands to reason that 
critical safety hazards (i.e., negative events in terms of safety) should be identified early 
in the development process, so that important requirements are not discovered in later 
stages, where major changes require increasing development resources. As such, when 
safety issues are known, security, availability, reliability, and other related properties can 
be analysed more effectively, using the knowledge of their effects on the impacts of 
those safety issues. 

That being said, safety is not always a primary concern; indeed, given the nature of ICT 
systems, security is the more typical aspect to be considered. In particular, unique 
security concerns such as privacy are usually orthogonal to safety and must be 
considered regardless. In other cases where mission-critical systems are involved, e.g., 
power production and distribution, availability of the overall system (e.g. continuous 
provision of power, despite failures and/or attacks) may be a primary objective on its 
own. Our approach should therefore be flexible in addressing dependability aspects 
interchangeably, depending on the application system being considered. 

In both the security and safety domains, standardization is extensive, and enables us to 
draw from established best-practice guidelines applied in industry. Functional safety 
standards, such as IEC 61508 (general) and ISO 26262 (automotive), provide guidance 
for identifying and managing safety risk, while maintaining adequate integrity of the 
development process. On the security side, standards such as ISO 21434 provide 
corresponding guidelines for addressing security risk for commercial vehicle 
development.  

Both ISO 26262 and 21434 include provisions for developing system elements ‘out of 
context’ (EooC), which offer a useful development paradigm for constituent systems and 
components that are developed asynchronously from the rest of their encompassing 
system. Using this paradigm, development of ICT systems (e.g. gateways) can be 
encapsulated using clearly specified interfaces, in terms of both functionalities, as well 
as requirements. 

To address dependability risk in complex systems, we can argue that the development 
process has identified all relevant risks through sound analysis, designed and 
implemented appropriate means of mitigating (or eliminating) these risks, and 
confirmed that the above process has acceptably reduced the residual risk by the end of 
development. Capturing such arguments in ad-hoc natural language has proven 
inefficient and error-prone [6], and modern systems are large and complex enough to 
require significant argumentation and documentation. Assurance cases structure clear, 
comprehensive, and convincing arguments that the underlying system will operate 
dependably (to a degree acceptable by stakeholders) [7]. These arguments typically 
establish some high-level claims regarding desired dependability properties of the 
system, decomposing them along strategies of argumentation, eventually down to 
specific evidence of system design, implementation, and/or dependability-related 
analysis, produced over the course of system development. Given their flexibility, they 
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are an appropriate medium for communicating how risk is mitigated, regardless of 
whether the risk is related to safety, security, or other mission-critical aspects. 

Typically, due to the uncertainty regarding the exact conditions of the operational 
situation the system will experience at runtime, worst-case assumptions with regards to 
the assessment and assurance of risk are established. The implication that such 
assumptions have is that they often deactivate functionality or severely restrict its 
performance in order to manage the impact of risk in worst-case conditions. 

Our approach intends to improve upon this limitation by extending the risk assurance 
process to account for operational conditions and adjust functionality, accordingly, 
thereby avoiding worst-case assumptions when feasible. The models which enable this 
extension are known as Conditional Safety Certificates (ConSerts). ConSerts capture 
internal and external variability of the underlying system, and specify how it can adapt, 
given its observed environment and relied-upon systems.  

Both construction of integrated assurance case and ConSerts rely on combining risk 
assurance models with dependability analysis techniques and models, which provide the 
concrete evidence for arguing risk and assessing which adaptation is needed. Both the 
assurance models, as well as the evidentiary models are often heterogeneous, both in 
technique and tool chosen, meaning common metamodels that can integrate them are 
needed. For our approach, we leverage the past experience from the AMADEOS and DEIS 
projects and use the corresponding metamodels they produced. 

As an example of how a security-specific concern can be addressed as part of our 
flexible approach, we discuss its application for developing intrusion-tolerant systems. 
In such systems, while there may be other defenses to prevent intrusions, there is also a 
need to handle the continuous operation even in the presence of a successful intrusion. 
System architectures featuring Intrusion-Tolerant Countermeasures (ITC) offer answers 
in this regard, enabling the underlying system to robustly adjust its operation and 
continue providing a dependable service. We discuss how our approach can integrate 
ITC architectures in terms of assurance argumentation and ConSerts in 5.2. 

As our approach needs to be practically applicable towards large and complex systems, 
there is a need for appropriate model-based tooling. Such tools can assist development 
by managing complexity, reducing effort and manual errors, and integrate with the rest 
of the BIECO through the artifacts and services the produce and consume. 

In the remainder of this section, we provide a brief overview regarding the status quo on 
the following topics; in 2.1 and 2.2, we provide a brief summary of the development 
lifecycle according to the safety and security standards ISO 26262 and ISO 21434 
respectively. Section 2.3 addresses existing views on safety and security co-analysis. In 
2.4, we discuss assurance cases and the associated notation systems. Goals in 
ecosystems are then discussed in section 2.5. In 2.6, we present existing work on 
ConSerts. In 2.7, we discuss the concept of the Digital Dependability Identity (DDI), which 
can be used for exchanging model-based dependability information. Finally, in 2.8, we 
discuss the concept of ITCs and set the basis for a conceptual framework to develop 
redundancy-based solutions to mask the effect of attack-induced failures. 
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2.1. Functional Safety Standard Development Lifecycle 

The International Electrotechnical Commission (IEC) standard 61508 addresses 
functional safety of Electric/Electronic/Programmable-Electronic (E/E/PE) (safety-
related) systems. Functional safety refers to the part of the overall safety (of the system 
under development) that is provided by active safety measures. For IEC 61508, this 
scope is further restricted to active safety measures implemented through E/E/PE 
technologies. Numerous domain-specific standards have been produced by extending 
the IEC 61508 concepts, and tailoring them for their corresponding domain e.g., the 
Society of Automotive Engineers (SAE) Aerospace Recommended Practice (ARP) 4754-
A for aviation and the International Organization for Standardization (ISO) 26262 for 
automotive. 

The IEC 61508 further introduces two important concepts that are shared with numerous 
other standards as well, namely a generic system development lifecycle, and Safety 
Integrity Levels (SILs). The generic lifecycle model is widely referred to as the ‘V-model’, 
an overview of which can be seen in Figure 1. In the figure, the ‘nominal’ phases are 
identified in blue, and the assurance-related activities in orange. 

 

Figure 1 - IEC 61508 Lifecycle Overview 

According to the lifecycle, at the outset of a system development project, the concept 
phase initiates. During the concept phase, the need and purpose of the underlying 
system is specified, along with relevant assumptions e.g., regarding its operational 
context. Once the high-level specification becomes more refined with functions, risk 
assessment of the nominal functionality can be initiated. 

The process outlined in the standard is heavily risk-based, as the choice of safety 
measures, and the assurance activities associated with their development, depend on 
the underlying system’s safety risk analysis. Such Hazard Analysis and Risk Assessment 
(HARA) processes are conducted by identifying hazards, which are events that, if they 
occur, may have negative effects in terms of safety. For each hazard, its contribution to 
the overall risk of the system can be evaluated in terms of the impact and severity of its 
effects, and the likelihood of its occurrence. Domain-specific factors and risk 
classification systems allow the process to be tailored to the particular characteristics 
of a given application. For example, ISO 26262 considers situational operations in more 
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detail e.g. driving on highways during rain. As a result of the HARA, from the set of 
hazards and/or hazardous situations, corresponding high-level safety goals can be 
specified; the system design through which they are satisfied is referred to as the safety 
concept. 

SILs can be assigned to hazards, hazardous situations, and to the corresponding safety 
goals, according to their determined level of risk. Higher SILs indicate that the 
corresponding hazard(s) are of higher risk. By extension, the safety functions designed 
to mitigate higher SIL hazards must be associated with more stringent safety 
requirements. 

The safety concept specifies the set of safety measures that satisfy the corresponding 
safety goals. Once functional safety requirements have been specified, and as the 
(architecture) design phase of development assigns the nominal (and safety) functions 
to concrete systems, concrete software and hardware requirements can be specified 
and allocated. SILs from the functional level can also be distributed across the 
constituent elements of the overall system i.e., lower-level subsystems and components. 

As individual elements of the overall system are implemented, they are unit tested, 
according to their specifications and SILs. As SIL increases, more rigorous testing 
techniques and criteria are recommended, e.g. fault injection [8] [9] and Modified 
Condition/Decision Coverage (MC/DC) [10]. Assuming successful unit validation, 
(sub)system verification iterates alongside the integration process as larger subsystems 
are composed. Eventually, the functional safety requirements of the safety concepts, 
and their corresponding safety goals, are validated, ideally confirming that the residual 
risk across all hazards is acceptably low. 

Different kinds of cause-effect analyses allow higher-level goals/effects (e.g. protection 
against specific hazard) to be linked to more detailed requirements/causes, qualitatively 
(‘which failures can cause a hazard’) or quantitatively (‘how likely are failures to cause a 
hazard’), and can be performed inductively (bottom-up) or deductively (top-down). 
Typical examples include Fault Tree Analysis (FTA) [11], and Failure Modes and Effects 
Analysis (FMEA) [12]. 

In many domains, and particularly in the automotive domain, systems are typically 
developed in a distributed flow, either by outsourcing parts of development, or by 
procuring commercial ‘off-the-shelf’ components. In either case, the elements provided 
by the external supplier must be validated carefully before being integrated into the 
system being developed. Element-out-of-Context (EooC) development formalizes this 
development paradigm by establishing a clear interface between the element supplier 
and the system manufacturer.  

Under EooC development, suppliers establish at the outset assumptions regarding the 
operational environment of the host system and derive corresponding requirements 
under which the EooC can deliver its specified functionality. Effectively, this means 
specifying functional safety requirements that are assumed will be present in the host 
system. Development of the EooC can then proceed following the development lifecycle 
processes outlined above, eventually validating the implemented EooC against the 
assumptions and requirements of the presumed operational environment. Once the 
EooC development completes, it can be evaluated and integrated into its host system’s 
development lifecycle accordingly. 

In parallel to the rest of the standard activities outlined above (and others not explicitly 
mentioned here as well), a safety case is also prescribed for documenting the rationale 
of the choices made regarding identification and management of safety-related risk, and 
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documenting the activities and work products related to the standard. More information 
regarding such cases is provided in Section 2.4. 
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2.2. Security Development Lifecycle 

ISO 21434 is an automotive cybersecurity standard, closely aligned with the ISO 26262 
processes. As such, ISO 21434 activities build upon the V-model lifecycle, and some of 
the terminology is shared across the two standards. 

ISO 21434 project-dependent activities begin at the point of specification of the system 
under development. Once the target functionality is clear (and a determination of what 
is cybersecurity-relevant is made), a Threat Analysis and Risk Assessment (TARA) can 
be applied. The role of the TARA is to: 

- identify the critical aspects of the system that need to be protected against 
potential attacks (aka ‘assets’) 

- identify the specific security properties of each asset that need to be protected 
- assess the potential impact of each attack 
- analyze the potential attack paths e.g., using Attack Tree Analysis (ATA) [13] or 

Failure Mode and Effects Vulnerability Analysis (FMEVA) [14] 
- assess the feasibility of each attack 
- assess the risk of each threat scenario by combining the potential impact and 

the feasibility of the attacks that realize it [15] 

For each threat scenario whose risk is deemed significant, security goals are specified 
to mitigate the effects of its impact or reduce the feasibility of the attacks that can realize 
the scenario. As per the safety concept from ISO 26262, a security concept specifies 
how security goals are met, by establishing corresponding security controls. Security 
controls can then be used to specify security requirements that need to be implemented. 

Finally, as per ISO 26262, developing elements out-of-context is also supported explicitly 
in ISO 21434, as is developing a security case, which is responsible for collecting 
argumentation regarding the choices made over the course of the security assurance, 
and documentation of the corresponding activities and work products, including those 
mentioned earlier in this section. More information on assurance cases can be found in 
Section 2.4. 
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2.3. Safety(/Dependability) and Security Co-Assurance 

When developing systems that have dependability (e.g., safety, security, …) or mission-
critical characteristics (often availability-related), existing standards provide targeted 
guidelines towards corresponding aspects (e.g. ISO 26262 for safety and ISO 21434 for 
security). However, integrating crosscutting concerns efficiently and effectively is not 
straightforward. System developers need to navigate the legal and regulatory landscape 
which may introduce domain-specific restrictions, incorporate assurance methods from 
different domains, specify requirements that also correctly account for cross-domain 
interaction, arrive at an implementation that satisfies all above requirements and 
stakeholders, and was developed rapidly enough to yield a return on the invested 
resources. 

A particular challenge of the above puzzle is the co-assurance of systems development 
in terms of both safety and security. As indicated in sections 2.1 and 2.2, standards exist 
for addressing safety and security individually, but they prescribe only partial guidelines 
for handling detailed interactions across their activities. For instance, in ISO 21434:2021, 
Annex D provides an example on determining whether a given element of the vehicle 
under development is cybersecurity-relevant or not. One of the conditions for 
considering an element relevant is whether the element contributes “to the safe 
operation of the vehicle” (ISO21434:2021, page 57). The implication here is that the 
determination of whether an element is safety-relevant, should happen at a stage where 
this knowledge is already available from the safety assurance activities e.g., during the 
concept phase of ISO 26262. Otherwise, if security analysis is applied beforehand, there 
is risk of needing to repeat parts of the security lifecycle, as elements revealed to be 
safety-critical need to be re-evaluated. Such scenarios could waste development effort 
in the worst case, as re-design could be needed. 

Such inefficiency can be addressed in terms of safety-security co-assurance, e.g., in [16], 
the authors propose to synchronize the security lifecycle workflow such that a 
preliminary HARA has already been conducted and safety goals have been specified. At 
that point, safety goals can serve as assets to be protected in terms of security. An 
additional benefit is that the potential impact of security-related threats to those safety 
goals becomes clearer, and their risk can be more accurately evaluated. 

In more general scenarios, where safety might not be relevant, this approach should be 
adapted by prioritizing the development workflow to assess dependability/mission-
critical risks based on the priority of a given property for the application. For example, in 
a nuclear power production plant, safety is arguably the top-priority property, and its 
workflow should precede others'. In such cases, risks to safety should be identified early 
in the development lifecycle, so that other sources of risk (e.g., security) that could 
contribute to safety-related risks can be identified efficiently. 

However, when considering systems where safety is not critical (e.g., an ICT gateway), 
other properties can be prioritized ahead of the security, if they are relevant. For example, 
if availability of a service provided by the ICT gateway is considered mission-critical, then 
identifying sources of risk against its availability can provide appropriate input for the 
security-specific TARA. This approach allows risks to be ‘triaged’, according to the 
application needs, while still supporting analytical coverage of all relevant risks. As an 
example of this mindset, see [17], where security risks are prioritized based on the 
criticality of the devices they can impact. This means that security-specific risks not 
directly contributing to other risks (e.g., privacy-related risks) can still be identified and 
addressed as part of the proposed process.  
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2.4. Assurance Cases 

The safety, or more generally, assurance case, aims to provide a structured argument 
which should clearly, comprehensively, and correctly explain how the relevant risks of 
the element under discussion have been addressed as part of its development process 
[7]. The assurance case structures such arguments by establishing claims regarding the 
high-level properties that the element should satisfy, and eventually linking them with 
concrete evidence that supports the former. Graphical notations for representing such 
cases help to manage the complexity of such arguments and simplify their construction 
and management. The most well-known notations are the Goal Structuring Notation 
(GSN)1 [7], Claims-Arguments-Evidence (CAE) [18], and the Structured Assurance Case 
Metamodel (SACM) [19]. Due to the existing support for GSN in the BIECO tool safeTbox2, 
our approach is illustrated using said notation; however, the approach could be directly 
adapted to use the other notations as well, provided tool support for those is chosen or 
developed instead. 

An assurance case is most appropriate to use when stakeholders of a complex system 
or process need to be convinced of its trustworthiness in detail. In such scenarios, 
focusing only on individual pieces or sets of evidence is not sufficient to provide 
confidence that all the relevant risks have been adequately addressed. A set of evidence 
can only be considered adequate if it is clearly contributing to specific claims addressing 
corresponding risks. Moreover, the assurance case must also convincingly argue that 
the processes which identified said risks and produced the cited evidence are also sound 
and correctly applied. Overall, the stakeholder must be convinced that all risks have been 
adequately addressed, and that the risks not explicitly addressed are acceptably low. In 
these terms, an assurance case generates stakeholder trust by clearly structuring and 
distinguishing between the evidence that was provided, but also the process, reasoning, 
and justification that led to the evidence creation. 

Most assurance cases capture arguments mainly as part of the development-time 
activities. As such, these arguments address the relationship between the identified risk, 
safety goals and measures that mitigate them, and the verification and validation of the 
designed and implemented system. By expanding on the above notion of risk, assurance 
cases can flexibly be applied to address not only safety-related risk, but can also cover 
other dependability aspects e.g., risk to security, availability, maintainability, etc [20].  

An overview of GSN elements can be seen in Table 1. Goal elements establish claims, 
usually regarding properties of the system that are proven as part of the assurance case, 
e.g., “system is acceptably dependable”. Strategy elements capture lines of reasoning 
which explain how Goals are supported by more detailed arguments, e.g., “argument of 
system safety via mitigation of risk across all safety hazards”. Solutions encapsulate 
references to specific pieces of evidence, usually produced as part of the development 
assurance activities. For example, to argue that all relevant hazards have been identified 
through appropriate means, a Solution citing the review of the risk analysis by an auditor 
can be included. Context, Assumption, and Justification elements function 
synonymously, providing relevant information regarding specific elements or the choice 
of argumentation. Goals, Strategies, and Solutions are typically linked via “Supported By” 
relationships, indicating how the subsequent elements support the former. Context, 
Assumptions, and Justifications are typically linked via “In Context Of” relationships. 

 

 
1 https://scsc.uk/gsn?page=gsn%202standard  
2 https://safetbox.de/  

https://scsc.uk/gsn?page=gsn%202standard
https://safetbox.de/
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Table 1 - Overview of GSN Elements (from [21]) 

GSN Graphical Element Depiction Definition 

 

A goal, presents a claim, part of an 
argument. 

 

A strategy, provides the inference 
between goals. 

 

A solution, references an evidence 
item. 

 

A context, references contextual 
information or statements. 

 

An assumption, presents an 
intentionally unsubstantiated 
statement. 

 

A justification, presents a 
statement of rationale. 
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An undeveloped element 
decorator, indicates a line of 
argument that has not been 
developed. 

 

Can apply to goals and strategies. 

 

 

For example, an undeveloped goal, 
presents a claim which is left 
undeveloped in the argument. 

 

SupportedBy, for goal-to-goal, goal-
to-strategy, goal-to-solution, and 
strategy-to-goal relationships. 

 

InContextOf, for contextual 
relationships, e.g. goal-to-context, 
goal-to-assumption, goal-to-
justification, strategy-to-context, 
etc. 

Figure 2 shows a small abstract example of a GSN argument. Goal_182 establishes an 
initial claim, which in this case is that the system satisfies some abstract property P. As 
context to this claim, the description of the system and specification of the property can 
also be associated via Context_186 and Context_187. The latter can further point the 
reader to concrete documents outside of the GSN diagram. To support the claim, a line 
of reasoning is offered in Strategy_183, with an attached justification. Finally, proof of 
the property is claimed in Goal_184, and reference to the documentation serving as 
evidence is provided in Solution_185. 
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Figure 2 - Basic GSN Example 

The 3rd version of the GSN community standard itself includes some additional notation 
concepts which will be briefly mentioned here as useful building blocks for structuring 
dependability assurance cases. These are assurance case modules, Assurance Claim 
Points (ACPs), and dialectic assurance case development. 

Assurance case modules encapsulate parts of argumentation so that they can be 
isolated from the overall argument and cross-referenced as needed. This reduces the 
complexity of both reviewing and managing the structure of an assurance case. An 
example of GSN modules can be seen in Figure 3. The abstract from the example in 
Figure 2 has been extended, now including an additional supporting claim of proof of 
property P, through Away_Goal_192. Away_Goal_192 references an external goal, 
Goal_191, which is found in Module_190. Note that Goal_191 is also annotated as 
‘Undeveloped’, indicating further refinement is needed. 
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Figure 3 - Abstract GSN Module Example 

ACPs are used to argue why the inclusion of elements or connectors in the assurance 
case is justified, embedding side-arguments on either the elements or the connectors 
linking said elements to the rest of the assurance case. ACPs allow confidence 
arguments to be seamlessly incorporated onto the main line of argument of an 
assurance case. An example of how ACPs can be applied is seen in Figure 4, where the 
example from Figure 3 has been further expanded to include ACPs annotated onto both 
elements and relationships. 

For instance, ACP3 annotates the “In Context Of” relationship between Goal_182 and 
Context_186, which indicates that this relationship is further argued in the referenced 
Goal_191. In this example, one could argue that the system description referenced has 
been verified to be accurate, a side-argument that lends more credibility to the inclusion 
of the corresponding context element. Similarly, ACP4 and ACP5 indicate how a solution 
and justification element can also /be annotated with ACPs. 
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Figure 4 – Abstract ACP Example 

Dialectic assurance case development is supported through the annotation of existing 
elements as being ‘defeated’, and “Defeated By” relationships. Elements that are 
considered to be defeated are elements whose arguing power has been undermined or 
eliminated due to the revelation of new information or lines of argument. The elements 
that cause the defeat can be linked to the existing argumentation via “Challenges” 
relationships. An abstract example of this extension can be seen in Figure 5, where CSn1 
‘defeats’ goal G1. 

 

 

Figure 5 - Example of GSN Counter-Solution Defeating Goal (from [21]) 
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2.5. Goal Structuring in Trust-based Digital Ecosystems 

Within a digital ecosystem, systems and actors form coalitions for achieving common 
and individual goals. In a constant motion of collaborative and competitive forces and 
faced with the risk of malicious attacks, ecosystem participants require strong 
guarantees of their collaborators' trustworthiness. Evidence of trustworthy behaviour 
derived from runtime executions can provide these trust guarantees, given that clear 
definition and delimitation of trust concerns exist. Without them, a base for negotiating 
expectations, quantifying achievements and identifying strategical attacks cannot be 
established and attainment of strategic benefits relies solely on vulnerable 
collaborations.  

For uplifting the assurance case from systems to the level of ecosystems we have 
examined the relationship between goals and trust and we’ve created a formalism for 
goal representation. We delimit the trust concerns with anti-goals. The anti-goals set the 
boundaries within which we structure the trust analysis and build up evidence for 
motivated attacks. 

Engineering digital ecosystems around open adaptive systems has become the enabler 
of technological advancements. Systems and devices from different manufacturers and 
even from different application domains interact and collaborate to achieve higher level 
goals, which would not be possible without such comprehensive collaboration. 
Moreover, there is a trend towards more continuous engineering, i.e., organizations and 
their developers dynamically enhance existing systems with runtime software updates 
that are continuously monitored.  

We anticipate a stronger uptake of the agent-based system paradigm. Correspondingly, 
in the automotive domain for example, there would be smart software agents deployed 
on vehicles, which could also be updated dynamically at runtime. These smart agents 
can at the entry point of a highway collaborate with other vehicles for forming platoons. 
When driving in a platoon, vehicles benefit from reduced fuel consumption due to 
reduced air friction.  

However, the complex dynamics of collaborative and competitive forces existing in an 
ecosystem rise multiple trust concerns for all ecosystem participants. Especially when 
competitive forces are hidden within declared cooperation and lead to malicious attacks. 
At the lowest operational level, a vehicle accommodating a software update requires 
strong guarantees of trust from the smart software agent. Actors with declared 
collaborative goals that actually act in competition can insert malicious behaviour 
together with the software update. Being received as black boxes by the host vehicle, 
these updates can contain intentional malicious logic faults introduced with the scope 
of causing harm. 

In the scenario provided above, the smart software agent can suddenly accelerate or 
decelerate and cause multiple car crashes within the platoon. Such a behaviour can be 
caused by logic bombs [2] that remain dormant in the host for a certain amount of time, 
and trigger when an event happens, or certain conditions are met. 

Trust is an essential enabler for the emerging trend of digital ecosystems. Without trust, 
user acceptance and thus market success would be impacted or even prevented. 
Further, not only user trust is required, but also trust between companies and other 
stakeholders (e.g., legislators and official bodies). Both aspects translate into the 
requirement that systems in the field need to have a basis for computing trust be-tween 
themselves for enabling cooperative relationships to form dynamically between formerly 
unknown participants. But the creation of trust requires mechanisms for accounting 
entities to their actions, responses, achievements and failures in a way that also enables 
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negotiations, decision making and ultimate identification of undesired behaviours. In this 
sense, goals are concepts that enable analysis and modelling of stakeholders’ interests 
and concerns [22]. A goal is evidence of an accepted objective fulfilled by system agents 
in [23]. In the area of safety in particular, system functions, regarded in our work as 
operational goals, have been formalized for enabling safety argumentation. The topmost 
priority of trust evaluation of systems operating in the field is their safety. Also, in the 
safety domain, a wide range of all possible deviations and formalization of operational 
goals have been defined. Therefore, at the operational level, it is enough to consider 
definition of anti-goals from safety as the one presented in [24]. For trust reasoning at 
higher levels, however, we adapt the goal formalization from the safety domain by 
considering a two-fold approach: identification of goal artifacts used in literature and 
analysis of directive documents, such as the ones from the European Commission. 

Digital ecosystems until now have been engineered with considerations of separated 
trust concerns that have been focused on distinct areas such as robustness or user trust. 
But the hybrid and complex nature of ecosystems dynamics characterized by 
interactions among diverse actors such as users, businesses, official bodies, systems, 
system components and developers require a unified consideration of trust concerns. 
Ecosystems need an instrument for health self-regulation that can, for example support 
a trustworthy reaction of a developer to user demands through provision of on-the-fly 
software updates. Only through a self-regulating mechanism that enables continuous 
scrutiny of its health, an ecosystem can grow well. The health of an ecosystem is an 
indicator of how well the business performs [25]. In this work, we examine the 
relationship between goals and trust, and we introduce a formalism for goal 
representation. The formalism captures key aspects of goals, enables their expression 
in a natural language and tracing between multiple levels of computation. We consider 
goal evaluation to be the mechanism for self-regulating ecosystems, the one that can 
bring transparency in the trust building process and enable re-considerations of tactics 
and strategies. For this, we extend the previous platform for runtime prediction and trust 
computation [26] by considering the goals of ecosystem entities. In this way, evidence 
gained from runtime computations supports the tactical decisions of ecosystem entities 
and their strategic analysis, which in turn supports reconfiguration. Provided as an 
extension of a previous reference architecture for trust-based digital ecosystems we 
have introduced in [27],  the current work continues with the demonstration of concepts 
expressiveness and reusability, by continuing with examples from the automotive and 
energy domains. 

Dynamic Goals analysis 

Goals can be viewed as the motivation between entities and their actions. They give a 
base for judging achievements and failures, as they enable negotiations and decision-
making. When represented in a machine-readable format, they support the automatic 
reasoning of trust, through runtime computation of reputation. For enabling goal 
representation, we continue with formalizing their definitions in three layers: strategic, 
tactical, and operational. The strategic goals are given by high authorities, such as 
governments and associations of organizations. From the tactical to the operational 
level, we follow a top-down approach, in a 4C step-wise-refinement of goals: From 
Cooperation to Collaboration (tactical), Coordination and ultimate Communication 
(operational). We based our top-down argumentation and decomposition of goals on the 
work of Jones [28]. In this sense:  

• Cooperation is the work on a task that shares the profits or benefits of doing so. 
It sets out a win-win benefit between two entities. 
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• Collaboration is the willingness of an actor to work jointly with another one on a 
given task. This can portray a mayor benefit for the entity requesting 
collaboration and a minor benefit for the collaborating entity.  

• Coordination is the process of causing parts to function together in a proper 
order. There is no notion of benefit included here. At this level, systems, 
components, processes and tasks at most implement coordination 
mechanisms. 

• Communication is the exchange of information and forms the basis for all the 
other upper C’s concerns. 

Starting from existing goal formalization practices used in the safety domain, such as 
the Goal Structure Notation (GSN) [7] [6] [29], we continue with a two-fold approach for 
formalizing goals for trust. We use the goal artifacts identified and mapping of goal 
artifacts identified in the literature and safety formalism to information present in 
directive documents that present strategic developments of industries in Europe. We’ve 
then deepened the analysis of the European strategic goals by surveying directions into 
two major domains to which the directive document is pinpointing: the automotive and 
energy domains. 

Formalization of Goals 

For defining strategic goals, we have looked at the highest strategic directives in Europe 
and we have surveyed the European Green Deal3. In this regard, the European 
Commission is an actor of a digital ecosystem that states strategic goals for 
organizations that take part in the ecosystem. For example, the European Commission 
states that for achieving the target for 2030 of reducing greenhouse gas emissions by 
at least 50% compared to 1990 levels, and no net emissions by 2050, it is essential for 
all sectors of economy to work towards a sustainable future. Policies needs to be 
revaluated for clean energy supply across the economy, industry, production and 
consumption, to name a few. One of the main strategic goals of the European 
Commission is to transform the European economy while creating a sustainable future. 

For the strategic goal, we have identified five different artifacts, namely: 

• The Ecosystem Entity is the non-cyber-physical part of the ecosystem, to which 
a strategic goal is applied. It is the one that supports the consequences and/or 
the benefits. 

• The Response is the desired property that the ecosystem entity is planned to hold 
over time. 

• The Stimulus is the condition that triggers the initiation of the strategic goal. 
• The Motivation is the incentive for creating the response of the strategic goal. It 

is a trigger for adapting ecosystem entity own behaviour towards goal 
achievement. 

• The Quantified strategic benefit is a quantitative achievement of a goal. 

In this way, a strategic goal can be expressed using natural language in the following 
way: 

“Ecosystem entity shall response when stimulus in the context of motivation with the 
benefit(s) quantified strategic benefit.” 

Following the above structure, the following strategic goal has been defined based on 
the text in the “European Green Deal” document4. 

 
3 https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en  
4 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640  

https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640
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“All sectors of EU economy shall adopt European Green Deal when tackling climate and 
environmental challenges for creating a sustainable economy with the benefit(s) of 
achieving no net emissions of greenhouse gases by 2050”. 

For enabling the analysis of its fulfilment, we’ve further on decomposed strategic goals 
into domain strategic goals. One of these sectors of EU economy is the automotive 
domain which generates turnover of over 7% of EU GDP. One such group in the 
automotive domain is, ACEA (European Automobile Manufacturers Association)5, a 
group of 16 major European automobile manufacturers, advocates of automobile 
industry. The association acts as a portal to provide expert knowledge on vehicle related 
regulation in the field of modern transportation. ACEA transforms strategic goals of 
governments into strategic goals of automotive companies. For example, ACEA provides 
action plans that supports the achievement of targets defined in European Green Deal 
with respect to mobility. 

Tracing between strategic goals and domain strategic goals is achieved through 
decomposition of the response of the strategic goal into: 

a) more concrete statements that become the motivation for individual domain 
specific strategic goals and  

b) concrete responses of the entities that act in specific domains. 

The template for defining domain strategic goals is: 

“Ecosystem entity shall response for motivation with the benefit(s) quantified strategic 
benefit.” 

In the energy domain, we’ve defined the following domain strategic goals: 

(Smart Grid) Domain Strategic Goal 1: European member states shall update national 
energy and climate plans by 2023 for contributing to EU-wide targets with the benefit(s) 
of reaching the 2030 climate ambition. 

(Smart Grid) Domain Strategic Goal 2: The Trans-European Networks – Energy (TEN-E) 
Regulation shall foster the deployment of innovative technology and infrastructure for 
upgrading existing smart infrastructure with the benefit(s) of transitioning to clean 
energy at affordable price. 

If at the strategic level, authorities define goals for the benefit of organizations, citizens 
and other ecosystem participants, at the tactical level, goals are defined for enabling 
system cooperation in the field. These are open declarations of an ecosystem 
participant, that other ecosystem participants can relate to. 

For enabling tracing, the response of domain strategic goals is refined into tactical 
activities and the motivation into common benefits. For definition of tactical goals in the 
energy domain, we have surveyed the Smart Grids Task Force Expert Group 4 -– 
Infrastructure Development [30] that specifies the KPI (Key Performance Indicators) of 
cooperation within the energy sector and we have surveyed literature papers that 
describe tactics for cooperation, like the ones presented in [31] and [32]. 

(Smart Grid Tactical Goal 1): Distributed Energy Resources shall form coalitions when 
they can only provide fluctuant energy for satisfying the energy demands of users. 

(Smart Grid Tactical Goal 2): Distributed Energy Resources shall transmit and distribute 
energy when they overproduce for reducing congestion risks in transmission networks. 

The ultimate trust evaluation relies on runtime computations that create evidence of 
correct operation in the field. For achieving tactical goals, at the operational level, 

 
5 https://www.acea.be/about-acea/who-we-are  

https://www.acea.be/about-acea/who-we-are
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systems and system components respond to stimulus and operate in certain contexts. 
The stimulus of tactical goals become the context of operational goals. System 
functions that implement operational goals are activated in established context. The 
context of operational goals is a combination of internal and external states of the 
system. 

We have defined the following template for natural language expression of operational 
goals. 

• Ecosystem Entity is a system component, hardware resource or software 
component that implements a system function. 

• Response is the output provided by the system function. 
• Stimulus is the input provided to the system function. 

• Context is the environmental part that starts the execution of a system function. 

With the following template, goals can be defined at operational level: 

“Ecosystem Entity shall response when stimulus in context of context”. 

In the smart grid domain, through the deployment of software smart agents, connectors 
boxes within a Distributed Energy Resource (DER) can autonomously form coalitions for 
satisfying the tactical goals such as provision of flexible amounts of energy. For this, at 
the operational level, the following goals need to be fulfilled: 

(Smart Grid) Operational Goal 1: The connector box, part of a DER shall transmit state 
information when it receives a triggered request. 

(Smart Grid) Operational Goal 2: A Virtual Power Plant shall start a broadcast for bids 
when it receives information about deficit of energy production. 

The considerations outlined above (across the current section) can be used to inform 
the decomposition of assurance arguments, highlight areas of further investigation with 
respect to safety and security (e.g., where goals require further development or 
supporting evidence), and identify means of managing safety and security risks at the 
according strategic/tactical/operational level.  
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2.6. Conditional Safety Certificates (ConSerts) 

Conditional Safety Certificates (ConSerts) [33] [34] capture modular, conditional, and 
pre-assured safety concepts, that enable dynamic reconfiguration of the underlying 
system based on observed changes of the operational context. As a reminder, safety 
concepts specify how a given system addresses safety risks e.g. by mitigating their 
effects.  

However, when following the standard guidelines of e.g., ISO 26262, safety concepts 
must be specified during development, and depend on assumptions regarding the 
operational context. Due to the uncertainty regarding the exact conditions experienced 
during operation, typically worst-case assumptions are adopted. The implication is that 
the corresponding safety concepts typically restrict operation and/or system 
performance in order to maximize the likelihood of transitioning to a safe state of 
operation. This limitation is even more severe when considering adaptive systems, or 
systems operating in highly dynamic environments. 

ConSerts aim to address this limitation, by enabling systems to adapt dynamically to 
changing conditions, while still assuring the safety of the adapted states of operation. 
To achieve this, safety concepts are modularized by viewing the functional architecture 
of their corresponding system as a set of service contracts between required and 
provided services of a Service-Oriented Architecture (SOA). Additionally, variability due 
to the system providing a service, the services it depends on, or its environment are used 
to gradate the guaranteed and demanded services in terms of functional and non-
functional qualities. 

An example of an abstract ConSert can be seen in Figure 6. In the figure, a ConSert of a 
hypothetical system providing a service X (as noted at the top of the figure) is depicted. 
The service has been specified in the form of a contract, providing a set of guarantees, 
which depend on the set of satisfied demands from services required by service X. In the 
case of this example, service X poses demands to service Y.  

Specifically, service X can be offered at 3 levels of guaranteed quality (with the last being 
no guarantees) and can provide some level of guarantee if service Y can satisfy its 
corresponding demands. The guarantee and demand logic specified in the contract is 
depicted using Boolean logic gates, which in the case of the example is a logical ‘AND’ 
gate, meaning all supporting elements (linked at the bottom of the gate) must be logically 
‘True’ for the gate to satisfy the linked guarantees. 

In summary, service X can be provided with guaranteed level 1, if service Y satisfies a 
demand of level 1, and the system has confirmed from its own runtime evidence (RtE) 
that a predicate is valid. The logic of the predicate is specified externally to the ConSert. 
A similar situation holds when service X is provided at guaranteed level 2, depending on 
service Y being provided at guaranteed level 2 and the RtE predicate being satisfied. If 
neither level of guarantee can be provided, the service can still be provided (in this case) 
without guarantees. As the RtE and the demands provided by Y are updated at runtime, 
the guarantees of X are updated accordingly. 
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Figure 6 - Example of Abstract ConSert 
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2.7. Digital Dependability Identities (DDIs) 

In the context of dependability-critical systems development, the paradigm of model-
based engineering has been widely acknowledged [35] [36] [37] [38], promising a central 
model around which nominal development and dependability-related development 
processes can be synchronized and performed more efficiently, especially when 
supported by appropriate software tools. However, due to the complex and varying 
applications, a plethora of highly diverse domains, models, methods, and tools are 
available, making interoperability across organizations or even across teams within 
organizations challenging. 

A particular challenge can be found in the coordination of safety and security assurance 
processes, as these topics are often highly correlated in systems integrating both 
electronic and physical components, as well as communication infrastructure over 
potentially open channels. For the model-based paradigm to be effective, both the safety 
and the security concerns must be captured and expressed using terms that, if not 
common, are at least accurately translatable across both safety/dependability and 
security engineering teams, such that they can collaborate and exchange information 
and results efficiently. 

Digital Dependability Identities (DDIs) [39] [34] [40] [41] are modular, composable, and 
executable models of dependability regarding a specific system (or system-of-systems). 
During development, DDIs can act as exchangeable models that compose partial 
dependability analyses of the underlying system into a complete dependability 
assurance case. Such DDIs can be iteratively constructed as information from 
development processes becomes available, ideally by extracting directly from results of 
associated tools. Therefore, DDIs can serve as appropriate intermediate models for 
managing the complexity of the information exchanged during dependability-related 
development processes. Additionally, they allow capturing and translating concerns 
across domains, (e.g. safety and security) consistently, thereby alleviating 
communication across corresponding processes, teams, and tools. 
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2.8. Intrusion Tolerance Countermeasures 

Borrowing from the well-known Fault Tolerance principles, Intrusion Tolerance aims to 
guarantee that a system works correctly even when some of its parts are compromised. 
Similar to Fault Tolerance, Intrusion Tolerance consists of several techniques aimed at 
counteracting an error from turning into a failure. The specific emphasis on intrusion 
instead of the generic fault refers to the malicious characterization of an intruder 
launching an attack, exploiting at best the acquired knowledge. Here, we refer to the 
more sophisticated chain illustrated in Figure 7 than the classical fault-error-failure in [2]. 
As illustrated in the figure, an attacker exploits a system/component vulnerability to 
launch an attack that, if successful, leads to an intrusion, seen as an internal fault. This 
fault may generate one or more errors that, if not properly managed, can lead to the 
failure of the service provided by the system/component. This is in line with the AVF fault 
model in [42] [43]. 

To avoid/mitigate the potential failures, Intrusion Prevention [44] and Tolerance are put 
in place to cope with the attacks and their consequences. Prevention is the first defense 
against intrusions, but since prevention cannot be assured to be totally effective, 
intrusion tolerance is also needed. In Figure 7, small "holes" within the area illustrating a 
defense technique represent weaknesses of the technique itself in accomplishing its 
task. Attack removal and vulnerability removal are radical measures to cope with the 
source of the intrusion, so avoiding that similar attacks can be perpetrated again. 

Intrusion tolerance techniques primarily include intrusion detection [44] [45], intrusion 
removal [46] and masking of intrusion-induced errors [43]. 

In this deliverable, the focus is on the last category of Intrusion Tolerance means, where 
redundancy of components is exploited a first line of defence while the other techniques 
collect enough knowledge to deal more radically with the presence of the intrusion. 
Moreover, here the emphasis is on a single component that is selected for higher 
protection through redundancy-based IT, where replicated components (variants) do not 
interact with each other, but only provide their output to the component in charge of 
collecting and manipulating variants results. Hence, tolerance paradigms applicable in 
contexts where multiple interacting components are in place are out of scope. For 
example, solutions resilient to byzantine faults in distributed systems have been deeply 
investigated, where the ability of the redundant components to interact with each other 
is exploited for tolerance purposes (see [47] for a survey). Another example is secure 
multi-party computation, a sub-field of cryptography with the goal of creating methods 
for parties to jointly compute a function over their inputs while keeping those inputs 
private (e.g., [48]). Again, interaction among involved components is the differentiating 
aspect with respect to the approach pursued in the current work. 
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Figure 7 - Representation of the Attack-Vulnerability-Intrusion-Error-Failure chain, and categories of 
techniques to cope with it 

Based on the long-dated experience with fault tolerance, and considering the 
peculiarities of an intentional attack, the proposed general conceptual framework for 
Intrusion Tolerance develops along four major dimensions, as shown in Figure 8. 

 

 

Figure 8 - The proposed conceptual framework for redundancy-based Intrusion Tolerance 
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These dimensions can be considered the ingredients to work with in the design of 
redundancy-based Intrusion Tolerance mechanisms when facing a specific application 
context. 

2.8.1. Attack model 

The attack model indicates how the cyber-attack is characterized. From the intrusion 
tolerance perspective, essentially what is relevant is to know the consequences of the 
attack, more than the dynamics on which vulnerabilities it exploits and the path to the 
successful intrusion. These last are vital information to accomplish the attack detection 
and treatment, but less relevant to carry out masking of the generated intrusion. Attack 
consequences are then connected with the security attribute that is primarily impacted, 
namely the well-known triad: confidentiality, integrity and availability. As a brief recall 
from [2]: i) confidentiality is preserved in absence of unauthorized disclosure of 
information; ii) integrity is preserved in absence of improper system alteration; and iii) 
availability is preserved with readiness for correct service. Similar to [49], the 
manifestation of a successful attack on the compromised components can be 
summarized as follows: 

• Functionality Change, which is the delivered results are incorrect. This means that 
the compromised components experience a failure in the value domain. The 
impact is mainly on the integrity property. 

• Performance Degradation, which is the results are delivered late or, in the extreme 
case, they are omitted. This means that the compromised components 
experience a usage failure at a specific moment. The impact is mainly on the 
availability property. 

• Information Leakage/Improperly Accessed, that is sensitive information are 
revealed. The impact is mainly on the confidentiality property 

Intrusion tolerance techniques, by masking the presence of compromised components, 
are mainly directed to preserve integrity and availability. Regarding confidentiality, such 
techniques are not effective; attack prevention is the reference approach for this 
property. Therefore, confidentiality is left out from the conceptual intrusion tolerance 
framework under development in this work. 

2.8.2. Categories of system components targeted by attacks 

Cyber-attacks can be launched to all the components of an ICT system, and typically an 
attack develops through several of them to be successful and lead to an intrusion. From 
the attacker perspective, the ICT components can be considered as belonging to three 
major categories: 

• Computing element, which is a component that is devoted to performing some 
kind of functionality, to provide a service to the requesting entity (a user or 
another component). Operating systems primitives, software applications and 
enterprise software are typical examples of this category. 

• Communication element, which is the means through which information is 
delivered to/from computing elements, users and storage. The internet and the 
several wireless networks technologies are typical examples of this category. 

• Data storage element, which includes different storage technologies used to 
retain digital data within a computer system architecture. The term storage may 
refer both to a user's data generally and, more specifically, to the integrated 
hardware and software systems used to capture, manage and prioritize the data. 
This includes information in applications, databases, data warehouses, archiving, 
backup appliances and cloud storage. 
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2.8.3. System model and failure assumptions 

Without going into details, such system models range from monolithic structures to 
distributed interacting components of different granularities, including SOA (Service 
Oriented Architecture) [50], microservice and SoS (Systems-of-Systems) paradigms [51]. 
A discussion on pros and cons with each system model is out of the scope of this study. 
What is relevant to notice is that the architectural solution is typically chosen on the 
basis of the functional and non-functional requirements, as well as cost implications. 
Since flexibility and scalability are among the most relevant requirements to drive the 
selection of the system architecture, the current trend is to increasingly evolve from the 
monolithic structure to forms of distributed computation. However, in addition to other 
considerations, it needs to be mentioned that there are long-lived systems, originally 
developed as a monolithic architecture, which cannot undergo significant redesign, but 
need to be enhanced from the resilience perspective. Therefore, the interest in 
monolithic-based solution appears to be still significant.  

Another important aspect associated to the structure and operation of an ICT system is 
the assumed failure model for the system components (due to accidental faults and/or 
intentional attacks). In line with the considerations on the effects of attacks, experienced 
failures can be in the value domain (an incorrect value is delivered/transmitted/stored) 
or in the time domain (a value that violates the time constraints is delivered/transmitted). 

2.8.4. Type of redundancy 

Another relevant dimension is the type of redundancy to adopt, that is the 
characterization of the forms of redundancy that can be put in place. When the 
redundancy is obtained employing just replicas, i.e. identical copies, if the attacker is 
successful in compromising one replica, it is expected that the intrusion is immediately 
successful in all the other replicas, due to the common vulnerabilities. Therefore, 
diversity is advocated, as a basic and powerful instrument to mitigate intrusion 
propagation. In practice, instead of replicas, the redundant structure adopts variants, 
which are functionally equivalent components developed with some form of diversity. 

As shown in Figure 9, common mode vulnerabilities when designing, implementing and 
deploying redundancy to protect a system component can have different origins. In the 
figure, three major sources are identified: 

• functional influences, which has primarily to do with the same design 
vulnerabilities present in the redundant components, or the adoption of a 
common execution environment exposing the same vulnerabilities. An intruder 
can exploit these vulnerabilities so that the affected components provide the 
same incorrect output, or the same late/unresponsive behaviour. A variety of 
means to cope with functional influence have been proposed in the literature 
(e.g., in [52]), some of which are reported in Figure 10 (e.g., different development 
teams, different programming languages, compilers, run-time supports, etc.) As 
will be discussed when presenting the redundant schemes, the usage of diverse 
components adds some difficulties to the definition of the redundant structure, 
namely the need to account for correct outputs resulting in non-coincident 
values. 

• locational influences, which exposes all the redundant components located in the 
same physical or logical partition of a system to be isolated by an attacker (e.g., 
through intrusion in the communication network), without the possibility to 
receive inputs and to provide outputs to the adjudicator unit. As shown in Figure 
10, locational influence mainly consists of adopting redundant (diverse) 



 

Page 42 of 117 

Deliverable 6.4: Mitigation Identification and Design 

communication channels, and/or distribution of the redundant components in 
different physical/logical sites. 

• administrative influences, resulting in potential massive intrusions by exploiting 
social engineering, when the redundant components are subject to the same 
security management policies. Diversity measures to cope with such problem 
include the adoption of different security management policies for the different 
redundant components, and possibly different administrative domains, as shown 
in Figure 10. Of course, some form of coordination among such different 
policies/administration domains turns out to be needed. 

Based on the conceptual framework depicted in Figure 8, in Section 3 classical 
redundancy-based fault tolerant approaches are revisited from the security perspective. 

 

Figure 9 - Origin of common mode vulnerabilities, exploitable by an attacker 

 

 

Figure 10 - Diversity approaches to cope with correlation types  
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3. Redundancy-Based Intrusion Tolerance Countermeasures for Design-Time 
Risk Mitigation 

Slightly extending the taxonomy in [53] [54], diversity-based fault tolerance scheme to 
mask the presence of errors is characterized by four major design issues: i) decision on 
the measures to adopt for enforcing diversity in the redundant structure under 
development; ii) selection of variants to employ in the redundant configuration (e.g., how 
many variants to employ, each developed according to which diverse methodology, thus 
showing a required reliability level); iii) decision on the execution pattern of the selected 
versions; iv) decision on the adjudicator function to adopt for selecting the only output 
from the set provided by the employed variants. The designer mainly addresses these 
issues based on specific needs of the application under development (including 
dependability requirements, as well as other requirements in the time domain and 
operational context), available development environment facilities, and reference fault 
tolerance architectures. 

Approaches to obtain diverse functionally equivalent versions of the component that 
needs redundancy have been already addressed in Section 2.8. 

Regarding the execution model for the variants, both sequential and parallel execution 
are implemented in the reference schemes. When adopting sequential execution, as 
typically done in the Recovery Block approach, a reliable checkpointing mechanism is 
needed, to save the state of the system before any variant starts executing and from 
which an alternate variant starts its execution, should the previous variant fail. Parallel 
execution implies concurrent execution of the variants, thus requiring adequate 
computer resources and the use of mechanisms to assure that the same input is 
provided to all the variants. 

The adjudicator component plays a very critical role in the overall redundant 
organization, being the entity that takes the final decision on the outcome of the 
redundant computation. A variety of adjudication functions have been proposed in the 
literature. They belong to two major categories: Voters and Acceptance Tests. 

Voters make a judgement on the set of variants results and are typically employed when 
the variants follow the parallel execution pattern. Several kinds of voters have been 
proposed to select the outcome from the set of results provided by the variants, such as 
majority voter, consensus voter, median voters [53] [54]. Note that the presence of 
diversity requires more sophisticated voting solutions than simple bitwise comparison 
(correct variant results are expected to be not perfectly coincident). 

Acceptance tests make an absolute judgement on each single-variant result. This kind 
of adjudicator is typically used when the execution of variants is sequential. Popular 
acceptance tests are based on satisfaction of requirements or reasonableness test (see 
[54] for more examples). Hybrid adjudicator forms that employ combinations of voter 
and acceptance test have been also explored, such as in [55]. A final observation on the 
discussed adjudicator categories is that voters are universally applicable, since they are 
based on syntactic comparison, while acceptance tests have to do with the semantic of 
the function performed by the variant, and a sufficiently accurate test of its result can be 
difficult or impossible to define. In [56], an optimal adjudicator function was proposed, 
that has the highest theoretically possible probability of producing a correct result for 
any input to a particular redundant component. It exploits probabilistic knowledge about 
errors/faults in the subcomponents of the fault tolerant component. Although not 
exploitable as a practical adjudicator, the concept of optimal adjudication is useful both 
as an upper bound on the probability of correct adjudged output obtainable and as a 
guide for design decisions. 
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To help addressing omission failures experienced by variants, the adjudicator 
component is typically equipped with a timeout mechanism that terminates the waiting 
on a variant’s result, after a predefined time interval determined on the basis of 
maximum execution time for the variant under consideration. In the following, it is 
assumed that each addressed intrusion tolerance scheme adopts a timeout for this 
purpose. 

At first sight, it could seem unnecessary to tailor 𝑛 Version Programming [57] (more 
general mr), Recovery Blocks [58] [55], 𝑛 self checking, etc, to the security context 
because, at least from [2] on, it is clear that fault-tolerance already addresses intentional 
faults (namely attacks). Nevertheless, in Section 2.8 it has been discussed how the 
peculiarity of intrusions requires the employment of forms of diversity to better protect 
the system/component under development. In classical redundancy-based fault 
tolerance schemes, diversity is advocated to cope with design faults resulting in 
common mode failures, but its need in addressing accidental faults is less 
stringent/radical than in case of intrusions (among the diversity approaches depicted in 
Figure 10, measures addressing functional influences are mainly considered). 

The stronger role played by diversity is a first distinctive aspect of redundancy-based 
intrusion tolerance schemes with respect to corresponding fault tolerance ones. To 
further enhance the efficacy of offered Intrusion Tolerance solutions, a few other 
features that have been proposed to support fault tolerance and/or security properties 
in general are exploited.  
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3.1. Additional protection measures 

As additional protection measures to enhance the efficacy of Intrusion Tolerance 
schemes, the concepts of rejuvenation, locality, access control and confusion have been 
selected as promising candidates. A brief recall of each of them, with considerations on 
their employment in the proposed IT schemes, is in the following. 

3.1.1. Locality 

Location diversity, consisting of placing several physical components of a system in 
different sites, is recognized since long time as a good practice to cope with physical 
threats, like natural disasters (e.g., floods or fires) or basic service outages (e.g., 
electrical outage). When deliberate attacks are considered, as in intrusion tolerance, this 
measure becomes even more relevant. Interestingly, location diversity can be easily 
joined with diverse administration domains characterizing the different sites, so further 
improving the defense against attackers [59]. In the following it is assumed that the 
defender has 𝑠 sites at disposal and can distribute the variants among the sites. Utility 
functions (e.g., input scatter, output gather, acceptance tests, adjudicator, etc) are 
deployed on a special site not counted. 

Notice, though, that scattering data and code among on-premises and/or commercial 
data centre to improve on system resilience, has the potential drawback to degrade 
confidentiality, depending on the accessibility conditions to the chosen diverse sites, as 
discussed in [60] for embedded systems and in [61] in the context of Byzantine Fault 
Tolerance. Thus, side effects of location diversity have to be carefully analysed and 
managed. Being the subject too application specific, it is not addressed here. 

3.1.2. Rejuvenation 

For long-living systems, rejuvenation [62] enhances fault-tolerance: once in a while, each 
replica is subject to some form of clearance/rejuvenation in order to reduce its failure 
rate or the frequency of intermittent faults, so that the entire fault-tolerance scheme is 
improved. 

While relevant to contrast any kind of malfunctions producing erroneous behaviours of 
a system/component that tend to increase along time, the benefit of rejuvenation is 
essential in the context of intrusion-tolerance, where an intelligent attacker may have 
enough time to successfully accomplish its intrusion. In fact, if clearance actions are 
effective enough, rejuvenation reduces the time window for an attack to be successful 
to be just the time between two consecutive clearances. To this purpose, rejuvenation 
should: 

• take place with high frequency, so that the attacker has to act as quickly as 
possible, potentially making mistakes that trigger intrusion and information leak 
detectors that are in place, 

• be coupled with diversity, i.e., each rejuvenation introduces as many changes as 
possible for reducing the correlations between pre- and post- clearance, ideally 
generating a completely new variant. 

In [63] the authors make a distinction between proactive and reactive rejuvenation 
policies in the context of distributed systems, where the interaction among components 
allows some form of reciprocal diagnosis based on perceived behaviours and 
consequent triggering of a rejuvenation phase in case there is the suspicion of a 
malfunctioning component. Instead, when focusing on individual component replication 
as addressed in this work, rejuvenation can be mainly applied as a proactive defensive 
measure. However, to account for potential self-checking features a variant of the 
redundant scheme could be equipped with, the rejuvenation can be either scheduled at 
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predefined time intervals or activated when some critical event is perceived (e.g., the 
variant itself could apply internal checks to reveal suspicious behaviour). Of course, 
rejuvenation is a costly operation and resorting to it with high frequency can become too 
onerous, especially when applied for contrasting attacks. In fact, the rejuvenated variant 
is expected to be significantly diverse from the original one; acting at functional level 
should assure higher degree of diversity, although simpler automatic diversity forms (like 
change in name or position of files in the filesystem) or obfuscation techniques (e.g., 
compile the program in sophisticated, and always different, ways that make reverse 
engineering difficult) can be considered as well. In general, a trade-off needs to be 
carefully analysed between several involved aspects to find the suitable rejuvenation 
strategy (mainly in terms of rejuvenation frequency, degree of diversity for the 
rejuvenating variant, time needed to accomplish the rejuvenation, desired level of benefit 
from rejuvenation). 

Of course, since rejuvenation does not guarantee full independence between pre and 
post versions of the variant from the attacker perspective, it cannot be the only defence 
mechanism in place. 

In this deliverable, 𝑟 indicates the maximum number of variants per site that can be under 
rejuvenation at each instant of time. The rejuvenation procedure requires an interval of 
time to be completed; therefore, when under rejuvenation, a variant skips one or more 
executions performed by the redundancy scheme it is involved in, until the rejuvenation 
phase completes. 

3.1.3. Techniques to assure protection levels 

Access control policies are typically applied to selectively restrict access to resources 
that play different roles, and a variety of access models have been developed to grant or 
reject an access request. 

Access control in computer security has been widely investigated (e.g., [64] with 
reference to IoT technology). Through authentication and authorization, access control 
policies make sure users are who they say they are and that they have appropriate 
access to the intended resource. According to the criticality of a component, more or 
less stringent rules are applied to grant the access. 

The redundancy-based solutions for Intrusion Tolerance that will be detailed in the 
following include components of different criticality: the functionally equivalent variants 
show lower criticality than adjudicator components responsible for selecting the 
outcome from the variants’ outputs. From this we derive that the adjudicator component 
needs higher protection level than individual variants, in terms of reducing the ability to 
an intruder to access it as a resource to compromise. So, the need of adequate 
protection mechanisms and access control techniques is even more exacerbated in 
intrusion tolerance context, to avoid defeating the effort of costly redundancy. 

For embedded or IoT systems, it is common to exploit a Root-Of-Trust to enhance 
security, and also fault-tolerance architectures can be complemented with such a 
mechanism [49]. Other solutions, such as resorting to a distributed adjudicator 
component to avoid the single point of intrusion are possible. 

For our purposes, two layers of protection will be considered, indicated as 𝐿0, 𝐿1, where 
𝐿0 is the most stringent one. Of course, more a fine-grained solution with higher number 
of protection levels could be of interest in specific contexts/application domains. In 
more general terms, deciding which part of the intrusion-tolerant architecture has to be 
assigned a given layer is crucial, having profound consequences not only on 
implementation choices but also on the attack model, and then on the analyses the 
defender performs to oppose the strongest defence to potential attackers. 
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In the literature, there are proposals in several directions when addressing intrusion 
tolerance in specific contexts, such as: 

• the adjudicator together with variants-adjudicator communication channels are 
in 𝐿0, whereas the variants are in 𝐿1 [49]; 

• adjudicator and variants are in 𝐿0 but the communication channels are in 𝐿1 [60]; 
• if the adjudicator is a simple voter, then its logic can be distributed onto the 

variants located in 𝐿1, and only the interface with the output can be placed in 𝐿0 
[65]. 

Clearly none of the above is always better than the others, it depends on the context and 
the available resources. For instance, having most of the architecture in 𝐿0 and only the 
communication channels in 𝐿1 can appear from one hand too expensive, and on the other 
hand insecure because for an attacker it is easier to address the communications than 
the logic because this way almost no domain specific knowledge is required. However, 
this may not be the case because in some contexts (e.g., cyber-physical systems) both 
variants’ and adjudicators’ logic can be simple enough to be implemented in 
microcontrollers that are relatively cheap and easy to protect, or heavy and complex but 
implemented in containers that run on machines physically located in secure places, and 
communication channels can in turn be made intrusion-tolerant to reduce exposition to 
attacks. 

3.1.4. Confusion 

An accidental fault just happens. Conversely, an intentional fault (an attack) is the result 
of rational choices made by one or more adversaries, and usually strikes the variant that 
the attackers hypothesize to be the weakest ones. Thus, in intrusion-tolerant systems it 
is common to find confusion strategies aimed at decreasing the confidence the 
attackers have in their decisions or increase the attack cost. Available strategies have 
been developed for different mitigation purposes and so show different degrees of 
effectiveness. For instance, replacing some variants with camouflage ones, i.e., 
components that perform no operations but mimic the interactions that operating 
variants have with the environment [66], can add a sufficient level of confusion only if 
the attackers have limited resources, in particular of time. For a cyber-physical 
infrastructure, such as a Smart Grid, where the attackers can study the system and plan 
the intrusions for years, and where it is expected that foreign adversaries are willing to 
invest huge resources in the attack, camouflages are less effective. In the referred 
context, camouflages are of great help to set up honeypots aimed at gaining information 
about the attacks or to do detection, but to tolerate intrusions the most effective choice 
is to use extra but working variants and configure the tolerance scheme such that the 
adjudicator component decides (probabilistically or deterministically) which results to 
consider among the set of received ones. Of course, this solution is not always 
applicable due to its high cost, but is beneficial as much as for the analogous in 
distributed computing [67] [61]. 

Moreover, they are proposed as conceptual schemes, without any direct connection to 
specific application domains, each one typically characterized by consolidated design 
practices and agreed standards. Therefore, whether and which protection mechanisms 
suggested above are appropriate to be employed in a specific system design certainly 
depend on their consistency with recommendations dictated in the referred application 
domain. 

To conclude this overview of security enhancing features, a graphical vision of the above 
concepts employed in redundancy-based fault intrusion is provided in Figure 11, where 
a configuration example is illustrated. It involves: 9 variants, of which 6 are predefined 
to be those whose outputs are considered by the adjudicator (named as participating 
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variants and labelled as pvi), and the remaining 3 are ignored by the adjudicator (named 
as non-participating variants and labelled as npvi), and 2 adjudicator components 
(labelled as Ai). A protection level is associated to each component (labelled as Li) and 
distributed in four different sites (labelled as si). Periodic rejuvenation phases are also 
indicated. Note that, for visualisation purpose, this example has to be considered as a 
snapshot of the scheme configuration taken at a certain moment of its execution. 

Finally, in Sections 3.3, 3.4 and 3.5 several redundancy-based intrusion tolerance 
schemes are described. It is clarified that such proposed schemes are not meant to be 
an exhaustive intrusion tolerance set; rather, they are examples of how the features 
discussed in this section can be exploited to adapt the traditional fault tolerance 
organization to cope with intentional attacks. So, there is openness to other interesting 
alternatives. 

 

Figure 11 - Snapshot of a redundant-based intrusion tolerance configuration encompassing 6 
participating variants (pvi), 3 non-participating variants (npvi), 2 adjudicators (Ai), with indication of their 

protection level (Li) and site where they are located (si). 
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3.2. Attack model 

The assumptions on the attack model are detailed in the following. The first statement 
is that only cyberattacks are considered. Therefore, an ICT component, even when 
composed of a physical device and software managing/controlling its operational life, 
can be compromised only through the software part. An attacker has ability to: 

• intrude the variants and 
o alter their result (value failure). The best strategy for the attacker is to try 

to compromise as much variants as possible, making them deliver the 
same (wrong) result, thus inducing a common-mode failure. 𝑓 indicates 
the number of value failures (possibly of kind common-mode) generated 
during an execution of an intrusion tolerant scheme. 

o make their result unavailable, that is the compromised variants 
experience an omission failure. 𝑘 indicates number of omission failures 
generated during an execution of an intrusion tolerant scheme. 

• isolate 1 site among the 𝑠 where the variants are deployed. The effect is that the 
results of all the variants located on that site became unavailable, and the 
adjudication function perceives an omission failure from these variants. The 
assumption of no more than 1 site under potential isolation by an attacker is in 
line with the works in [67] [61], and is made here for the sake of simplifying the 
presentation, but can be relaxed without invalidating the following developments. 

The considered intrusion tolerant architectures can tolerate 𝑓 arbitrary value failures 
(common-mode value failures, in the worst case) and 𝑘 omission failures 
(comprehensive of both those intentionally caused by the attacker and those due to 
accidental causes). 

The protection layer 𝐿0 is assumed to be unattackable, so those functionalities put under 
this protection layer (namely, adjudication functions and possibly some of the variants) 
do not experience successful cyberattacks. However, variants subject to higher 
protection from cyberattacks can be still affected by accidental faults. Instead, for what 
concern the adjudication functions, given their higher simplicity and reliability, their 
failure (both in selecting a wrong result and in not recognizing the exiting of a correct 
result) is not directly accounted for in the proposed redundant architectures. Of course, 
their reliability needs to be considered when assessing the ability of the scheme to 
satisfy desired dependability properties. 
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3.3. Family of NVP-like Architectural Proposals 

This section is dedicated to the family of redundancy architectures that follow the N-
Version Programming (NVP) organization. After a brief description of the classical NVP 
fault tolerant architecture [57], a few solutions obtained from its adaptation in the 
context of intrusion tolerance are discussed. 

3.3.1. The reference N Version Programming 

As depicted in Figure 12, the N Version Programming (NVP)6 comprises an adjudicator 
that receives all the results from the variants (or, after a timeout, works with those that 
are available) and, in the original formulation in [57], checks if there is a majority among 
the results. The variants are usually executed in parallel, although sequential execution 
has been investigated (the corresponding architecture is often called 𝑛VS) in contexts 
where computational resources are limited. If there is a majority, then this is the elected 
result that is sent in output. Otherwise, depending on the failure model, the component 
can switch to a benign failure state (e.g., in the context of Safety) or send in output a 
default value or choose one of the results exploiting other kinds of information, such as 
past knowledge about recurring errors (e.g., in the context of Reliability). This kind of 
adjudicator is called simple voter. 

 

Figure 12 - Basic configuration of N Version Programming (NVP) employing n=3 variants. 

Other kinds of adjudicators, such as variants of the simple majority (as presented in [54]), 
or exploiting more complex syndromes, such as additional information of the reliability 
of the variants (as for the optimal adjudicator in [56]) have been adopted. Actually, 
sophisticated adjudication functions can be defined, exploiting available information 
about the variants under execution to help selecting the (assumed to be) correct result 
(including previous disagreement with selected output, time to last 
rejuvenation/recovery) While keeping the voter simple in its logic certainly favours 
correctness of this critical component with respect to unintentional design faults, 
exploiting additional information at cost of introducing higher complexity appears 
appropriate in the context of Intrusion Tolerance, since it enhances the defender ability 
to perform rational choices. 

 
6 The term “𝑛 Version Programming” is not used in the software context only, but is commonly adopted in 
mixed software and hardware contexts. Notice that for pure hardware, the terms “𝑛 Modular Redundancy” 
or “static redundancy” are often preferred. 
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The NVP configuration appropriate in a certain application context, in terms of number 
of variants to employ and the adjudicator component to adopt, depends on the failure 
model that is intended to be tolerated. For instance, if the goal is to tolerate 𝑚 failures 
(both benign and catastrophic), a suitable configuration requires 𝑛 = 2𝑚 + 1 variants 
with the simple voter as adjudicator. 

Many specific NVP-like redundant schema have been proposed in the literature, as those 
reported in the survey [53], which focuses on fault tolerant Service-Oriented 
Architectures. Efficient organizations have been also pursued, for instance by 
performing results comparisons as soon as they arrive, so to wait for only 𝑚 to agree, 
thus improving on time performance, particularly relevant in real-time systems. 

Of course, this scheme is fully recursive, meaning that a variant can in turn be 
implemented following the NVP schema. 

Starting from the classic NVP fault tolerant organization just recalled, a few adaptations 
to the fault intrusion context are proposed in the following. A first, immediate NVP-based 
intrusion tolerance alternative, referred as basic iNVP and depicted in Figure 13, can be 
simply obtained by introducing protection mechanisms at level of communication 
channels (mainly to detect side-channel information leak) and encapsulating the voter 
component within a secure module (root-of-trust), as proposed in [49]. While this is 
certainly viable, in the following we concentrate on more sophisticated solutions, and 
therefore expected to be more resilient and/or less expensive (although this kind of 
quantitative assessment of resilience vs cost metrics is out of the scope of this work). 

 

Figure 13 - Intrusion N Version Pprogramming (iNVP), in the example with n=3 variants. 

3.3.2. Random Participation 

Random Participation of ℎ among 𝑛 variants (iNVP-R) resembles the NVP structure and 
logical operation, but introduces a form of confusion to make the attacker’s life harder. 
More variants than those strictly needed to tolerate the assumed fault model are 
employed, and the adjudicator chooses uniformly at random ℎ results among the 𝑛 
provided by the variants at each execution, and then performs the simple vote only with 
them. The variants have no feedback about whether their result has been selected or 
not. Those variants whose result is not selected are called non-participating variants. 

Notice that there are (𝑛
ℎ
) possible ways to select ℎ results among the 𝑛 available. 

The idea at the heart of this redundancy architecture is that choosing uniformly at 
random the participating variants makes it impossible for the attackers to know if the 
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resources invested in compromising a specific variant are wasted and then, to maintain 
the same probability of overall attack success, the attackers are required to invest on 
average more resources (other probability distributions could provide a clue about the 
defender strategy, thus it is better to avoid using them). Of course, this enhancement 
against attackers is paid in terms of additional variants that need to be fully operative 
(so more expensive than simple camouflage elements); this number of extra variants 
(𝑛 − ℎ) can vary and a quantitative analysis is needed to operate a suitable choice that 
results in a good tradeoff among contrasting aspects (dependability assurance and 
implied cost, depending on the criticality of the application). 

3.3.3. Deterministic Participation combined with rejuvenation 

The proposed deterministic strategy (iNVP-D) is similar to iNVP-R, but the choice of the 
non-participating variants is made deterministically instead of randomly. In addition, it is 
equipped with a rejuvenation, which brings the positive effects briefly discussed in 
Section 3.1. The idea is that a number 𝑛 − ℎ of variants is selected at each execution as 
excluded by the final voting, and identity of such non-participating variants changes from 
one execution to another. In such an organization, the higher knowledge from the 
attacker’s perspective is countered by the defender’s power to accomplish rejuvenation 
of variants, so that those participating to the vote include those more recently 
rejuvenated. 

Of course, rejuvenation can be profitably applied to variants also in the previous iNVP-R 
strategy. However, since the choice of the participating variants is random, rejuvenation 
cannot be fully controlled to bring the highest benefit. Possible alternatives include to 
randomly choose the variant(s) to rejuvenate, or to sequentially rejuvenate variants 
according to some predefined order. Which one would bring higher benefit can be 
assessed through an analysis carried out for this purpose? 

As an example, consider the architecture depicted in Figure 14 that comprises 6 variants 
and can be representative of both iNVP-R and iNVP-D. In the figure, the snapshot of an 
execution is shown, where variant 6 is under rejuvenation, and, among the five remaining 
in service, only the results coming from ℎ = 4 of them are considered by the voter 
(variant 2 does not participate). The voter is assigned the protection level 𝐿0 (highest 
protection level, given the higher criticality of the voter with respect to the other 
components), while the variants and communication channels are assigned the 
protection level 𝐿1. 
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Figure 14 - Snapshot of an execution of either iNVP-R or iNVP-D, where among n=6 variants only h=4 
participate to the voting (the shaded variant does not participate), and 1 variant is under rejuvenation (dark 
gray) 

3.3.4.  𝑵 Version Programming with distributed voter 

As evident from Figure 13, the adjudicator is a single point of failure in the architecture. 
One way to protect it is to put it in a highly restrictive layer, e.g., 𝐿0 in Figure 13. Depending 
on the complexity of the adjudicator, resorting to a full 𝐿0 protection level could be 
infeasible/inconvenient. Therefore, an alternative, here called 𝑖𝑁𝑉𝑃𝐷, is to distribute its 
logic in such a way that only a small kernel of the adjudication algorithm needs to be 
protected in 𝐿0 and the rest can stay in 𝐿1. For the simple voter, in [65] a distributed 
algorithm is presented in Figure 15, where only an interface is in 𝐿0 and the rest of the 
logic is distributed among the variants, that are in 𝐿1. Notice that it is possible to consider 
iNVP-R also in this case by modifying the interface logic (when a non-participating 
variant ask for writing its result, the interface acknowledge the writing but does not 
perform it). 
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Figure 15 - NVP with distributed adjudicator, here called iNVP_D. Two access control layers (L0, often in 
embedded or IoT devices implemented through a Root-of-Trust) and the adjudicator logic is distributed 
(orange) 

The interface is designed to be sufficiently small and simple, deployed in an embedded 
system or for IoT devices, hosted within a Root-of-Trust, and in any case to be formally 
verifiable (through model checking, theorem proving, etc). Notice that this architecture 
is the one, among all discussed in our work, which requires less objects under 𝐿0. Usually, 
fault-tolerance architectures are designed in layers [68], where components at one layer 
abstract their details and offer APIs to the layer immediately above it, so the adjudicator 
can be implemented exploiting well-known principles, tools and tweaks elaborated over 
the decades in the distributed system community, or even through off-the-self 
components. Notice, though, that exposing part of the adjudicator’s logic to higher risk 
of attack is not recommended in all circumstances (e.g., is not recommended for a 
safety-critical component). 
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3.4. Family of RB-like Architectural Proposals 

This section is dedicated to the family of redundancy architectures that follow the 
Recovery Blocks (RB) organization. After a brief description of the classical RB fault 
tolerant architecture [55], a solution obtained from its adaptation in the context of 
intrusion tolerance is discussed. 

3.4.1. The reference Recovery Block with 𝒏 variants 

The basic schema of Recovery Block (RB)7 [55] is depicted in Figure 16. In its logical 
organization, the 𝑛 variants constituting the RB are executed sequentially, according to 
a predefined order. The first variant is typically called primary alternate, followed by the 
secondary alternate if only two variants are employed, or second alternate, third alternate 
and so on in case of multiple variants. The adjudicator takes the form of an acceptance 
test (AT), applied to each individual result provided by the primary or an alternate (just 
one AT can be employed, or each variant is associated to a specific AT). On entry to a 
recovery block, the state is saved to permit backward error recovery (i.e., to establish a 
checkpoint). The primary is executed first, and then its AT checks the produced result. If 
the check is successful, the RB terminates its execution by releasing this (assumed to 
be) correct outcome and the taken checkpoint is deleted. Otherwise, the first alternate 
is executed after restoring the state to the taken checkpoint, repeating the AT on the 
obtained result, and so on, until a successful check is encountered (RB terminates with 
a judged to be correct outcome) or all the alternates have completed their computation 
(RB terminates with a default outcome, or just a notification that no correct outcome 
was found). Of course, this schema is fully recursive, meaning that a variant can in turn 
be implemented following the recovery block structure. 

 

Figure 16 - Basic configuration of n Recovery Blocks (RB) employing n=3 variants 

Notice that, when dealing with replicas, a single acceptance test is sufficient, but the 
presence of diversity among variants, as advocated for intrusion tolerance purposes, 
may require that a specific acceptance test is employed for each variant, depending on 
the resulting degree of diversity. In fact, as already discussed, correct variants may 

 
7 The equivalent in hardware only contexts are “stand-by sparing” or “passive redundancy”. 
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produce different but equally acceptable results, and RB alternates typically differ in 
terms of execution speed and (degradable) accuracy. 

As for the NVP adjudicator, here the acceptance test is a crucial component. On the one 
hand, the acceptance test must be simple enough to assure higher correctness than the 
variant it checks, but on the other hand not so trivial as to ignore the variants’ specificities 
and guarantee significance of the performed check. Coverage of an acceptance test, 
such that reliance can be put on the result of its check, depends on the application 
domain it is called to operate upon. Therefore, resorting to an RB structure strongly 
depends on the availability of acceptance tests characterized by enough coverage. 

With respect to NVP, RB can be more efficient in computing resources, since in most 
cases only the primary is executed, while NVP exercises all the variants. However, this 
advantage poses also an additional implementation problem: how to synchronize the 
internal states of alternates that performed executions with those that did not. In fact, 
while the sequential execution paradigm of the RB variants (possibly involving a subset 
of the variants only) is fully adequate in case of stateless components, a problem arises 
when the variants exploit their internal state in the computations they perform over time. 
In this latter case, synchronization at state level is needed, to assure consistency of the 
computations. Parallel Recovery Block, where the primary and all the alternates are 
executed although only a subset of them would be strictly needed to assure termination 
of the RB execution, is a simple although costly solution to cope with consistency of 
alternates’ internal state. 

3.4.2. Intrusion Recovery-Block 

RB for intrusion tolerance purposes (iRB) requires high protection of crucial elements, 
so a first simple solution consists in enclosing the checkpoint update/restore 
mechanism, the acceptance test and the switch that selects in turn the alternates under 
the protection level 𝐿0, and the variants in 𝐿1, as depicted in Figure 17 (similar to what 
proposed in [49]). 

 

Figure 17 - Basic iRB configuration, employing 3 variants and 2 protection layers 
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An alternative to the redundancy architecture depicted in Figure 17 is placing also the 
first alternate in 𝐿0. This is more expensive but guarantees that the most crucial variant 
from the attack perspective is adequately protected. Notice that the checkpoint 
mechanism, the acceptance tests and the switch need to be in 𝐿0, otherwise the 
attackers can alter the scheme output even without compromising the variants. 

To contrast the potential ability of an attacker to monitor the communications between 
the variants and the switch to identify the primary alternate (reading the content is 
unnecessary, only knowing the sender and the receiver is enough), the parallel execution 
of all the alternates appears as another suitable solution. In fact, it increases attacker’s 
confusion and also saves in overall execution time in case the primary fails the 
acceptance test, but requires more execution resources than the pure sequential 
execution. 

As for the intrusion tolerance alternatives based on the NVP scheme, also in the case of 
the iRB scheme the random selection helps in increasing attacker’s confusion, while 
rejuvenation phases enhance the health of the alternates, so as to nullify the effort 
previously made by the attacker to compromise the rejuvenated variant. 

A more protected alternative, called here iRB-R, the primary is made redundant (𝑛RD 
variants) and all the variants are executed, but the results of only one, selected at 
random, is verified by the acceptance test. This strategy is inspired by the Random 
Dictator approach described (Kwiat et al. 2010), and is applicable when available 
alternates have comparable performance and accuracy levels (to avoid penalizing 
quality of service indicators perceived by the user of the redundant structure). 

The Random Dictator approach [69], where one variant among the ℎ is selected at 
random as the primary alternate every time a result is needed, as depicted in Figure 18, 
exploits this direction. 

Regarding rejuvenation, it can be selectively performed to have the most recently 
rejuvenated alternate to act as the primary at each execution. To partially compensate 
the cost of rejuvenation operations, a simpler RB structure composed of only the primary 
and secondary alternates would be sufficient, provided that: the two alternates have 
similar performance and accuracy levels, and the time needed to rejuvenate an alternate 
is shorter than the time needed to the other alternate to process an input. 
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Figure 18 - Snapshot of an execution of iRB-R with 2 protection layers and 3 alternates, where the first 
alternate is selected uniformly at random among 3 candidates following the Random Dictator scheme 

As for the previous family of NVP-like techniques, it is clarified that the just discussed 
RB-like solutions are not meant to be an exhaustive intrusion tolerance set; rather, they 
are examples of how the features discussed in 3.1 can be exploited to adapt the RB 
tolerance organization to cope with intentional attacks. So, there is room to investigate 
other interesting alternatives. 
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3.5. Family of Hybrid Architectural Proposals 

NVP and RB are recognized as the two extremes of redundancy-based fault tolerance 
techniques: exploitation of maximum execution resources to achieve minimum 
execution time (NVP) and minimum execution resources to be potentially payed by 
maximum execution time (RB). In between, hybrid solutions that try to combine the best 
aspects of each of the two have been proposed in the literature. Three of them have been 
selected, briefly recalled in the following (SCP [70], CRB and SCOP [71]), and for each of 
them an alternative suitable to address intrusion tolerance is presented. 

3.5.1. N Self-Checking Programming 

The N Self-Checking Programming (SCP)8 architecture consists in the parallel execution 
of 𝑛SC self-checking components, ordered according to some criteria (typically, based on 
performance and accuracy considerations). The outcome of the NSCP structure is the 
result provided by the first self-checking component, starting from the first one in the 
ordered list. A self-checking program results from the addition of redundancy into a 
program to check its own dynamic behaviour during execution [72]. As reported in [70], 
a self-checking component consists of either a variant and an acceptance test or two 
variants and a comparison algorithm. 

In Figure 19, a NSCP configuration is depicted, where four variants are involved and 
organized in two self-checking components, each one resulting from the association of 
two variants with a comparison algorithm, such that an output is produced only if the 
comparison between the results of the two variants is successful. 

 

Figure 19 - Example of SCP configuration with two self-checking components, each one exploiting two 
variants and a comparator 

3.5.2.  Intrusion Self-Checking Programming 

Borrowing ideas from intrusion tolerant NVP and RB, a basic architecture for the 
intrusion tolerance counterpart of SCP, called iSCP, consists in exploiting different 
protection layers to enhance defence against attacks. 

 
8 The equivalent in hardware only context is “active dynamic redundancy”. 
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Figure 20 - iSCP with 2 protection layers and 4 variants grouped in 2 self-checking components 

Notice that the configuration in Figure 20 guarantees tolerance of 1 arbitrary intrusion, 
and 2 intrusions only if manifested with non-coincident errors. When tolerance to 
multiple arbitrarily compromised variants is needed, the approach of iSCP is to define a 
self-checking component as in Figure 19, where at least one variant is assigned the 
highest protection level 𝐿0, as for the comparator component. This is because the 
common mode failure between the two coupled variants is expected to be not a rare 
event when intentional attacks are considered, and so a phenomenon that need to be 
mitigated from the security perspective (as also pointed out in [49]). In this case, it is 
relevant to distinguish 𝑎 value failures due to accidental causes from 𝑖 value failures due 
to intentional attacks, so that 𝑓 = 𝑎 + 𝑖, and assume that the wrong results produced by 
accidental causes are different from the ones produced by intrusions (otherwise the 
attacker needs to read the accidentally wrong value). Since variants in 𝐿0 are protected 
against attacks, but can still suffer from an accidental fault, tolerance abilities of this 
architecture are: 𝑎 ≤ 1 and 𝑖 that depends on 𝑛 and 𝑎 as reported in Table 4 (within a 
self-checking couple, at most one variant can be affected an accidental fault and at most 
one by an intrusion). 

In case the self-checking component results from a couple variant and acceptance test, 
for the same reason discussed above it is appropriate that the acceptance test receives 
a higher protection (𝐿0). 

An alternative iSCP architectural solution able to tolerate the presence of 𝑓 
compromised versions would be to increase the redundancy within a self-checking 
component (i.e., each self-checking component comprises 𝑔 ≥ 2 variants, whose results 
are submitted to a majority voter), resembling an iNVP structure, to enhance its tolerance 
ability. Unfortunately, the resulting number of needed variants is significantly higher than 
for the corresponding iNVP alternative with the same tolerance abilities, so not 
competitive and therefore not considered in this study (see Appendix II for details). 
Confusion strategies could be further added but are not investigated here. 
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3.5.3. Consensus Recovery Block 

The Consensus Recovery Block (CRB), depicted in Figure 21, reduces the importance of 
the acceptance test used in RB and is able to handle the case where NVP does not 
employ a sophisticated voter able to recognize multiple correct outputs [55]. In CRB the 
variants are ranked, and, on invocation, all variants are executed in parallel, and their 
results submitted to a voter. The original formulation of the scheme [73] assumes that 
there are no common mode failures, so erroneous results do not coincide. Therefore, 
agreement between the outcomes of two variants is sufficient to deliver this value as 
the final result. However, in a more general formulation, which is comprehensive of less 
restrictive failure model assumptions, the voter can be based on a simple majority (so 
the architecture can tolerate 𝑓 = 𝑚 − 1 = ⌈(𝑛 − 1)/2⌉) or another plurality criterion to 
consider an outcome to be successful. If there is no majority, then the result of the 
variant with the highest ranking is submitted to the corresponding acceptance test. If 
this fails then the next variant in the order is selected. This continues until all variants 
are exhausted or one passes the acceptance test. 

 

Figure 21 - Basic configuration of the Consensus Recovery Blocks (CRB), instantiated for n=3 variants 

Notice that this schema is, on one hand, a parallel recovery block with a pre-test about 
consensus, and on the other hand an NVP with an adjudicator that is more sophisticated 
than the simple voter. 

3.5.4. Intrusion Consensus Recovery Block 

As for the other proposed intrusion tolerant alternatives to basic fault tolerance 
strategies, also for an intrusion version of CRB (iCRB) a first measure to adopt is higher 
protection of the most critical components of the scheme, i.e. the implementation of the 
two-step logic (voter and acceptance test, which are assigned protection level 𝐿0) with 
respect to variants (which are assigned protection level 𝐿1). 

Since CRB is a hybrid between NVP and RB, protection techniques already discussed 
when presenting intrusion tolerance alternatives of NVP and RB could be considered for 
iCRB proposals. In particular, the architecture depicted in Figure 22 is suggested, where 
confusion aspects obtained through addition of extra variants whose outputs are not 
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considered by the voter component are exploited. If the employed variants have 
degradable quality of service, the added non-participating redundancy could be inserted 
in the ranking in different position from one execution to another. Instead, if comparable 
variants are employed, the outputs considered by the voter can be randomly chosen at 
each execution, to enhance the attacker’s confusion level. Then, in case the voting phase 
is not successful and acceptance tests are activated, the output of previously non-
participating variants can be checked by the respective acceptance test (provided they 
are available) or not, depending on the degree of reliance that can be put on them. 

If affordable from the overall budget perspective, the presence of extra redundancy 
favours the usage of rejuvenation actions, as a further protection measure, with 
expected benefits as already previously discussed. In addition, changing the logic of the 
overall adjudication function to have the acceptance test applied to the result selected 
by the voter, in case this happens, strengthen the scheme to a greater extent. In fact, 
taking advantage of the availability of both the voter and the acceptance test, making 
such double checks enhances the chance to counteract potential intrusions. 

 

Figure 22 - An iCRB configuration, obtained adding 2 protection layers and extra variants for confusion 
(among the n=5 variants, only h=3 participate to the vote, but all the 5 are checked by the acceptance tests) 

3.5.5. Self-Configuring Optimistic Programming 

With the aim of improving the cost-effectiveness of fault-tolerant software (diminishing 
the waste of resources) in [71] the Self-Configuring Optimistic Programming (SCOP) has 
been presented. The idea is to maintain the logic of NVP unaltered but schedule the 
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execution of the variants in phases, instead of the parallel execution of all the variants, 
to promote efficiency. The scheme is based on an optimistic vision, since high quality 
versions are typically employed to build redundant organization for critical domains. The 
idea is to start executing the minimum number of variants that, if all correct, satisfy the 
adjudicator criterion and the scheme terminates. If this is not the case, a new execution 
is started, involving the minimum number of variants among the ones remaining to be 
executed, such that, if successful, will contribute together with the variants already 
executed in the previous phases to satisfy the adjudicator criterion and terminate the 
overall execution. This pattern is repeated until a successful result is found, or all the 
variants are exhausted. 

The example in Figure 23 helps to figure out how SCOP works; more details are in [71]. 

  

Figure 23 - Example of SCOP for n=5. Here Young diagrams are exploited to represent agreement among 
variants (squares represent results, same row represent agreement, the rows are ordered according to the 
number of agreements) 

Consider 𝑛 = 5. The majority is 𝑚 = 3, so in the first phase only 3 variants are executed, 
and their results passed to the adjudicator. If there is a majority, i.e., the three results 
agree, then the result is sent in output without executing the other two variants. If there 
is no agreement among the three variants of the first phase, but there is agreement 
among two of them, then in the second phase another variant is executed, and its result 
compared with the already available ones. A third phase maybe needed involving the last 
available variant, if the result of the variant executed at the second phase does not 
contribute to obtain a majority value. Instead, if the three variants of the first phase 
produce three different results, then two variants are executed in the second phase. 

End of phase 1 End of phase 2 End of phase 3
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Therefore, this SCOP configuration most likely terminates after only one phase (involving 
three variants), but in the worst case may need three phases, involving all the variants. 

3.5.6. Intrusion SCOP 

The introduction of access control layers follows the same approach as in Figure 15. 
The novelty relies on the fact that the very nature of SCOP promotes the application of 
confusion. In fact, at the beginning of each phase, at least two strategies are feasible: 

• execute more variants than needed and select uniformly at random a subset of 
results of required cardinality. 

• select at random just the required number of variants, choosing among a surplus of 
available ones, and execute only them. 

In both cases, the attacker is not able to precisely determine which are the 𝑚 variants 
whose results are considered by the voter. Notice that the former, when forcing SCOP to 
comprise a single phase, is equivalent to iNVP-R. The latter produces even more 
combinations with respect to SCOP, as shown in Figure 24, for a specific case. 

 

Figure 24 - Example of the possibilities in the second phase of iSCOP (of the first kind) if m=3, knowing 
the configuration at the end of the first phase and assuming that, instead of one, two variants are executed 
and one of the results does not participate (in gray in the picture). Notice that in 2 cases out of 8 listed 
accepting both new results would have allowed to stop in the second phase 

As for iNVP, choosing variants at random is not always appropriate when introducing 
also the rejuvenation process. An alternative is designing a more complex adjudicator 
that selects the value to send in output working on more informative syndromes. For 
instance, being not all the variants’ results required in the first phase, a subset of variants 
can be rejuvenated, and the last rejuvenation time of a variant can help in deciding 
whether its result is reliable or not, so it is useful to include it in the syndrome. 

+ + =
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3.6. A practical summary of redundancy-based Intrusion Tolerance schemes 

To better support the understanding and selection of the appropriate intrusion tolerance 
scheme to adopt for specific purposes, in the following the solutions introduced in the 
previous sections are schematized from a practical perspective. In particular, indications 
about redundancy levels, degrees of confusion and of variants under rejuvenation, as 
well as relation with available sites are provided. 

First, Table 2 reports the number of variants that are needed by each of the five fault 
tolerance schemes considered in this study, to tolerate 𝑓 (in the worst case common-
mode) value failures and 𝑘 omission failures, occurring simultaneously. Of course, 𝑓 or 
𝑘 can be 0, in case only omission failures or only value failures are assumed, respectively. 
Also, indication about the kind of decision function adopted by the scheme is included. 
For NVP, the simple majority voting is assumed, and for SCP the self-checking 
component is obtained through comparison of two variants’ outcomes. Observe that, 
when only omission failures are considered, the decision function based on voting is 
simplified to be just the selection of the received variant’s value (in accordance with the 
omission failure assumption, if a variant output is issued, it is correct). Moreover, similar 
formulations can be easily derived for determining the number of required variants for 
NVP and SCP if a different voting function or a different realization of a self-checking 
component than considered in Table 2 are adopted, respectively. 

Table 4 is dedicated to the new proposed intrusion tolerant alternatives to the schemes 
in Table 2. They are recalled in Table 3. These schemes take advantage of additional 
features to better cope with intentional attacks, as deeply discussed in Section 3.2. 
Specifically, they consist in: i) additional redundancy used as a stratagem to confuse the 
attacker; ii) distribution of the variants on more sites; and iii) periodic rejuvenation of 
variants, to contrast potential partial compromise of a variant already in place, or anyway 
to nullify potential gathered knowledge by an attacker about a variant. As previously 
introduced, ℎ indicates the number of variants considered by the adjudicator (therefore, 
𝑛 − ℎ indicates the number of additional redundancies for confusion), 𝑠 indicates the 
number of available sites, and 𝑟 indicates the number of variants under rejuvenation. The 
formulas in Table 4 for the number of variants required by each scheme include these 
parameters ℎ, 𝑠, 𝑟, in addition to 𝑓, 𝑎, 𝑖, 𝑘 connected with the failure types. 

The central information shown in Table 4 are the number 𝑛 of needed variants to tolerate 
𝑓 + 𝑘 failures, expressed in terms of 𝑓, 𝑘, 𝑠 and 𝑟, and considerations about additional 
redundancy for confusion. Regarding the latter, there is no exact indication on the 
amount of extra redundancy needed, since this choice is left to the system designer. 
What is expected is that a higher number of extra redundancies for confusion should 
correspond to a higher defence ability (and therefore higher dependability); however, this 
needs to be confirmed by quantitative analysis, that is planned as a future research 
study. So, it is only indicated that, if the total number 𝑛 of variants grows with extra 
variants, the needed number variants for tolerating 𝑓 + 𝑘 failures reported on the left 
column represents the number of variants whose results are considered by the 
adjudication function, that is ℎ. Additionally, the population of variants under 
rejuvenation is chosen by the system designer, trading between the cost of rejuvenation 
and benefits in prolonging the life of correctly operating variants; so only its number 𝑟 is 
accounted for in the formulas. 

iNVP with simple majority voting requires 

𝑛 = 2𝑓 + 𝑘 + 1 

variants to tolerate 𝑓 (in the worst case common-mode) value failures and 𝑘 omission 
failures, being the majority 𝑚 = ⌈(𝑛 + 1)/2⌉, as reported in Table 2. 
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If the defender has 𝑠 sites, the best strategy is to distribute as uniformly as possible the 
variants among the sites. Thus, there are ⌈𝑛/𝑠⌉ variants on the largest site, and then 𝑘 ≥
⌈𝑛/𝑠⌉. Applying standard properties of ceil function (details are in Appendix I) it is 
possible to relate 𝑛 directly to 𝑓 and 𝑘 (datum), and 𝑠 and 𝑟 (designer choice), as in Table 
4. However, the uniform distribution is not a compelling requirement, so other 
deployment policies can be adopted. As a general rule, the necessary condition to 
prevent the occurrence of a system failure, following the isolation of one site by an 
attacker, is that less than the number of variants whose results are needed to satisfy the 
adjudication function are allocated to any single site (a majority of variants, in case a 
majority voting is employed in the scheme, as for the case presented). 

When confusion is adopted, ℎ = 2𝑓 + 𝑘 + 1 and 𝑛 ≥ ℎ (i.e., the total number of variants 
is always greater than the participating ones), in both deterministic and random 
strategies. 

iRB requires a smaller number of variants, 𝑛 ≥ 𝑓 + 𝑘 + 1, with respect to iNVP and 𝑛 does 
not change when the isolation of a site is considered as long as 𝑛 > 𝑠, that is usually the 
case. For degradable systems, where the variants in iRB are ordered according to results’ 
accuracy, the best strategy to distribute the variants among sites is to deploy the primary 
on one site, the second alternate on another site, and so on till the first 𝑠 variants are 
assigned and distribute the remaining 𝑛 − 𝑠 round robin among the sites. Confusion is 
mainly applied to the primary, and, calling 𝑛RD the number of variants in the iRB, implies 
that 𝑛 ≥ 𝑓 + 𝑘 + 𝑛RD. In this case, the 𝑛RD − 1 additional variants have to be deployed on 
different sites. 

Table 2 - Comparison of classical architectures. k is the number of omitted results.  
Legend: arch=architecture, n=number of variants, decision=decision mechanism 

arch 𝑛 decision 

NVP 2𝑓 + 𝑘 + 1 Relative, simple majority 
RB 𝑓 + 𝑘 + 1 Absolute, based on ATs 
SCP 2(𝑓 + 𝑘 + 1), with 𝑓 ≤ 1 Relative, compare 2 results 
CRB 2𝑓 + 𝑘 + 1 First relative and then absolute 

SCOP 2𝑓 + 𝑘 + 1 Relative, simple majority 

For iSCP, when 𝑓 = 0, to tolerate 𝑘 omission failures, that in the worst case are 
distributed one per couple in 𝑛SC − 1 self-checking components, 2(𝑘 + 1) variants are 
required. If in addition there is 𝑓 = 1 value failure, then the required number of variants 
became 𝑛 = 2(𝑘 + 1 + 𝑓). To tolerate 𝑎 ≤ 1 accidental and 𝑖 intentional failures, iSCP 
then requires 

𝑛 = 2(𝑘 + 1 + 𝑎 + 𝑖). 

 
Table 3 - Acronyms 

Acronym Full name Section Figure 

iNVP intrusion N Version Programming 3.3 Figure 12 

iNVP-R iNVP with Random Participation 3.3 Figure 14 

iNVP-D iNVP with Deterministic Participation 3.3 Figure 14 

iRB intrusion Recovery Block 3.4 Figure 17 

iSCP intrusion Self-Checking Programming 3.4 Figure 20 

iCRB intrusion Consensus Recovery Block 3.4 Figure 22 

iSCOP intrusion Self-Configuring Optimistic Programming 3.5 Figure 24 

iCRB comprises two phases, but to determine the number of variants only the first phase, 
where iCRB behaves as iNVP, is relevant. Thus, 𝑛 ≥ 2𝑓 + 𝑘 + 1. When considering 𝑠 sites, 
the number of required variants is reported in Table 4. For confusion in iCRB, even though 
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the results of those variants that do not participate to the vote are considered in the 
second phase, being 𝑛 ≥ ℎ ≥ 2𝑓 + 𝑘 + 1 ≥ 𝑓 + 𝑘 + 1, the same reasoning as for iNVP 
applies. 

Table 4 - Intrusion add-ons 

Scheme 𝑛 Confusion 
iNVP, iNVP-R and 

iNVP-D 
2𝑓 +max{𝑘, ⌈

2𝑓+1

𝑠−1
⌉} + 𝑟 + 1 where 𝑠 > 1 

Naturally integrable. 
Substitute ℎ for 𝑛 

iRB 𝑓 + 𝑘 + 𝑛RD if 𝑛 > 𝑠 
Mainly applied to the 

primary 

iSCP 
𝑛 = (𝑎 + 𝑖 +max{𝑘, ⌈

2𝑎+2𝑖+2

𝑠−2
⌉} + 1) + 𝑟, 

where 𝑠 > 2 and 𝑎 ≤ 1 
Not investigated 

iCRB 2𝑓 +max{𝑘, ⌈
2𝑓+1

𝑠−1
⌉} + 𝑟 + 1 where 𝑠 > 1 Same as NVP 

iSCOP 2𝑓 +max{𝑘, ⌈
2𝑓+1

𝑠−1
⌉} + 𝑟 + 1 where 𝑠 > 1 

Naturally integrable. 
Several options 

Finally, considerations about performance are summarized in Table 5. Since the 
execution logic of the intrusion tolerant alternatives is the same as the original fault 
tolerant schemes from which they derive, the table is based on the original schemes. In 
fact, the intrusion tolerance ability is mainly obtained through additional redundancy and 
protection measures, and the execution time may result longer due to the impact of 
these additions, but the execution model is unchanged (that is, sequential of parallel 
execution of the variants). 

Without going in the detail of a huge variety of system organizations and application 
domains, the time requirements are abstracted at the level of hard time constraints and 
soft time constraints. The former indicates that violation of the time requirement has 
potentially heavy consequences for the system where the scheme is embedded, while 
the latter indicates a lower criticality of the time requirement. Therefore, roughly it can 
be suggested that schemes based on parallel execution are adequate for hard time 
constraints, while schemes structured in sequential phases are risky from the hard time 
perspective. However, this is an indication, but not a definitive discrimination among the 
considered schemes. Indeed, while parallel execution allows to predetermine the worst-
case execution time of the slowest variant and so be sure of the maximum time required 
by an execution of the scheme, mechanisms structured in phases have variable 
execution time depending on the failures really experienced during the execution (they 
afford longer execution time in unfavourable scenarios, but save in executed variants in 
the more frequent favourable scenarios where no failures occur). However, also for 
these sequentially based solutions, the worst-case execution time can be computed and, 
if adequate for the hard time constraint imposed by the application at hand, there is no 
objection on adopting one of them. 

Of course, when soft time constraints are in place, any of the presented schemes can be 
applicable, and the choice will be in general operated in accordance to some other 
criterion. 

Table 5 - Comparison of the architectures with respect to time constraints 

Arch Hard time constraint Soft time constraint 

𝑁VP OK (parallel exec.) OK 

RB KO (sequential exec.) OK 

SC OK (parallel exec.) OK 

CRB OK (parallel exec.) OK 

SCOP KO (sequential exec.) OK 
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3.7. Redundancy-based intrusion tolerance from the different system 
components’ perspective 

This section concentrates on discussing the redundancy-based intrusion tolerance 
solutions, developed in 3.3, 3.4 and 3.5, from the perspective of the different system 
components of an ICT system, to which such schemes are intended to be applied. 

Recalling from [74], the ICT components that can be considered the target of a 
cyberattack are grouped in the following three categories: 

• Computing element, which is a component that is devoted to performing some kind 
of functionality, to provide a service to the requesting entity (a user or another 
component). Operating systems primitives, software applications and enterprise 
software are typical examples of this category. 

• Communication element, which is the means through which information is delivered 
to/from computing elements, users and storage. The internet and the several 
wireless networks technologies are typical examples of this category. 

• Data storage element, which includes different storage technologies used to retain 
digital data within a computer system architecture. The term storage may refer both 
to a user’s data generally and, more specifically, to the integrated hardware and 
software systems used to capture, manage and prioritize the data. This includes 
information in applications, databases, data warehouses, archiving, backup 
appliances and cloud storage. 

These three component categories are characterized by hardware/physical supports 
and software programs, either devoted to performing specific functionalities (computing 
element category) or to manage/control the operation of the hardware/physical support 
(communication and data storage categories). 

It is underlined that the interest in this work is on cyberattacks, so the impact of an attack 
on a physical component can only occur through the software facilities that control/act 
on it. Direct physical attack to corrupt a portion of a physical medium (as it could be a 
memory cell or sector) is considered out of scope. 

Following this observation, in principle any of the proposed redundancy-based intrusion 
tolerance schemes would be adequate for enhancing resilience of ICT components 
belonging to the three categories, considering the aspects discussed in Section 3.1 to 
support the most suitable selection among the several alternatives. However, while 
functional components employed at application level are typically developed as ad-hoc 
components to accomplish the activity the application is called to perform, the software 
supporting the operation of physical devices, as well as operating systems, libraries and 
the execution environment are typically off-the-shelf components. This implies that, to 
obtain the diversity advocated to be a fundamental aspect characterizing redundancy-
based intrusion tolerance, full control by system developer is possible for in-house 
developments, while for the other software components the only option is to rely on what 
is available on the market. Luckily, there is a wide range of options made available by 
ICT companies, each one embedding some peculiar aspects that make their products 
equivalent from the service point of view, but with differences in terms of how such 
service is provided. Open-source repositories also help significantly, especially for what 
concerns libraries and execution environments. Therefore, the diversity principle the 
intrusion tolerance schemes are based on can be easily satisfied. Moreover, resorting to 
employ a variety of pairs of physical devices, managing software, as it would be for 
communication networks and data storage components, enhances system resilience 
also against faults affecting the hardware part. 
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Concluding from this discussion, it can be inferred that the presented redundancy-based 
intrusion tolerance schemes can be profitably exploited to protect ICT components. The 
highlights elaborated in Section 3.6 help a system designer in selecting a suitable 
solution for the faced requirements and constraints. 
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3.8. Integration in ResilBlockly 

The developed intrusion tolerant architectures can be profitably integrated within the risk 
assessment process carried on in BIECO, as one of the means to improve resilience of 
components evaluated as being ‘unacceptably critical’ from the risk analysis evaluation. 
In the following, the integration with the Risk Assessment performed through the 
ResilBlockly methodology and tool is discussed, taking a specific component of the ICT 
Gateway Use Case as application example. 

First, the process resorting to the selection and application of the ITC to a selected 
component, in place of the original creation (referred as simplex component) is 
described. 

Redundancy-based intrusion tolerant architectures are considered either when 
designing new components or for strengthening already existing ones. In both cases, a 
model of the component is built, following ResilBlockly supported formalisms. The 
derived model is then analysed in ResilBlockly. In this section the focus will be only on 
Risk Assessment, meaning that weaknesses and vulnerabilities of the simplex 
component are identified by the modeler (either searching in the CWE and CVE 
databases or manually defining them) and then their severity and likelihood are declared, 
as detailed in Section 3 of BIECO D6.2. In particular, redundancy-based architectures can 
be employed to address weaknesses (vulnerabilities are better addressed by other 
intrusion tolerance techniques) [67] [49]. If the risk assessment outcome is such that the 
simplex component requires to be made more robust in order to have the overall 
application fulfil the security requirement, the next step is performed.   

The second step is to select one or more intrusion tolerant architectures among those 
detailed earlier in Section 3, or customized starting from fault tolerant architectures and 
following similar ideas. Which one to choose highly depends on system requirements 
and context of the application where the simplex component operates, but also on its 
identified weaknesses, in terms of severity and likelihood. In general, more than one 
architecture could in principle fit the application’s needs. For each architecture, the 
number n of variants is then set, following the indications sketched in Section 3.6. 
Knowledge of the probability that a given weakness is exploited in the simplex 
component (a numerical value, more precise than likelihood) evaluated studying logs, 
also of similar components belonging to other applications, and adjudicator/acceptance 
tests coverage are assumed, as well as reliability or probability of undetected failure of 
the overall architecture. There is extensive literature on how to analyse a redundancy-
based architecture but, with the focus of this section being on ResilBlockly, here only 
probability of undetected failure will be considered because it directly relates to the 
likelihood in the Risk Assessment. Once the selection of the ITC architecture is made, 
the model of the simplex component is updated to consider its new redundant version, 
and a new risk analysis is performed in ResilBlockly. 

The third step is then to compare performance (time, computational resources, etc), 
severity and likelihood obtained from the analysis of the simplex component with those 
of the redundant counterpart analysed in the second step. This kind of A/B comparison 
can end up in a decision on the configuration to choose or highlight the need of 
redefining the number of redundant variants n and re-iterate the second step. If carefully 
set up, it is expected that such iteration process closes in a couple of iterations.  

As a case study, let’s consider the ICT Gateway detailed in BIECO D6.2 (and depicted in 
Figure 25) and focus on the Security & Resilience component (S&R). This component 
runs on a separate server and is responsible to detect malicious activities. Upon 
detection of a malicious activity, it raises alerts to GUI and applications, that in turn can 
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restart other ICT Gateway components. Thus, if S&R is intruded then it can raise false 
alerts that lead to a higher probability of outages or losses.  

 

Figure 25 - ICT Gateway architecture 

Starting from the model of the ICT Gateway, in ResilBlockly it is possible to list the 
weaknesses of the simplex S&R and indicate severity (in this case 10, the worst case) 
and likelihood (in this case Moderate), as depicted in Figure 26. As an example, the CWE 
weakness 693 called “Protection Mechanism Failure” is analysed. 

 

Figure 26 - Risk assessment of the simplex Security & Resilience component 

Without going into the details of their selection process, iRB (Section 3.4) and iNMR 
(Section 3.3) are the two redundancy-based intrusion tolerant architectures to consider 
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for replacing the simplex version of the S&R component. Their models are then built and 
values to their parameters are assigned.  

In order to declare the weakness likelihood, a qualitative value, it is recommended to 
perform first a quantitative analysis (e.g., evaluate the probability of delivering wrong 
results) to support the choice. Notice that the correspondence between probabilities 
range and likelihood highly depends on the context in which the system is deployed and 
has to fixed in advance. For the purpose of example only, it is assumed that ℙfail, is the 
probability of a variant failure, ℙnoncoverage, the probability that the acceptance tests 

wrongly accept the results, and 𝜅 ∈ [0,1), the degree of diversity of the variants are 
known (as estimated in other studies). In particular, the higher 𝜅 is, and the more diverse 
the variants are. Thus, following the simple analysis detailed in [49], ℙufail, the probability 
of undetected failure, of iRB is 

ℙufail = ℙfail ⋅ ℙnoncoverage 

 And ℙufail of iNVP, assuming the probability of failure of adjudicator extremely low with 
respect to the other number involved, is 

ℙufail = {
ℙfail(1 −

⌊𝑛/2⌋

⌊(1 − 𝜅)(𝑛 − 1)⌋
) if⌊𝑛/2⌋ ≤ ⌊(1 − 𝜅)(𝑛 − 1)⌋,

0 otherwise.

 

The value of ℙufail together with the information of Table 4 are exploited to compare 
several configurations of iNVP and iRB. Consider for instance s=2 sites, k=1 and f=1 
(tolerance of one omission and one value failure), r=1 (rejuvenation of one variant at a 
time), nRD = 3, ℙfail = 0.9, ℙnoncoverage = 0.0001, and 𝜅 = 0.45. Then n=5 for iRB and 

ℙufail is about 10−4, and n=7 for iNVP and ℙufail is almost zero. Thus, it is possible to 
update the assessment in ResilBlockly as in Figure 27, where the custom weakness for 
iRB is “Acceptance Tests Coverage is not Perfect, then Wrong results can be Accepted 
as Correct”, and “A majority of variants fail producing the same incorrect result” for iNVP, 
and the likelihoods are now set to low and very low, respectively. The final choice on 
which configuration to select is done considering performance. Indeed, assuming the 
information of Table 5 is enough in the context of Smart Grids to make the decision, the 
presented configuration of iNVP has to be selected. 

 

Figure 27 - Risk Assessment of iRB and iNVP 
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4. Mitigating Risk during Development via Assurance Case Modelling 

In this section, we discuss how assurance cases that argue in terms of dependability 
risk mitigation can be constructed using elements from BIECO concepts and tools. In 
sections 2.1, 2.2 and 2.3, we discussed how guidance from standards for safety and 
security can be leveraged to provide a combined approach for safety and security 
assurance. For mission-critical applications, where different dependability properties are 
more relevant, the approach can be adjusted to address risk with respect to those 
properties instead. 
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4.1. Workflow Overview 

The assurance case is a central artifact of this process, as it can capture the rationale 
arguing how the residual risk to the system’s mission has been rendered acceptably low 
by the end of development. Our proposed approach can be described in terms of the V-
model lifecycle, as described in sections 2.1 and 2.2: 

1. System definition. In this stage, a (possibly preliminary) specification of the 
system and its operational environment needs to be established. 

2. Initiate Dependability Assurance Case. The assurance case can be maintained 
from the early stages of development and be progressively updated as more 
information becomes available. The intent is to use it as a live document, which 
can monitor the progress of the development assurance, and coordinate the 
activities across the system stakeholders. 

3. Dependability Hazard Analysis and Risk Assessment (HARA). In this stage, 
based on the system and environment specification, identification of the relevant 
events that could cause unacceptable violation of the application’s dependability 
properties takes place. These can be referred to as ‘dependability hazards. Each 
dependability hazard that is considered relevant for the application is then 
assessed in terms of the overall risk it presents to the application, in terms of its 
impact and likelihood of occurrence. Depending on the application domain, 
domain-specific risk rating systems may be used e.g., for the automotive domain 
safety hazards are rated in terms of their estimated severity, exposure, and 
controllability. Hazards may also be further refined in terms of the operational 
situations they could occur. The combinations of a given hazard with relevant 
operational situations are also referred to as Hazardous Events (HEs). From this 
point onwards, we will refer to both hazards and HEs as HEs. The set of rated 
HEs can be prioritized in terms of risk, and specific HEs can be excluded if their 
risk is argued to be acceptably low. 

4. Dependability Goal Specification. In this stage, goals for protecting against the 
violation of the dependability HEs identified as relevant and of sufficient risk need 
to be specified. Dependability goals are typically high-level requirements that, 
when implemented correctly, tolerate, mitigate, or eliminate the associated HEs. 
A goal may be simultaneously addressing multiple HEs. 

5. Dependability Concept Specification. In this stage, the means necessary for 
achieving the dependability goals specified previously are specified. The means 
should be specified in terms of technologies or procedures that have been 
established to satisfy the corresponding goals. Where such measures are 
implemented using dedicated system functionality, corresponding functional 
dependability requirements should be specified and assigned to specific 
elements of the system architecture. Functional requirements are 
implementation-independent specification, and can be later refined into technical 
requirements, considering specific design and implementation within the target 
system. This refinement requires that the target system either has a preliminary 
or mature architecture designed, so that its key subsystems and/or components 
have been already identified. 

6. Dependability Hardware (HW) and Software (SW) Requirement Specification. 
From the technical requirements identified previously at the level of subsystems, 
detailed HW and SW requirements can be assigned to components of the 
corresponding type. 

7. Implementation. While not explicitly part of the approach, technical 
implementation is expected to occur as the set of detailed component 
requirements is completed. 
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8. HW & SW Requirements Verification. As component implementation completes, 
they are verified against the corresponding requirements specified for them. 

9. Dependability Concept Verification & Validation. Technical dependability 
concepts are verified as components are integrated into subsystems. Then, 
functional dependability concepts are verified and validated as the sets of higher-
level requirements for the corresponding dependability measures are 
implemented. 

10. Dependability Goal Verification & Validation. The initial dependability goals are 
finally verified and validated to be correctly designed, implemented, and yielding 
acceptable residual dependability risk across the application. 

An overview of this approach can be seen in Figure 28. The V-model lifecycle is shown, 
flowing from top-left, starting with the System Definition stage, descending towards the 
Implementation stage at the centre, and ending at the top-right, at the System Validation 
stage. Dashed arrows represent types of arguments that can be captured within the 
assurance case, based on [75]. The included types are: 

- Rationale, which are arguments capturing the reasoning with which higher-level 
specifications, requirements, or activities, are linked to lower-level ones. 

- Satisfaction, which are arguments that evaluate whether the dependability 
requirements have been satisfied by corresponding work products. For example, 
satisfaction arguments can be made to establish that the dependability goals are 
satisfied by reviewing their validation results. 

- Means, which are arguments that explain why the assurance activities which 
yielded requirements and other work product results were performed in an 
appropriate manner. 

- Organizational Environment arguments address the question of whether the 
organization developing the target system has an appropriate culture for doing 
so. As an example of such requirements, Part 2 of ISO 26262 provides guidance 
regarding appropriate management of functional safety, and Part 5 of ISO 21434 
similarly specifies guidelines for organizational cybersecurity management. 

 

Figure 28 - Assurance Case Workflow (based on [75]) 

As mentioned in Section 2.3, in cases where safety (or a different dependability property) 
is mission-critical, the above process can prioritize performing HARA that targets that 
property, specify corresponding dependability goals for the identified HEs, and then 
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provide those goals as input for the security-focused TARA. The TARA can then 
simultaneously address the potential attacks against the safety/dependability 
properties, while still identifying security-specific issues (e.g., privacy). 
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4.2. BIECO Tool Support for Dependability Assurance during Development 

BIECO tools can be used the above approach as follows (and correspond to the phases 
described in Figure 28): 

- ResilBlockly (BIECO D6.2) can support the above process from the security 
perspective, by: 

o Modelling the system architecture, an activity consistent with the System 
Definition phase.  

o Identifying potential security threats against the target system, an activity 
consistent with the Dependability HARA (TARA) phase. 

o Identifying specific Weaknesses or Vulnerabilities of the target system, 
an activity which can be used to derive relevant security requirements. 

- safeTbox9 can instead focus on the safety/dependability aspects, by: 
o Modelling the system architecture, an activity consistent with the System 

Definition phase. To avoid potential redundancy and/or duplication errors, 
the system model from ResilBlockly can be imported to maintain a 
consistent architecture. 

o Identifying potential safety/dependability HEs against the target system, 
corresponding to the Dependability HARA phase. 

o Specifying dependability goals to protect against the identified HEs, as 
per the corresponding phase of the workflow. 

o Modelling the assurance case, using the GSN notation. 
o Qualitative and quantitative analysis of fault trees, which enables 

investigation of sources of dependability-related failure, specification of 
corresponding requirements, and verification of said requirements. 

To understand the relationship of the tools in BIECO, we reproduce the overview of the 
BIECO tool workflow from D2.3 (p. 31) in Figure 29. 

 

Figure 29 - BIECO Tool Workflow Overview 

As indicated in the figure, information from ResilBlockly regarding e.g., security threats, 
attack paths, simulation results, and extended MUD files processed by the tool, can be 
propagated from the tool to safeTbox. For details regarding the use of ResilBlockly, the 

 
9 https://safetbox.de/  

https://safetbox.de/
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reader is referred to BIECO D6.2, its user’s manual. More details on the information 
import/export across tools is provided in Section 6.1. 

Once the information is imported into safeTbox, safeTbox can be used to extend the 
existing model and complete the assurance case. Section 7 contains a basic example of 
using safeTbox to model the artifacts mentioned in section’s 4.1 workflow. 
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5. ConSerts Methodology for Dependability Risk Mitigation 

In this section, the methodological aspects of our approach towards mitigating risk with 
ConSerts will be discussed. We begin with an overview of how the method extends the 
engineering workflow based on the guidelines from related standards, as outlined in 
sections 2.1 and 2.2. We then discuss how ConSerts can be tailored for systems 
employing ICTs. Finally, we explain how ConSerts acquire evidence for reconfiguration, 
via generic monitor integration, but also specific opportunities for integration with 
BIECO’s resilience concepts from WP4, and the extended MUD files from WP7. 
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5.1. Extending ConSert Creation for Safety-Security 

ConSerts view the system from the perspective of a Service-Oriented Architecture (SOA). 
In this sense, the emphasis is on the relationship between interrelationships across 
systems, rather than the structure of the systems themselves. 

Therefore, the ConSert workflow for a given system consists of: 

1. Provided Services Specification. Specifying the set of services provided by the 
system. 

2. Service Contract Specification. For each provided service, a service contract 
specifies the set of supplied services which are required by the system to provide 
the given service. 

3. Service Dependability Concept. ConSerts are predefined modular certificates, 
and their certification refers to both their functional and their non-functional 
aspects, the latter notably including dependability properties as well. At this step, 
the dependability concept phase, which is part of the system development 
lifecycle (seen in Figure 28, Section 4.1), can be extended. To deliver its provided 
service while managing the associated dependability risks, a clear understanding 
of the measures (and corresponding requirements) in place to control those risks 
is needed. The ConSerts approach builds upon this understanding in the 
following steps. 

4. Variability Analysis. Dependability concepts are often defined according to 
worst-case assumptions regarding the operational situation. This limits the 
flexibility of the system’s adaptation. To address systems in dynamic conditions, 
and effectively adapt to them, the variability of operational situations must be 
considered, in combination with the adaptation capabilities of the system itself. 
Such adaptation options can be, for example, considered from the situation 
analysis executed during development (e.g., as part of HARA). The important 
distinction here is the extension of the analysis scope beyond the worst-case 
situations. Examples of how such analyses can be applied for the automotive 
domain can be found in [34], [76], and [77]. 

5. Contract Endpoint Specification. Based on the contract and the combinations of 
operational situations and service adaptation capabilities, the required set of 
demands from external services, and RunTime Evidence (RtE) associated with 
each provided service can be specified. 

As an example of how this can be modelled, Figure 30 shows a ConSert featuring a 
provided service (“Grid Outage Detection”), which can be offered at 3 levels of guarantee 
(“Normal”, “Degraded Availability”, and no guarantee). The service imposes demands on 
a required service, “AMI Grid Information”, for “Normal” and “Low” availability 
accordingly. 
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Figure 30 - Example of simplified ICT Gateway ConSert 
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5.2. Integration of Intrusion Tolerance Countermeasures 

When system architectures feature Intrusion Tolerant Countermeasures, e.g., N-Version 
Programming (NVP) (sections 2.8 and 3 provide detailed background and analysis on 
available options), the corresponding ConSert could take advantage of the degree of 
consensus reached across the variants to estimate the level of confidence with respect 
to the provided service. 

An example of how this can be depicted can be seen in Figure 31, where the ConSert 
shown previously has been slightly adapted. It now features two RtEs which evaluate 
whether all variants have achieved consensus regarding the response of the Grid Outage 
Detection service, or only the minimal majority. In the former case, the system can 
provide the service normally, with confidence that unanimous agreement across the 
variants is unlikely to hide potential intrusions. In the latter case, it is possible that 
intrusion has occurred, therefore a more conservative service guarantee could be 
provided in that case. The choice of these guarantees depends on the service 
dependability concept established during development, as per the workflow described 
in Section 5. 

 

Figure 31 - Example of simplified ICT Gateway ConSert w/ NVP 
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5.3. Incorporating Monitoring Evidence 

The RtEs found within ConSerts represent monitoring of relevant local conditions by the 
host system. However, ConSerts RtE monitors are not typically interested in directly 
monitoring nominal perception information. Instead, an RtE monitor focuses on yielding 
evidence in favor (or against) the integrity of services or information relied-upon by the 
provided service. 

For example, if we consider a robot navigating through a physical environment, its visual 
perception could provide it with an estimation of nearby objects. A corresponding 
ConSerts RtE monitor would not directly evaluate the presence of nearby objects, but 
instead focus on evaluating whether the response of perception sensor is reliable or not. 

In BIECO, WP4 is responsible with predicting system failures, and in particular, the 
method of using predictive simulation to anticipate the behavior of systems under the 
control of a software smart agent received as a black box, whose internals are not 
known. Execution of simulation models in a predictive simulated environment (BIECO 
WP5) can feed evidence of trust to the monitoring components.  In case the predictive 
simulation outputs a trusted behavior of a component, then the trusted behavior 
signature is passed to the conformity monitoring part of the Auditing Framework (BIECO 
WP5), that evaluates the level of conformity between the trusted behavior execution in a 
simulated environment and the real-world execution. In case the predictive simulation 
detects a hazardous situation, a triggering for the system’s internal re-configuration will 
enable the system to reach a safe state and assure its resilience.  This work could be 
used as RtE for ConSerts and will be explored further as part of the planned work of 
BIECO in T4.3. 
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5.4. Hardened MUD File as a mitigation measure 

One of the potential mitigation measures to carry out when a system or service cannot 
provide the demanded guarantee is the configuration of a stricter or hardened MUD File 
for the involved component. 

As discussed in previous deliverables, the Manufacturer Usage Description (MUD) 
standard describes the network behaviour profile recommended by the manufacturer to 
properly function. This profile establishes a set of policies to take in account in order to 
limit the threat surface on a device and its connections. Section 5 of BIECO D6.1 goes 
deeper into the MUD standard and the MUD model. 

The idea behind this mitigation strategy is to provide an alternative MUD File to the 
original one defined by the manufacturer when required service conditions are not 
guaranteed. If under more restrictive conditions it is possible to offer this service, a 
stricter MUD File will be deployed so that service will work with several network 
limitations compared to the original MUD File of the involved components. Specifically, 
these limitations are focused on the traffic coming from/to the device, number of 
communications, services allowed to access from the device, required algorithms for 
cryptography, authentication mechanisms, application protocols to be used in the 
communications and limit the accessible resources. More specific information on the 
possible security configuration characteristics that could be limited can be found in 
BIECO D6.2. 

Consequently, incorporating these restrictive measures benefits the security context of 
the requested service in two ways. First, these measures reduce the risk of attacks when 
offering a service that does not comply with the security conditions, and secondly, they 
increase control over the established connections and over which entities, components 
or devices these connections are made. 
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Figure 32 - Example diagram about a ConSert offering a service with a stricter MUD file 

Figure 32 shows a conceptual application example of this potential mitigation measure. 
In this case, a newcomer CS is providing a service that is going to be used by an existing 
CS. The upper ConSert should consider the conditions from the bottom ConSert in order 
to confirm the possibility of offering the safety guarantees of his services. Since only 
“SG5” is able to be provided with safety guarantees, the upper service offered by the 
existing CS is “SG2” (provided with mitigation measures such as stricter MUD File). This 
decision flow is marked by the green boxes. 
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6. BIECO ConSert Modelling 

In this section, we focus on the modelling of ConSerts in BIECO. Specifically, we begin 
by mapping BIECO concepts from which ConSerts shall draw upon. Then, we present the 
modelling approach for constructing ConSerts in the safeTbox tool. Finally, we discuss 
how ConSerts can be exported for later use as models, whose usage can include 
generating corresponding software components that implement the reconfiguration 
logic for the system the components are integrated with. 
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6.1. Mapping BIECO Artifacts to DDIs 

Figure 33 provides an overview of the 2nd version of the Open Dependability Exchange 
(ODE) metamodel [40]. The ODE consists of the Structured Assurance Case Metamodel 
(SACM), which is highlighted in purple in the figure, and the remainder, referred to as the 
ODE Product Packages, highlighted in green. We should stress that we are not 
attempting to provide a detailed discussion of the ODE and its elements here; such a 
description can be found in [40], and a detailed specification of the ODE can also be 
found in its open source repository10. 

The ODE enables integrating assurance cases via SACM (which also supports GSN 
models) with concrete system dependability assurance artifacts. For example, within an 
ODE model, i.e., a DDI, a system can be represented using the ODE::Design::System 
element11. A given System can be associated with dependability requirements, including 
security, and dependability analyses e.g., HARA, TARA, FTA, ATA etc. The corresponding 
ODE::Dependability and ODE::FailureLogic metamodelling packages contain 
metamodelling elements for capturing such aspects. 

As a DDI is compiled with increasing information during development, it can become 
valuable as a medium for synchronizing assurance activities. This can be especially the 
case across interdisciplinary teams e.g., safety and security, where shared terminology 
and overlapping methods may pose coordination challenges. 

The use of a common model such as the DDI can also support interoperability between 
tools, as less effort needs to be spent producing pairwise-specific import/export 
mechanisms for each tool or invent custom formats for ad-hoc interoperation. In this 
regard, the common tool adapter developed to support interoperability and automate 
DDI-related activities is particularly suited for tool exchange. Further details are provided 
in Section 7, Figure 40. 

 
10 https://github.com/Digital-Dependability-Identities/ODE 
11 The notation is interpreted as the metamodeling element named System from the metamodeling package 
named Design of the ODE profile 

https://github.com/Digital-Dependability-Identities/ODE
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Figure 33 - Overview of the ODE v2 Metamodel 
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6.2. Modelling BIECO ConSerts using safeTbox 

To produce ConSerts models, such as those seen in Figure 30 and Figure 31, a prototype 
extension of safeTbox has been developed by Fraunhofer IESE. SafeTbox itself is an 
‘add-in’ extension of the modelling tool Enterprise Architect (EA). The prototype 
extension extends the built-in EA UML profile to introduce new modelling elements for 
ConSerts e.g., ConSerts diagrams, Guarantees, Demands, etc. 

Figure 34 shows the options the user has to model elements on each ConSert diagram. 
Guarantees and Demands have already been introduced in Section 5. Invariants can be 
included in a ConSert diagram to represent preconditions that must be valid for the 
ConSert to be valid. Invariants can be checked at runtime, and the host application can 
then determine how to address the situation e.g., falling back to a fail-safe state, 
switching to a back-up ConSert, and/or informing the user, if possible. 

 

Figure 34 - Enterprise Architect Custom safeTbox Toolbox for ConSerts 
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6.3. Generating Deployable ConSerts via conserts-rs 

In [78], the conserts-rs command-line tool is introduced. The tool can be used to parse 
XML representations of ConSerts models, such as the one seen in Figure 35, and 
generate source code that can be integrated into a variety of platforms. The process for 
converting from models to code can be seen in Figure 36, and a sample of the code 
generated from the XML example is shown in Figure 37. 

 

Figure 35 - Example ConSerts XML (Ecore) file 

 

Figure 36 - ConSerts Model to Runtime Code Conversion Process 
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Figure 37 - Sample of generated ConSerts code from XML 

The tool is written in the Rust12 programming language, which enables (among other 
features), memory-safe and minimal-overhead code. Although the tool also outputs Rust 
code, it can flexibly target many platforms, including: 

- Robot Operating System (ROS)13 
- Embedded Systems via the Real-Time Interrupt Concurrency Framework14 
- C/C++ via Foreign Function Interface15 

The generated code still needs to be instrumented with the host platform, which is 
platform-specific. For instance, the generated code can be executed as a ROS node and 
interact with the existing application through the ROS publish/subscribe topic 
mechanism. Instead, integration into a C++ would involve invoking host application code 
to instrument the ConSerts RtEs. 

  

 
12 https://www.rust-lang.org/  
13 https://www.ros.org/  
14 https://rtic.rs/0.5/book/en/  
15 https://doc.rust-lang.org/nomicon/ffi.html  

https://www.rust-lang.org/
https://www.ros.org/
https://rtic.rs/0.5/book/en/
https://doc.rust-lang.org/nomicon/ffi.html
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7. Exemplary Application on ICT Gateway 

In this section, the approach is illustrated by applying it on a simplified model of the 
BIECO ICT Gateway use case (see Net2DG project, D1.316). 

Figure 38 shows how the ODE profile17 (the metamodel of DDIs) can be seen in 
ResilBlockly’s profile designer after being imported. Using the ODE profile, models that 
are very close to DDIs can be exported, which facilitates the import process into tools 
supporting DDIs, such as safeTbox. 

 

Figure 38 - ODE Profile in ResilBlockly 

Using the profile, a similar model (being an instance of the ODE metamodel) can be 
created to depict the subject system i.e., the ICT Gateway. Once complete, a security risk 
analysis can also be performed, to identify corresponding weaknesses and 
vulnerabilities that might threaten the system. For instance, Figure 39 shows 2 
weaknesses having been specified for part of the system under development, and their 
corresponding risk evaluated as ‘High’ and ‘Moderate’. 

 

Figure 39 - Security Risk Analysis in ResilBlockly 

The model exchange process can be seen in Figure 41. Step 3 is currently required due 
to minor incompatibility in the exported format, and involves applying ODE-specific types 
to the generically-exported ones from ResilBlockly. Step 4 can be executed using the 
‘common tool adapter’ developed as part of the DEIS project [79]. An overview of the 
adapter can be seen in Figure 40. The adapter allows any tool which supports file, 

 
16 http://www.net2dg.eu/wafx_res/Files/Net2DG_D1.3_30.08.2019_with%20disclaimer.pdf  
17 https://github.com/Digital-Dependability-Identities/ODE  

http://www.net2dg.eu/wafx_res/Files/Net2DG_D1.3_30.08.2019_with%20disclaimer.pdf
https://github.com/Digital-Dependability-Identities/ODE
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network, or remote procedure call interoperation (via the Apache Thrift framework 18) to 
transform to/from DDIs, and execute scripts in the Epsilon language19 on the provided 
DDIs. The typical usage of the adapter is for generating DDI files, using the ODE profile 20 
specified in the Eclipse Modelling Framework (EMF) [80]. 

 

Figure 40 - DDI Tool Adapter (from [41]) 

 

Figure 41 - Model Exchange Overview 

The imported model can be further tailored and expanded upon in safeTbox. This is 
depicted in Figure 42, where the Smart Grid Production System (top left) produces power 
for the Consumer(s) (top right). The Distribution Service Operator (DSO) organization 
transfers the power to their consumers through the Distribution System (i.e., the smart 
grid). A given operator working for the DSO organization monitors the activity of the grid 
through information propagated by the ICT Gateway. The ICT Gateway collects grid 
information through the Internet. Depending on the information observed, the operator 
can decide to control the production system and/or the distribution system to avoid 
power outage. The specific functionality of interest is the monitoring and detection of 
power outage in the grid. 

 
18 https://thrift.apache.org/  
19 https://www.eclipse.org/epsilon/doc/eol/  
20 https://github.com/Digital-Dependability-Identities/ODE  

https://thrift.apache.org/
https://www.eclipse.org/epsilon/doc/eol/
https://github.com/Digital-Dependability-Identities/ODE
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Figure 42 - Simplified model of ICT Gateway use case Smart Grid 

As our scope for the model is very simple, Figure 43 describes the ICT Gateway 
simplifying its interface to include only the Safety & Resilience component. In contrast, 
a more detailed model would also consider the other components, as listed in Figure 25. 
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Figure 43 - ICT Gateway, simplified internal view 

Based on the preliminary model, an initial (dependability) HARA can be performed. 
safeTbox follows a spreadsheet approach for the HARA, as seen in Figure 44. The 
spreadsheet seen captures functions used, which in this case is the “Grid Outage 
Detection” of the gateway. 

 

Figure 44 - ICT Gateway HARA - Function Sheet 

In the Functional Hazard Analysis (FHA) sheet, seen in Figure 45, the individual failure 
modes with which the function can fail are distinguished, the malfunctions that arise 
from each case are specified, and the potential system-level effects of the failures are 
also recorded. Each entry can be mapped (if relevant) to one or more hazards i.e., events 
with negative impact on the application, resulting from the associated malfunctions. 
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Figure 45 - ICT Gateway HARA - FHA Sheet 

The final HARA sheet is the Risk Assessment sheet, whose overview is seen in Figure 
46. The sheet’s rows correspond to the Hazardous Events (HEs) (combinations of 
Hazards and Operational Situations), which are evaluated in terms of specific risks. This 
is seen in more detail in Figure 47, where the risk factors related to the Grid Outage 
Detection HEs are evaluated. Once an HE risk has been evaluated, corresponding goals 
can be set to protect against it, as seen in Figure 48. 

 

Figure 46 - ICT Gateway HARA - Risk Assessment Sheet 
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Figure 47 - ICT Gateway - Risk Assessment - Hazardous Event Assessment 

 

Figure 48 - ICT Gateway HARA - Risk Assessment - Safety Goal Specification 

Once the set of dependability goals have been specified, they need to be refined into 
detailed requirements. Towards this end, iterative cause analysis can be used e.g., via 
(Component) Fault Tree (CFT) Analysis, seen in Figure 49. In the figure, the triangle 
elements in black indicate output failure modes, whereas yellow triangle elements 
indicate input failure modes. Squares link failure modes to a given component’s ports, 
thereby linking the architectural diagram, e.g., seen in Figure 42, and its causal failure 
logic. CFTs are hierarchical, as depicted by the “Safety & Resiliency” sub-CFT, whose 
details are encapsulated in the diagram of Figure 50. The latter figure also features 2 
basic events i.e., fundamental causes that could trigger system/component failure. The 
basic events are linked via a Boolean logic OR gate, therefore either could trigger the 
system failure i.e., “Grid Outage Detection Omission/Late”. The green analysis results 
shown in Figure 49 capture this logic, and detailed results of the analysis can be reviewed 
in Figure 51. 
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Figure 49 - ICT Gateway CFT 
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Figure 50 - Safety & Resiliency CFT 
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Figure 51 - ICT Gateway - CFT Analysis Results 

Using the information from the previous steps taken, an assurance case can be modelled 
using the GSN notation, as seen in Figure 52. Note that the assurance case is similarly 
simplified, focusing on illustrating the tool usage for applying the approach. The Top-
Goal in the figure claims that the ICT gateway is acceptably dependable. The argument 
is based on addressing relevant dependability properties e.g., availability (Strategy_83). 
This is justified given that the overall Smart Grid application is also directly affected by 
availability of the ICT Gateway (Justification_85). Finally, Away_Goal_95 references an 
external goal (Goal_84), claiming that the residual risk against availability of the ICT 
gateway has been shown to be acceptably low. 
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Figure 52 - ICT Gateway - Assurance Case Top Goal 

Figure 53 continues down this line of argument, which addresses the two hazards 
identified during the HARA. The line of argument proceeds through Figure 53 to address 
the goal of “Grid Outage Detection” being highly available, which addresses the 
corresponding HE from the HARA analysis (Figure 48).  

It should also be noted that the HARA, provided as context to the overall claim, is 
associated with an ACP that provides a claim regarding the quality of the Means (see 
Section 4, Figure 28) with which it was conducted (Figure 54).  



 

Page 102 of 117 

Deliverable 6.4: Mitigation Identification and Design 

 

Figure 53 - ICT Gateway - Availability Risk Module 
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Figure 54 - ICT Gateway - HARA Module 

Finally, Figure 55 argues why the Functional Dependability Concept addresses the 
associated dependability goal, in this case using NVP to reduce risk of service 
unavailability. This claim is verified by comparing the CFT analysis results before (Figure 
51) and after the inclusion of the redundant variants, as seen in Figure 56 and Figure 57. 
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Figure 55 - ICT Gateway - Functional Dependability Concept Module 
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Figure 56 - ICT Gateway using 2 variants for Safety & Resiliency NVP 
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Figure 57 - ICT Gateway Fault Tree including NVP 
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Figure 58 - ICT Gateway w/ NVP Example CFT Analysis Results 
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7.1. Hardened MUD File 

Smart grids provide electricity to a wide range of the population. A failure in this type of 
system not only implies a power cut in homes, but also in highly sensitive buildings such 
as a hospital, where a failure in the electricity supply could have fatal consequences for 
the lives of many people. Ensuring its operation under certain safety conditions is crucial 
for supplying electricity. It is important to mention that given the importance of the 
continuous operation of this type of system, allowing its execution even though not all 
conditions can be guaranteed is a possibility that should be considered. 

If the necessary conditions described in the ConSerts to ensure a dependable execution 
of the ICT Gateway cannot be fulfilled, the ICT Gateway could be still executed under 
more restrictive conditions established by the hardened MUD file. In this sense, the 
hardened MUD could, for example, establish a lower limit of simultaneous connections 
(“num-connections”) per device until the conditions of the grid return to a safe mode to 
offer the service without restrictions.  

Specifically, we present in Figure 59 a hardened MUD file for the ICT gateway, restricting 
the number of simultaneous connections allowed with the MQTT and HTTP protocols 
as well as the persistent connection time (“Keep-Alive”). 

On the one hand, the left part of Figure 59 contains the original MUD File configuration 
that would be used in a situation where the service could be offered with all security 
guarantees. On the other hand, the right side of Figure 59 shows the hardened MUD File 
used in our risk situation that forces us to offer the service with mitigation measures, in 
this case, a more restrictive configuration. 

 

Figure 59 - Application of mitigation measure using a stricter MUD File 

  



      

Page 109 of 117 

 Deliverable 6.4: Mitigation Identification and Design  

8. Summary 

In this deliverable, we have provided an overview of our approach towards supporting 
safety and security assurance of ICT systems in terms of risk mitigation. Our approach 
aims to address risk originating from developmental or systematic errors (e.g., software 
implementation or documentation mistakes), or anticipated risk from random hardware 
errors, or anticipated risk from malicious actors against our system (e.g., specific 
security attacks). 

Towards this end, we focus our approach on modelling assurance cases that can 
structure respective arguments of adequate risk mitigation during system development. 
Assurance cases are well-known in specific industrial domains e.g., automotive, and are 
also part of corresponding industry standards e.g., ISO 26262. Assurance cases can 
appropriately leverage the domain-specific analysis evidence garnered from each 
domain and translate the implications of the evidence in terms of overall risk. 
Additionally, assurance cases also enable the construction of combined safety and 
security risk argumentation, meaning that both aspects (and more e.g., availability) can 
be considered holistically, minimizing the risk of overlooking critical crosscutting 
concerns.  

Furthermore, our approach considers how adaptive systems, operating in dynamic 
environments, should respond to changing conditions (including in terms of security) 
with regards to safety. We leverage the concept of Conditional Safety Certificates to not 
merely specify such adaptations (as would be the ad-hoc approach), but further 
guarantee that these adaptations certifiable in terms of safety. 

To realize our approach, we intend to exploit and extend the above concepts in the 
context of BIECO’s ongoing research and use cases, and we have already illustrated in 
this deliverable our current plan. In short, our approach: 

- Provides methods appropriate for systematically structuring safety (T6.2) and 
security assurance claims (WP7) as part of assurance cases. 

- Incorporating the risk assessment (T6.2) and security analysis (T6.1) process to 
provide appropriate development-time evidence of risk mitigation. 

- Developing more resilient systems through the concept of Intrusion-Tolerant 
Architectures (WP6), intended to mask the effect of attack-induced failures, and 
integrate the developed redundancy schemes in the risk management process 
(WP6) 

- Links failure and trust prediction concepts with dynamic risk management 
(WP4). 

- Links runtime risk management and resilient adaptation (WP4). 

  



 

Page 110 of 117 

Deliverable 6.4: Mitigation Identification and Design 

9. Appendices 

Appendix I. Details on Inequalities Addressing 𝒔 

For all the intrusion tolerant architectures, when considering 𝑠 > 1 sites (without special 
constraints, so that the best strategy is to distribute as evenly as possible the variants 
among the sites), the following inequality assures that the architectures continues to 
behave as expected if 1 sites is disconnected: 

𝑘 ≥ ⌈
𝑛

𝑠
⌉. 

Of course, the value of 𝑛 depends on the architecture and is reported in Table 2. For 
instance, 𝑛 = 2𝑓 + 𝑘 + 1 for NVP and then (exploiting the definition of the ceil function) 

𝑘 ≥
2𝑓 + 𝑘 + 1

𝑠
. 

Writing on the left-hand side only 𝑘 brings 

𝑘 ≥
2𝑓 + 1

𝑠 − 1
, 

and imposing that 𝑘 must be an integer results in writing 

𝑘 ≥ ⌈
2𝑓 + 1

𝑠 − 1
⌉. 

When the 𝑟 variants under rejuvenation are also considered, the value of 𝑛 reported in 
Table 4 are obtained. 

Similar manipulations apply for the other architectures. Only SCP requires 𝑠 > 2. 
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Appendix II. Self-Checking Programming with Voter 

Consider a group of 𝑔 variants in each self-checking component. A simple voter 
assesses whether there are ⌈(𝑔 + 1)/2⌉ agrees among the results. Figure 60 illustrates 
the case 𝑓 = 1 (and then 𝑔 = 3) and 𝑘 = 2 that requires 𝑛 = 6 variants. 

 

Figure 60 - SCPV with g=3 and n=6. 

Where there are 𝑓 value failures and no omission (𝑘 = 0), 𝑔 = 2𝑓 + 1 guarantees a 
correct output because ⌈(𝑔 + 1)/2⌉ = 𝑓 + 1, so 𝑛 = 𝑔 ⋅ 𝑛SC = (2𝑓 + 1) ⋅ 𝑛SC. Actually, in 
this case 𝑛SC can be chosen equal to 1, and the architectures reduces to an NVP. 

When there are 𝑓 value failures and 𝑘 omissions, the worst scenario is when there is a 
self-checking component with 𝑓 value failure and 1 omission (so there is no majority), 
𝑛SC − 2 self-checking components with 𝑓 + 1 omissions each (no majority) and 1 self-
checking component with 𝑓 omission (there is a majority of correct results), as 
represented in the following for 𝑓 = 2 and 𝑘 = 12, where 𝑖 is an intentional failure, 𝑜 an 
omission and 𝑐 is a correct result. 
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In this case, 𝑘 = (𝑓 + 1)(𝑛SC − 2) + 𝑓 + 1 and then 

𝑛SC = ⌈
𝑓 + 𝑘 + 1

𝑓 + 1
⌉, 

that corresponds to 

𝑛 = 𝑔 ⋅ 𝑛SC = (2𝑓 + 1) ⋅ ⌈
𝑓 + 𝑘 + 1

𝑓 + 1
⌉ + 𝑟. 

The problem is that SCPV requires a huge number of variants compared with NVP. For 
instance, the previous case requires 25 variants whereas NVP with 𝑓 = 2 and 𝑘 = 12 
requires 17 variants. 
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