

This project has received funding from the European Union´s Horizon 2020 Research and Innovation

Programme under Grand agreement No. 952702.

Deliverable 7.3

Security certification methodology development

Technical References

Document version : 1.0

Submission Date : 31/08/2022

Dissemination Level

Contribution to

:

:

Public

WP7 – Security and Privacy Claims

Document Owner : UMU

File Name

Revision

:

:

BIECO_D7.3_31.08.2022_V1.0

3.0

Project Acronym : BIECO

Project Title : Building Trust in Ecosystem and Ecosystem

Components

Grant Agreement n. : 952702

Call : H2020-SU-ICT-2018-2020

Project Duration : 36 months, from 01/09/2020 to 31/08/2023

Website : https://www.bieco.org

Ref. Ares(2022)6052584 - 31/08/2022

https://www.bieco.org/

Page 2 of 95

Deliverable 7.3: Security certification methodology development

Revision History

REVISION DATE
INVOLVED
PARTNERS

DESCRIPTION

0.0 10/08/2020 7Bulls Creation of the document

0.1 15/08/2020 7Bulls Initial draft

1.0 10/05/2022 UMU New table of content

1.1 13/06/2022 GRAD Contribution to subsection 3.3.2

1.1 22/06/2022 CNR Contribution to (sub-)section 3.3.3

1.2 23/06/2022 UMU Contribution to sections 3, 4, 5

1.3 04/07/2022 CNR
Finalizing (sub-)section 3.3.3 and
contribution to section 3.9
(Communication and Auditing)

1.4 06/07/2022 UMU Added annex with claims

1.5 07/07/2022 UMU Added text to section 4

1.6 07/07/2022 GRAD Contribution to sections 3 and 4

1.7 08/07/2022 CNR Contribution to sections 3.5 and 7

1.8 08/07/2022 IESE Contribution to section 3.2 and 5

2.0 15/07/2022 UMU Edition of deliverable

2.1 20/07/2022 HS, TTT Review of deliverable

2.2 27/07/2022 UMU
Final edit of deliverable addressing
reviewers’ comments

2.3 29.08.2022 UNINOVA Review and edition of Coordinator

3.0 31.08.2022 UNINOVA
Finalization and Submission by
Coordinator

List of Contributors
Sara N. Matheu (UMU), Marcin Byra (7bulls), Adrián Sánchez (UMU), Mónica Alonso

(GRAD), Eva Sotos (GRAD), Javier Yépez (GRAD), Said Daoudagh (CNR), Eda Marchetti

(CNR), Antonello Calabrò (CNR), Enrico Schiavone (RES), Enrico Araniti (RES), Ioannis

Sorokos (IESE)

Reviewer(s): Oliviu Matei (HS), Mohammed Abuteir (TTT), Sanaz Nikghadam-Hojjati

(UNINOVA), José Barata (UNINOVA)

Page 3 of 95

 Deliverable 7.2: Security certification methodology definition

Disclaimer: The information in this document is subject to change without notice.

Company or product names mentioned in this document may be trademarks or

registered trademarks of their respective companies.

All rights reserved.

The document is proprietary of the BIECO consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written

agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not

liable for any use that may be made of the information contained herein.

BIECO project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
952702.

Page 4 of 95

Deliverable 7.3: Security certification methodology development

Acronyms
Acronym Term
ABAC Attribute-Based Access Control
AIAG Automotive Industry Action Group
ANSI American National Standards Institute
ANSSI National Cybersecurity Agency of France
APG Attack Path Graph
APT Attack Path Tree
ASIL Automotive Safety Integrity Level
CAPEC Common Attack Pattern Enumeration and Classification
C2C-CC Car 2 Car Communication Consortium
CC Common Criteria
CCRA Common Criteria Recognition Arrangement
CEP Complex Event Processor
CESG Communications-Electronics Security Group
CFT Component Fault Trees

CHASSIS
Combined Harm Assessment of Safety and Security for
Information Systems

CPA Commercial Product Assurance
cPP Collaborative Protection Profiles
CSA Cybersecurity Act
CSPN Certification de Sécurité de Premier Niveau
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
CWRAF Common Weakness Risk Analysis Framework

CWSS Common Weakness Scoring System
DCT Data Collection tool
DM Data Mining
D-MUC Diagrammatic Misuse Cases
DoS Denial of Service
DPIA Data Protection Impact Assessment

DREAD
Damage potential, Reproducibility, Exploitability, affected users,
Discoverability

DSL Domain Specific Languages
D-UCs Diagrammatic Use Cases
EAL Evaluation Assurance Levels
EC European Commission
ECSC European Cyber Security Certificate

ECSO European Cyber Security Organisation
ENISA European Union Agency for Network and Information Security
ETSI European Telecommunications Standards Institute
EU European Union

EUCC
Common Criteria based European candidate cybersecurity
certification scheme

EUCS European Cybersecurity Certification Scheme for Cloud Services
EVITA E-safety Vehicle InTrusion protected Applications
FMEA Failure Mode and Effect Analysis
FMVEA Failure Mode, Vulnerabilities and Effects Analysis
FSD Failure-Sequence Diagrams

Page 5 of 95

 Deliverable 7.2: Security certification methodology definition

GDPR General Data Protection Regulation
GROOT GdpR-based cOmbinatOrial Testing
HARA Hazard Analysis and Risk Assessment
HARM Hailstorm Application Risk Metric
HAZOP Hazard and Operability studies
HEAVENS HEAling Vulnerabilities to ENhance Software Security and Safety
IACS Industrial Automation and Control Systems
ICT Information and Communications Technology
IEC International Electrotechnical Commission
ISA International Society of Automation
ISO International Organization for Standardization
ITU International Telecommunication Union
LMB Left Mouse Button
ML Machine Learning
MBST Model-Based Security Testing
MBT Model-Based Testing
MIA Model Inference Algorithm
MITM Man In the Middle
MRA Mutual Recognition Agreement
MUD Manufacturer Usage Description
MUSD Misuse sequence Diagrams
NCCA National Cybersecurity Certification Authority

NIST National Institute of Standards and Technology
NVD National Vulnerability Database
OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation
OEM Original Equipment Manufacturer
OSSTMM Open-Source Security Testing Methodology Manual
OWASP Open Web Application Security
OWASP Open Web Application Security Project
PP Protection Profile
QR Quick Response
RTU Remote Terminal Units
RUMI Relied Upon Message Interface
SAHARA Security-Aware Hazard Analysis and Risk Assessment
SANS SysAdmin, Audit, Network and Security
SAST Static Application Security Testing

SCA Static Code Analysis
SCADA Supervisory control and data acquisition
SDLA Security Development Lifecycle Assurance
SecL Security Level
SOG-IS Senior Officials Group Information Systems Security
SOTA State Of The Art
SSA System Security Assurance
ST Security Target
STAMP System Theoretic Accident Model and Processes
STPA System Theoretic process Analysis
STPA-Sec Systems-Theoretic Process Analysis for Security

STRIDE
Spoofing, Tampering, Repudiation, Information Disclosure, Denial
of Service, elevation of Privileges

SUT System Under Test

Page 6 of 95

Deliverable 7.3: Security certification methodology development

TAL Trust Assurance Levels
T-MUC Textual Misuse Cases
TOE Target of Evaluation
TP Tolerance Profiles
TTCN Testing and Test Control Notation
T-UCs Textual Use Cases
TVRA Threat, Vulnerability, and Risk Analysis
UL Underwriters Laboratories
UML Unified Modelling Language
UNECE United Nations Economic Commission for Europe

Page 7 of 95

 Deliverable 7.2: Security certification methodology definition

Executive Summary

This deliverable reports the work done in T7.3, whose purpose is the instantiation of the

methodology defined in Task T7.2. To this end, tools developed and improved within

WP3, WP4, WP5, WP6 and WP7, to identify, model and measure the risk associated with

each threat or vulnerability, are used to instantiate the different phases of the

methodology. The main objective of this task is to provide an instantiation of an

automated and evidence-based security assessment integrating BIECO tools to support

the different phases.

Project Summary

Nowadays most of the ICT solutions developed by companies require the integration or

collaboration with other ICT components, which are typically developed by third parties.

Even though this kind of procedures are key in order to maintain productivity and

competitiveness, the fragmentation of the supply chain can pose a high-risk regarding

security, as in most of the cases there is no way to verify if these other solutions have

vulnerabilities or if they have been built taking into account the best security practices.

In order to deal with these issues, it is important that companies make a change on their

mindset, assuming an "untrusted by default" position. According to a recent study only

29% of IT business know that their ecosystem partners are compliant and resilient with

regard to security. However, cybersecurity attacks have a high economic impact, and it

is not enough to rely only on trust. ICT components need to be able to provide verifiable

guarantees regarding their security and privacy properties. It is also imperative to detect

more accurately vulnerabilities from ICT components and understand how they can

propagate over the supply chain and impact on ICT ecosystems. However, it is well

known that most of the vulnerabilities can remain undetected for years, so it is necessary

to provide advanced tools for guaranteeing resilience and also better mitigation

strategies, as cybersecurity incidents will happen. Finally, it is necessary to expand the

horizons of the current risk assessment and auditing processes, taking into account a

much wider threat landscape. BIECO is a holistic framework that will provide these

mechanisms in order to help companies to understand and manage the cybersecurity

risks and threats they are subject to when they become part of the ICT supply chain. The

framework, composed by a set of tools and methodologies, will address the challenges

related to vulnerability management, resilience, and auditing of complex systems.

Page 8 of 95

Deliverable 7.3: Security certification methodology development

Partners

Disclaimer

The publication reflects only the author's view, and the European Commission is not

responsible for any use that may be made of the information it contains.

Page 9 of 95

 Deliverable 7.2: Security certification methodology definition

Table of Contents

Technical References ... 1

Revision History... 2

List of Contributors ... 2

Acronyms ... 4

Executive Summary... 7

Project Summary ... 7

Partners .. 8

Disclaimer .. 8

Table of Contents .. 9

List of Figures .. 11

List of Tables ... 14

1. Introduction .. 15

2. Security evaluation methodology overview ... 16

3. Security evaluation methodology instantiation ... 18

3.1. Establishing the context .. 18

3.1.1. The security and privacy claims .. 18

3.1.2. The tolerance profiles .. 19

3.2. Risk identification .. 20

3.2.1. System description .. 20

3.2.2. Sensitivity calculation .. 23

3.2.3. Test prioritization ... 24

3.2.4. Vulnerability identification ... 25

3.2.5. Attack paths calculation .. 27

3.2.6. Safety impact calculation .. 30

3.3. Security testing .. 33

3.3.1. GraphWalker - Model based testing.. 33

3.3.1.2. Test generation: adapter and test suite .. 36

3.3.2. Fuzzing testing ... 41

3.3.3. GROOT .. 42

3.3.3.1. Contextualization of GROOT in BIECO .. 43

3.3.3.2. Supporting Framework .. 44

3.4. Risk estimation .. 46

Page 10 of 95

Deliverable 7.3: Security certification methodology development

3.4.1. GraphWalker ... 46

3.4.2. GROOT .. 48

3.4.3. Fuzzing tool .. 50

3.5. Risk evaluation ... 52

3.5.1. Likelihood calculation .. 52

3.5.2. Risk calculation .. 53

3.5.3. Risk evaluation against the tolerance profiles ... 54

3.6. Labelling ... 54

3.7. Treatment ... 54

3.8. Communication and Auditing ... 60

4. Proof of concept – Application over UC4 .. 62

5. Certificate composition ... 73

6. Conclusions ... 77

7. Artifacts .. 78

8. Annex I: Use case selected claims ... 79

9. Annex II: SecurityScorer – Technical Annex .. 87

9.1.1. Installation Guide ... 87

9.1.2. Usage Guide ... 87

10. References ... 90

Page 11 of 95

 Deliverable 7.2: Security certification methodology definition

List of Figures

Figure 1 Security evaluation methodology .. 16

Figure 2 Overview of the BIECO tools proposed for the methodology instantiation...... 18

Figure 3 Tolerance profile example ... 19

Figure 4 Example confidentiality risk profile ... 19

Figure 5 Decomposition of the system in the risk identification phase 21

Figure 6 YAML file format and example .. 22

Figure 7 Dependencies of a subsystem .. 24

Figure 8 Risk Assessment functionality in Model Designer ... 25

Figure 9 Weaknesses tab in Risk Assessment ... 26

Figure 10 Vulnerabilities tab in Risk Assessment .. 27

Figure 11 Generation of an Attack Path Tree (Graph) .. 28

Figure 12 Attack Path Tree (Graph) example related to CWE-648 in ResilBlockly 29

Figure 13 The name of a weakness (on the left) and of an attack pattern (on the right) in

an APG example related to CWE-648 shown at mouseover .. 29

Figure 14 Link to CWE and CAPEC pages ... 29

Figure 15 - Example of imported CVE in safeTbox ... 31

Figure 16 - Example of editing CVE properties in safeTbox... 32

Figure 17 - Example of exported file with safety impact rating 33

Figure 18 A simple graph in GraphWalker Studio ... 34

Figure 19 Element names modification in GraphWalker Studio 35

Figure 20 Initiating a graph test in GraphWalker Studio ... 35

Figure 21 Test Adapter and Suite Generator tool from BIECO platform 36

Figure 22 ‘Adapter.java’ example ... 37

Figure 23 ‘TestSuite.java’ example .. 38

Figure 24 Add both Adapter and TestSuite files into the Maven project 39

Figure 25 Test report folder .. 39

Figure 26 Plugin added to ‘pom.xml’ in our Maven project .. 40

Figure 27 Conceptual design of the fuzzing tool .. 41

Figure 28 Contextualization of GROOT within BIECO ... 43

Figure 29 Contextualization of GROOT within BIECO ... 43

Figure 30 GROOT Reference Architecture ... 44

Figure 31 GROOT Client GUI ... 44

Figure 32 GDPR-based Access Control Policy related to Lawful Processing................. 45

Figure 33 Example of GDPR-based Access Control Requests .. 45

Page 12 of 95

Deliverable 7.3: Security certification methodology development

Figure 34 A general idea of security testing and risk evaluation 46

Figure 35 XML output example with all test passed .. 47

Figure 36 XML output example with failed tests .. 47

Figure 37 Test metrics and values example ‘TestSuite-output.json’ 48

Figure 38 GROOT: A possible policy related to the Lawfulness of Processing Personal

Data (Claim C26). It is a possible implementation of the GDPR-based Policy reported in

Figure 32 .. 49

Figure 39 GROOT: A possible request derived from the policy in Figure 38 50

Figure 40 GROOT: A possible decision .. 50

Figure 41 A shortened version of the Fuzzing output .. 51

Figure 42 Labelled results of the risk evaluation phase ... 54

Figure 43 MUD file fragments of interest for this example (1) .. 57

Figure 44 MUD file fragments of interest for this example (2) .. 58

Figure 45 Metrics file, ‘TestSuite-output.json’ ... 58

Figure 46 Connection ‘loc0-todev’ information updated .. 59

Figure 47 Connection ‘ent0-frdev’ completed with extra information 59

Figure 48 Usage of the extended MUD file for auditing ... 60

Figure 49 Auditing Violation and Alarm Notification (Adopted from D5.1) 61

Figure 50 Toolchain used for the UC4 validation .. 62

Figure 51 SUT in UC4 .. 62

Figure 52 System decomposition for UC4 .. 64

Figure 53 Uploading of the swagger file in the Fuzzing tool .. 65

Figure 54 Execution of the Fuzzing tool .. 65

Figure 55 Output database information .. 66

Figure 56 Localplanner modeled with Graphwalker Studio ... 67

Figure 57 Save SUT model ... 67

Figure 58 Test Suite Generator Tool from BIECO platform .. 68

Figure 59 Generated ‘Adapter.java’ and ‘TestSuite.java’ classes (1) 68

Figure 60 Generated ‘Adapter.java’ and ‘TestSuite.java’ classes (2) 69

Figure 61 Test report output... 70

Figure 62 Non-binary test metrics obtained .. 70

Figure 63 Fuzzing tool report for LocalPlanner .. 71

Figure 64 Security label of UC4 .. 72

Figure 65 MUD file of UC4 component localplanner is updated 72

Figure 66 Composition within BIECO methodology ... 74

Page 13 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 67 - OEM-Tier-N Cybersecurity Interface Agreement Abstract Example

(reproduced from ISO 21434:2021, p.20) .. 75

Figure 68 SecurityScorer REST API graphical interface ... 88

Page 14 of 95

Deliverable 7.3: Security certification methodology development

List of Tables

Table 1 - ISO 21434 Safety Impact Rating (Table F.1 ISO 21434:2021) 30

Table 2 Mapping between testing outputs and extended MUD fields 55

Table 3 Artifacts produced in T7.3 .. 78

Page 15 of 95

 Deliverable 7.2: Security certification methodology definition

1. Introduction

Continuous technological advances will enable the development of new ICT systems,

shaping innovative digital ecosystems for the benefit of society. As recognized by the

European Union (EU) cybersecurity regulation "Cybersecurity Act" ("CSA"), this requires

that certification schemes provide a high level of flexibility to adapt to a changing

technological environment to avoid the risk of becoming outdated. The aim of task T7.2

was to define a security evaluation methodology as a basis for certification, flexible

enough to give to the security evaluator the freedom to instantiate the different steps

using any kind of technique or tool.

Starting from that point, this deliverable proposes a concrete instantiation of the security

evaluation methodology supported by the tools and methodologies developed in WP3,

WP4, WP5, WP6, and WP7. Each phase of the methodology is described and evaluated

using tools to identify, test and measure the risk, based on the security claims

established. Therefore, the automated and evidence-based security assessment is

performed, integrating BIECO tools and providing a final result of the methodology

evaluation.

This document draws the conclusions of the work developed in WP7, which began with

the identification of a basic set of security and privacy claims (D7.11), continued with the

definition of a high-level security evaluation methodology (D7.22) and now ends with an

instantiation proposal within the BIECO project (D7.3).

This deliverable is organized as follows. Chapter 2 provides a short overview of the

security evaluation methodology developed in D7.2, explaining the steps and introducing

some basic definitions used in the document. Chapter 3 presents the main goal of this

task: the instantiation of the methodology, describing each phase. Starting with

establishing the context (claims and labels), goes through risk identification (system

description, sensitivity calculation, test prioritization, vulnerability identification, safety

impact calculation) and security testing (GraphWalker, Fuzzing, GROOT). Next, it

presents risk estimation and risk evaluation phases (containing a full description of risk

calculation), and finally, the labelling, treatment and continuous communication and

auditing.

Chapter 4 is a proof-of-concept description, based on UC4. In other words, it presents

the instantiation of the BIECO methodology on the use case developed by UNINOVA.

Chapter 5 describes how the methodology can be adapted in different scenarios that

could arise within the supply chain scenario and the certificate composition, and Chapter

6 summarizes the document. Moreover, there are two annexes: one describes all the

claims related to each use case, and the other one is a technical description of the risk

evaluation tool, SecurityScorer.

1 Deliverable 7.1: ”Report on the identified security and privacy metrics and security claims to evaluate the
security of a system”
2 Deliverable 7.2: ”Security certification methodology definition”

Page 16 of 95

Deliverable 7.3: Security certification methodology development

2. Security Evaluation Methodology Overview

The security evaluation methodology developed in D7.2 defines a set of steps to

evaluate the security of a system (Figure 1). It builds a framework on top of two main

streams: security testing to identify security vulnerabilities and security risk assessment

to measure the associated risk.

Figure 1 Security evaluation methodology

The first phase is the context phase, which considers the existing regulation, the best

practices, current standards etc. to build an initial set of security claims that can be used

as starting point for the security evaluation.

From this initial set and taking into account the particular Target of Evaluation (TOE), in

the risk identification phase, a set of applicable threats can be selected. This set can be

also extended with specific threats not considered in the initial set, by examining the

special characteristics of the TOE.

Once the threats are selected, we start the security testing block. The test

implementation phase deals with the design and implementation of the tests necessary

to verify if the system is vulnerable to these threats. The needed entities and context to

Page 17 of 95

 Deliverable 7.2: Security certification methodology definition

execute the tests is established in the environment set up phase and the tests are

executed in the test execution phase, generating at the end of the process a test report.

The test results of the previous phase are used to estimate the risk of every component

of the TOE during the risk estimation phase. Towards this end, information from the risk

identification phase is required, regarding the components, the identified threats, and

their impact. The overall risk evaluation phase combines the risk coming from every

component, obtaining an overall measure of the system security.

At the end of the evaluation process, a label showing the evaluation results is generated.

Other actions are also possible to mitigate the security flaws encountered during the

process. Additionally, the methodology also considers a transversal and supportive

process for continuous communication and auditing meant to deal with the lifecycle

management of the TOE.

This deliverable focuses on the instantiation of these steps within the BIECO framework,

using tools and methodologies developed within the project. Next chapter details each

of the steps of the methodology and how the instantiation has been performed.

Page 18 of 95

Deliverable 7.3: Security certification methodology development

3. Security Evaluation Methodology Instantiation

This section presents the instantiation of the different steps of the methodology using

specific methodologies, tools, and techniques from BIECO. It is worth noting that at the

date of finishing WP7, some of the tools that are considered within the methodology are

still under development, so the integration will be completed within WP8. Moreover, it

should be noted that the methodology is intended to be generic, and that the purpose of

the proposed tools for the instantiation is to support the user in following such

methodology, so all the tools are mandatory to be used. This will be reflected in the

possible workflows offered by the BIECO platform (WP8). Finally, the methodology can

be also performed manually, and additional or alternative tools can be used instead.

Figure 2 Overview of the BIECO tools proposed for the methodology instantiation

Figure 2 shows an overview of the tools developed and improved within BIECO WPs that

have been considered within the methodology instantiation. Next subsections detail for

each phase, which tools and methodologies can be used to support the related activities

and how to integrate their outputs in the security evaluation methodology.

3.1. Establishing the Context

In this phase we establish the basis for the evaluation, answering the question what we

are going to evaluate? In particular we consider three different sources within BIECO

framework: the security and privacy claims obtained from current standards, best

practices and regulation and the tolerance profiles, which reflects the security level that

should be achieved by the System Under Test (SUT).

3.1.1. The Security and Privacy Claims

The security and privacy claims are the basis on which to evaluate the SUT, since they

represent the security properties that the system must meet in order to be certified. The

claims can be given by the owner of the SUT in order to demonstrate its compliance with

basic security principles or even with a particular security standard, or they could be

given by a third party that needs the SUT to comply with certain claims in order to be

integrated into her/his system, thus guaranteeing the security of the whole ecosystem.

Page 19 of 95

 Deliverable 7.2: Security certification methodology definition

In BIECO, the claims defined in D7.1 are used as a basis for making a selection on which

to evaluate the SUT, and are extended as necessary with additional requirements

imposed by the client. Annex 1 shows the claims that have been selected by the use

case owners (ICT GW, MICROFACTORY – FIRMWARE UPDATE, AI INVESTMENT) for the

security evaluation.

3.1.2. The Tolerance Profiles

The tolerance profiles indicate, based on the particular context of the system, to what

extent the selected claims must be fulfilled, that is, what is the acceptable risk to be

certified and what security levels are established within said limits.

In BIECO, the tolerance profiles are established by the client and used as input for the

evaluation process. As the tolerance profile influences the certified security level, the

profile must always be part of the issued certificate (linked to the label), giving more

detailed information about the process and facilitating future compositions (see Section

5).

The tolerance profile in BIECO follows a YAML format presented in Figure 2. This is only

a part of the system description file which will be explained in Section Error! Reference

source not found. below.

Figure 3 Tolerance profile example

The example in Figure 3 is the YAML representation of the tolerance profile defined in

deliverable D7.2, Section 6.1, Figure 2. Each type of risk (confidentiality risk, integrity risk,

etc.) has four labels A, B, C, D, each covering a disjoint part of the [0,10] range. For

example, a list of values [2, 4, 6, 7] is assigned to the confidentiality risk of the Smart Car

Profile. It means that the creator of the profile treats the result in the [0,2] range as the

highest possible mark, hence A label. Then, the result in range (2, 4] is labelled as B, the

result in range (4, 6] is labelled as C, and the result in (6, 7] gets D. Finally, if the

confidentiality result is above 7 then it is not certified.

Figure 4 Example confidentiality risk profile

Page 20 of 95

Deliverable 7.3: Security certification methodology development

Figure 4 shows the confidentiality risk of the smart car profile in a visual form to fully

explain the encoding of the YAML representation.

3.2. Risk Identification

The risk identification phase focuses on describing the system, its components and its

degree of dependency, and identifying possible vulnerabilities that may be present in

them through a preliminary analysis. The identified vulnerabilities are associated with

the corresponding vulnerability claims, and during the testing phase it will be verified

whether they are present in the system or not.

In the proposed instantiation the needed information comes from different sources:

• The system description is provided by the user in a YAML file. The YAML file

includes the sensitivity parameter that reflects the degree of dependency of each

system component. For the calculation of this value, the user can follow the

methodology proposed in D3.43 and the results of the WP3 propagation tool.

• The list of possible vulnerabilities and their associated impact can be obtained

from the WP6 Resilblockly preliminary analysis, which additionally includes

mechanisms to integrate the propagation of vulnerabilities in the calculation of

the impact using attack paths analysis. Moreover, the safety impact dimension

can be refined in critical systems using SafeTBox tool, also developed within

WP6.

Additionally, the tests to design and execute can be prioritized based on the results of

the vulnerability detection tool from WP3.

Next subsections provide additional details about how the information is presented,

integrated and used inside the methodology.

3.2.1. System Description

In the methodology, the system should be decomposed in its applicable security

properties and affected components. Figure 5 shows the UML formal representation of

this decomposition.

3 Deliverable 3.4:” Report of the Tools for Vulnerability Propagation”

Page 21 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 5 Decomposition of the system in the risk identification phase

Each system component will have a list of claims to check; claims that can be pure, if

they are directly linked with tests or vulnerability claims if they are related to the presence

of knows vulnerabilities, which are empirically verified through tests. At the end of the

system decomposition, we have the tests that should be designed and implemented in

the security testing phase. Additional information can be found in D7.2.

The system description is introduced into the methodology in the form of a YAML file

(Figure 6, left). The tolerance profile scheme introduced in Section 3.1.2 is only a part of

the file. Another essential part is the decomposition of the system as presented in Figure

5. The figure and the reasoning behind it were introduced in Deliverable 7.2 (Section 6.2

Risk Identification) along with the definitions of sensitivity, impact, etc. However, it is

presented here for the ease of understanding the YAML scheme.

Page 22 of 95

Deliverable 7.3: Security certification methodology development

Figure 6 YAML file format and example

Figure 6 (right) is a listing with an example system description file. The tolerance profile

part is hidden due to the fact it was already discussed. The system description part is

organised as follows (note that what is called below a list is formally a YAML map, but

we intend to keep the vocabulary simple).

• Tolerance profile

• Components – a list of component names. Each component has a numeric

property: sensitivity with a numeric value between 0 and 10. Subsection 3.2.2

details how to calculate this value through the methodology developed in T3.4.

• Claims – a list of claims, both “pure” claims and the claims with associated

vulnerabilities (see Figure 6 and Deliverable 7.2). Each claim has:

o a reference to a component,

o a list of security properties it is related to,

Moreover, each “pure” claim has:

o A reference to the claim ID in documentation

Page 23 of 95

 Deliverable 7.2: Security certification methodology definition

o An impact value obtained from 4 different dimension (safety, operational,

financial and privacy & legislation).

o A list of related tests

The claims with vulnerabilities have only a list of vulnerabilities instead.

• Vulnerabilities – a list of vulnerabilities. Each vulnerability has:

o A reference to a vulnerability ID in documentation

o An impact value

o A list of related tests

The scheme allows to conveniently pass the system description and tolerance profiles

to the BIECO software. It is then used by the security scorer tool to internally build a

system schema and, by combining this information with the outputs of the risk

assessment and security testing phases, calculate the numerical value of the risk. It is

comprehensively described in Sections 3.6 and 3.7 of this deliverable.

3.2.2. Sensitivity Calculation

Current systems are made up of different interconnected components that work

together to provide a service. A component is defined as a static building block of a

system which can be a module, a class or interface, a package, or a subsystem [21]. In this

context, a failure in one of the system components, may have cascade effects over other

components, or even produce a generalized system failure. Therefore, analyzing the

existing dependencies among the system components and its degree, can help to

determine the impact that a vulnerability would have over the rest of the system

components.

As advanced in the previous section, each system component has a numeric property:

sensitivity with a numeric value between 0 and 10, which measures the degree of

dependency with other system components.

While this measure can be manually introduced by the user, the BIECO framework

provides tool and methodology support for its calculation, developed within WP3, T3.4.

On the one hand, the methodology developed in T3.4 for the measurement of the system

dependencies consider internal dependencies, obtained from the vulnerability

propagation tool (T3.4). In particular, the inputs needed are the total code, the code

shared between classes or entities (that can be indirectly obtained by analysing the

relations) and the type of relationship they have (inheritance, composition, aggregation,

etc.). All these values can be obtained, directly or indirectly, from the propagation tool

report. On the other hand, the methodology considers the external dependencies,

obtained from the MUD (Manufacturer Usage Description) file specified behaviour

(WP6), in terms of offered services and network accesses.

Page 24 of 95

Deliverable 7.3: Security certification methodology development

Figure 7 Dependencies of a subsystem

At the end, the total degree of dependency of a component N is measured as

Where D1, D2, …, Ds are degree of dependency of the components that the component N

depends on.

3.2.3. Test Prioritization

One of the characteristics of the cybersecurity evaluation is that it can never be

guaranteed that a system is 100% secure since the time spent in evaluating it completely

may not be feasible. In this sense, knowing in advance which claims may or may not be

fulfilled with a certain level of certainty can shorten the evaluation and make it necessary

to perform fewer tests. Knowing this premise, in BIECO WP3 it is proposed a tool to

detect existing vulnerabilities within the source code from different code languages with

a certain degree of confidence. In this sense, if the tool detects that a vulnerability

associated to a claim could be present in the system with a very high confidence, the

tests associated to this claim can be skipped or moved to the end of the priority list, as

they are very likely to be failed.

The tool uses as input data the source code to be analyzed and the type of programming

language in which the source code was developed. By means of ML (Machine Learning)

algorithms, the vulnerability detection tool detects the existence of possible not

registered vulnerable code within a module or component of the same. The use of ML

algorithms provides a trust associated with said detection which will help the analyst to

assess the prioritization of the tests to perform such as the ones referring the detection

of vulnerabilities within the source code. These claims (from D7.1) are:

• Claim 28: The source code must not contain SQL injection vulnerabilities

• Claim 29: The source code must not contain command injection vulnerabilities

• Claim 30: The source code must not contain code injection vulnerabilities

• Claim 31: The source code must not contain path traversal vulnerabilities

• Claim 32: The source code must not use components with known vulnerabilities

Due to the fact that the development of the tool is still ongoing, further information will

be provided in subsequent deliverables (D3.54). Furthermore, its integration with the

different tools and methodologies will be developed and analyzed throughout the

duration of WP8.

4 Deliverable 3.5: "Update Report of the tools for vulnerability detection and forecasting"

Page 25 of 95

 Deliverable 7.2: Security certification methodology definition

3.2.4. Vulnerability Identification

While pure claims are directly associated with tests, vulnerability claims are associated

to the existence of specific vulnerabilities from CVE. Even if this process can be manually

performed, BIECO has available the ResilBlockly tool developed within WP6, which

among its outputs it gives the lists of possible vulnerabilities and weaknesses

associated to each system component. The button to access this functionality is

depicted as an exclamation mark in a yellow triangle (see Figure 8).

Figure 8 Risk Assessment functionality in Model Designer

In order to identify threats, attacks and vulnerabilities that apply to each asset, and to

reduce the intrinsic difficulty of this process, ResilBlockly leverages the MITRE lists of

known threats, and in particular:

• CWE (Common Weakness Enumeration) catalogue [116] for the weaknesses.

• CVE (Common Vulnerabilities and Exposure) [113] and NVD (National

Vulnerability Database) [115] catalogs for the vulnerabilities.

• CAPEC (Common Attack Pattern Enumeration and Classification) catalog [114]

for the attack pattern.

The association of weaknesses is provided to the user of ResilBlockly Model Designer

and allows to perform the identification of weaknesses and their association with the

Class Blocks of the Model. After having modelled a system, the identification of

weaknesses can be initiated in the Model designer by clicking on the Risk Assessment

icon and then choosing the Weaknesses tab (as shown in Figure 9).

Page 26 of 95

Deliverable 7.3: Security certification methodology development

Figure 9 Weaknesses tab in Risk Assessment

The tool allows the choice of Class Blocks (that will implicitly be considered as assets)

and the association of weaknesses to each of them. In the example of Figure 9 the block

chosen is the RUMI (Relied Upon Message Interface) called

HTTP_GUI_REST_API_to_HTTP_GUI_REST_CLIENT.

The process of association of weaknesses in the Risk Assessment allows the model

designer user to search for and select a CWE (either directly or by performing the

research of attack patterns in the CAPEC and retrieving the related weaknesses).

Furthermore, the tool allows, by clicking on the Add custom weaknesses button the

specification of custom weakness and their association to the asset. Each weakness is

created entering the name, description, extended description, background details,

likelihood Of Exploit (High, Mid, Low, None, Default, Unknown, Not Applicable,

Quantified), and the status (Deprecated, Draft, Incomplete, Stable). This feature may be

useful when the extensive search of weaknesses in the CWE catalogue does not allow

to find the desired one.

After associating the weaknesses with the model's class blocks, the user can view a

summary report, which can also be exported in CSV format. The fields available in the

exported CSV report for the associated Weaknesses are:

• Exclude (with a yes or now depending on whether the weakness has been

excluded or not respectively);

• Exclusion reason (the reason eventually provided by the user within the tool);

• Predefined (yes if the Weakness is inherited from the profile, no if it has been

added in the Model);

• Component (the model element to which the weakness is associated) ;

• Weakness ID (the CWE-ID or custom id);

• Weakness Type (CWE or custom);

• Weakness title;

• Weakness description;

• Details (the link to CWE catalogue).

As for the weaknesses, the user can click on Risk Assessment and select the

Vulnerabilities tab for performing the association of vulnerabilities from CVE catalogue.

Page 27 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 10 shows the graphical interface of the Vulnerabilities tab, that allows the choice

of the Class Block (as in the example the GUI_Subscribe_to_MQTT (RUMI)) that is

implicitly considered as asset.

Figure 10 Vulnerabilities tab in Risk Assessment

The association of the vulnerabilities is started by pressing the Add Vulnerabilities button

as indicated in Figure 10. The interface that opens allows the search and retrieval of

vulnerabilities from the CVE catalogue. The search can leverage keywords

characterizing the title or the description of a CVE entry (e.g., the sql word). As seen for

the weaknesses, the user can create also custom vulnerabilities by clicking on the button

Add custom vulnerabilities shown in Figure 10, providing a name and description. As for

the weaknesses, this feature may be useful when the extensive search of vulnerabilities

in the CVE catalogue does not allow to find the desired one.

The “Export” button downloads the report in CSV format, where the fields available are:

• Exclude (with a yes or now depending on whether the vulnerability has been

excluded or not respectively);

• Exclusion reason (the reason eventually provided by the user within the tool);

• Predefined (yes if the vulnerability is inherited from the profile, no if it has been

added in the Model);

• Component (the model element to which the vulnerability is associated);

• Vulnerability ID (the CVE-ID or custom id);

• Vulnerability Type (CVE or custom);

• Vulnerability title;

• Vulnerability description;

• Details (the link to CVE catalogue).

3.2.5. Attack Paths Calculation

A more refined analysis of the impact associated to the identified vulnerabilities can be

performed using also the Resilblockly tool. Based on CWE-CAPEC relationship, and in

particular on the related attack pattern and related weakness fields existing in them,

Page 28 of 95

Deliverable 7.3: Security certification methodology development

respectively, it is possible to build a useful graphical representation having as a root a

weakness identified during the keyword-based search, and associated to a system

component, and having as its children attack patterns that are related to it, and

potentially have been as well identified during the keyword-based identification. Then,

connecting these attack patterns with additional patterns that canPrecede them, we

obtain a structure that we call Attack Path Tree (APT).

The generation of an Attack Path Tree (Graph) in ResilBlockly is done by clicking on the

icon present for each CWE associated with a Class Block within the Weakness Tab of

the Risk Assessment, as shown in the Figure 11.

Figure 11 Generation of an Attack Path Tree (Graph)

Figure 12 shows one APT example for the weakness CWE-648 associated to the

HTTP_GUI_REST_CLIENT_to_HTTP_GUI_REST_API (RUMI) Class Block: the weakness is

represented on top of the APG (Attack Path Graph) and highlighted in yellow.

The tool automatically retrieves, where available:

1. Related attack patterns, tree representing them as red rectangles (e.g., CAPEC

107 and 234), and places them on the Level 1 of the APT;

2. Preceding attack patterns, still represented by red rectangles but and placed on

the below levels of the APT (e.g., CAPEC 63);

3. Related weaknesses, represented with blue circles, and connected to all their

related attack patterns. In this step the APT becomes an APG.

The displayed Attack Path Graph shows the name of weaknesses and attack patterns

on mouseover (as depicted in Figure 13) and includes an URL to the dedicated page in

the corresponding CWE or CAPEC catalogue (Figure 14).

Page 29 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 12 Attack Path Tree (Graph) example related to CWE-648 in ResilBlockly

Figure 13 The name of a weakness (on the left) and of an attack pattern (on the right) in an APG example
related to CWE-648 shown at mouseover

Figure 14 Link to CWE and CAPEC pages

Page 30 of 95

Deliverable 7.3: Security certification methodology development

3.2.6. Safety Impact Calculation

As described in D7.2, the methodology considers 4 different dimensions to calculate the

impact value: Safety, Operational, Financial and Privacy & Legislation. In domains where

application safety is relevant, a safety engineering lifecycle workflow is expected to be

applied. This should include Hazard Analysis and Risk Assessment (HARA), which can

identify specific Hazards (system-related conditions that could lead to accidents in

worst-case operational situations), assess the risk of said Hazards with respect to

safety, and identify appropriate objectives for controlling the risk to an acceptable

degree. More detail on how such a process can be considered is described in D6.45, and

bases this view on the ISO 26262 automotive safety standard, among others.

From the set of the Hazards identified via HARA above a relationship to the security

claims that could contribute to their risk can be established. In automotive security

standard ISO 21434, the process steps of damage scenario specification and impact

rating are relevant.

Per RQ-15-01 Note 1 of the standard (pg.45 of the 2021 edition), a damage scenario can

include the relation between functionality and adverse consequence, description of harm

to the user, and/or relevant assets (system elements e.g., data/function/physical

element, whose compromised security properties can lead to damage scenarios). The

impact rating of damage scenarios derived above shall follow RQ-15-04, which

prescribes assessment in terms of safety, financial, operational, and privacy impact (and

additional categories if needed). Each category shall be rated using a scale from

‘negligible’, ‘moderate’, ‘major’ to ‘severe’. For safety-related ratings specifically, the

security-related damage scenario follows the severity impact rating of ISO 26262-

3:2018, summarized in Table 1. This rating is considered also within the security

evaluation methodology to measure the safety impact dimension.

Table 1 - ISO 21434 Safety Impact Rating (Table F.1 ISO 21434:2021)

Impact Rating Safety Impact Criteria

Severe Life-threatening injuries (survival uncertain), fatal injuries

Major Severe and life-threatening injuries (survival probable)

Moderate Light and moderate injuries

Negligible No injuries

While the above concepts are all based on standards from the automotive domain, we

believe the overall approach to be transferrable to other domains. Indeed, the above

standards are themselves based on more general, cross-domain standards, such as IEC

61508. However, one important concern for adapting the rating process to other

domains is the careful translation of the safety impact rating criteria to the new domain,

5 Deliverable 6.4: ”Mitigation Identification and Design”

Page 31 of 95

 Deliverable 7.2: Security certification methodology definition

accounting for the difference in mode and scale of interaction of the end-user(s) and the

overall application.

As a contrasting example, the related aerospace safety standard ARP 4754-A (for

commercial passenger aircraft) considers ‘catastrophic’ impact to be the highest, and

includes ground/other aircraft collisions, meaning potentially hundreds of casualties

(actual definition specified in AC 25.1329-1B, page 1-3).

Procedurally, to arrive at a safety impact along the above lines, BIECO specifies a

security risk assessment method in deliverables D6.26 and D6.4. The process begins by

performing system modeling and security risk assessment in the ResilBlockly tool, as

indicated earlier in section Error! Reference source not found. and onwards. The

resulting models of ResilBlockly can be exported into an exchangeable file format

(based on the Eclipse Modeling Framework’s. ecore format [29]).

Using this format, the safeTbox tool can import and transform the ResilBlockly models,

such that identified vulnerabilities associated with system elements can be incorporated

into Component Fault Trees (CFTs). An abstract example of how this appears graphically

in the tool can be seen in Figure 15. As can be seen, the user has modeled a vulnerability

with CVE-2004-0625 (as assigned and exported from ResilBlockly) to be linked with a

logical gate (OR gate in this case) with an ‘Out FM_445’, referring to an output (port)

failure mode. This represents how the corresponding CVE could trigger undesireable

behavior in one of the subject component’s output ports, which could then lead to failure

and have corresponding safety related impact.

Figure 15 - Example of imported CVE in safeTbox

6 Deliverable 6.2: “Blockly4SoS User Guide”

Page 32 of 95

Deliverable 7.3: Security certification methodology development

Once an analysis has been completed in safeTbox and the impact on safety due to the

corresponding vulnerability has been identified, a properties editor can be used to assign

a corresponding safety impact rating to the vulnerability in question, as seen in 16, in the

bottom-right field listed as ‘SafetyImpact’.

Figure 16 - Example of editing CVE properties in safeTbox

The corresponding rating is then stored as a property of the vulnerability, and can be re-

exported into other tools (e.g., in ResilBlockly or other tools), using the above-mentioned

file format. An example of how this format looks like, for the example model shown

previously, can be seen in 17, lines 27 and 28, where the corresponding CVE’s safety

impact rating has been recorded. More details on how the above tools interoperate

technically are included in BIECO deliverable D6.37, section 4.1.

7 Deliverable 6.3: “Risk Assessment and additional requirements”

Page 33 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 17 - Example of exported file with safety impact rating

3.3. Security Testing

In this Section, testing techniques and tools used in the BIECO project are presented. We

define the techniques of testing and how they are employed in the BIECO. Then, we

present specific open-source tools that were used to achieve effective automated

testing methodologies.

In particular, we integrate 3 different testing techniques (model-based testing, fuzzing

testing and combinatorial testing) using three different tools that have been developed

or improved within BIECO: Graphwalker, fuzzing tool and GROOT. Even if Resilblockly

was considered at the beginning of the W7P work as a candidate for MBT (Model-Based

Testing), it was replaced by the open-source tool Graphwalker. The main reason was the

automation of the test generation process, which we consider highly important in a MBT

tool, and the link with the real system, as Resilblockly can execute the tests only over a

simulated system and does not export a test suite nor adapter to link the tests with the

real system.

3.3.1. GraphWalker - Model Based Testing

MBT is a software testing technique where the generation of test cases is based on
models that describe the behavior of the SUT. Therefore, the activity of designing models
consists in represent the target part of the system, being able to use different types of
models depending on the tool used. Applying the graph theory to these models, we can
automate the generation of multiple test scripts (test suite). The test suite is a path made
up of steps through the model until a goal, condition or requirement is met.

Following this technique we give to our tests a better structure, updates on the model to
reflect new conditions or requirements make the test suite easy to maintain, improving
test coverage and saving time and costs.

GraphWalker[39] is an open-source solution for MBT that reads models in the shape of
directed graphs and generates tests from these graphs. The general idea is to model an
application as a graph of calls and verifications which in turn can be employed for
extensive and automated testing.

Page 34 of 95

Deliverable 7.3: Security certification methodology development

The tool provides a GraphWalker Studio, an editor in which models can be created and
edited. Models can also be created by-hand, but this guide describes GraphWalker Studio
for model creation as an intuitive tool requiring little coding knowledge. Studio also has
a feature to run test path generation to verify if the models are correct. The file format
of the generated models is JSON.

Models are composed of two main elements: vertex and edges. On the one hand, a vertex
represents the state of the SUT, and it is the place where the asserts take place in the
code. On the other hand, an edge is an action that changes the state of the system. For
our methodology, requirements are another important actor in this tool when designing
models, since they are in charge of defining where the condition or goal vertex that
indicates the end of a test is located. Also exists other two remarkable elements: actions,
that modifies data from the model context, and guards, that do not allow to walk through
an edge until a certain condition is met based on the model context.

Moreover, GraphWalker provides command line tools for generating paths, which can be
integrated as a Maven project. It requires only an implementation of vertices and edges,
and the tests are run automatically.

3.3.1.1. Using Graphwalker Tool

The first step to use Graphwalker is to start the GraphWalker Studio. It can be executed:

a) Locally:
i) Prerequisite: java is installed (GraphWalker studio runs on the majority of

JRE versions).
ii) Download the latest GraphWalker Studio from GraphWalker download

page8.
iii) Launch GraphWalker Studio: java -jar graphwalker-studio-<LATEST

VERSION>.jar
iv) GraphWalker studio can be opened in a browser: localhost:9090/studio.html

b) Within the BIECO platform: Studio tool will be integrated into the BIECO platform
in order to avoid manual installation.

Once started, a model can be created by clicking the ‘+’ button (Figure 18, left). On the
new model tab, the user can press the ‘v’ key and press a left mouse button (LMB) to
create a vertex. To create an edge, the user can click on a vertex, press the ‘e’ key, then
press and hold LMB, dragging it to another vertex. This will create a directed edge
between two vertices.

Figure 18 A simple graph in GraphWalker Studio

8 http://graphwalker.github.io/#download

http://graphwalker.github.io/#download

Page 35 of 95

 Deliverable 7.2: Security certification methodology definition

The name and other properties of each vertex and edge can be modified by using
modification button (See Figure 19).

Figure 19 Element names modification in GraphWalker Studio

Finally, the user can set actions and guards to control a state (for example, introduce a
variable responsible for click count), as well as add information about requirements
related to given verifications.

Graphwalker also allows to import and existing model by clicking the ‘Open’ button or
save a created model as a JSON file just click the Save button in the GraphWalker Studio
and choose the name and directory in the browser pop-up window.

To test the model based on the graph design, guards, conditions, start element,
generator and end stop conditions defined, the user needs to click the Play button in
GraphWalker studio (see Figure 20).

Figure 20 Initiating a graph test in GraphWalker Studio

Page 36 of 95

Deliverable 7.3: Security certification methodology development

The test run can be controlled by the three buttons:

i) Play/Pause - starts or pauses the run.
ii) Next – executes only one step (one transition).
iii) Stop – terminates the test run.

After fulfilling the stop condition, the test is finished. The vertices visited at least once
are coloured green.

3.3.1.2. Test Generation: Adapter and Test Suite

Once generated the model for our SUT, the user needs to create the adapter that contains
the connection between the abstract model and the real system, as well as the test suite
that contains the different test cases that will be executed over the system.

To achieve this, BIECO has created on its platform the tool Test Adapter and Suite
Generator, which is in charge of automating the creation of both needed files (see Figure
21).

Figure 21 Test Adapter and Suite Generator tool from BIECO platform

As entry, the user should provide the resulting JSON file from GraphWalker Studio by
pressing the “Choose File” button. Once submitted, the tool will redirect to the page
where the user can download two resulting Java files: ‘Adapter.java’ and ‘TestSuite.java’.

The first one, ‘Adapter.java’ contains the methods that the user should implement in
order to provide the connection of the tests with the real system. In the case of vertex
methods, the asserts should be also implemented. An example of adapter file is shown
in Figure 22.

Page 37 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 22 ‘Adapter.java’ example

The second one, ‘TestSuite.java’ contains the different test cases that will be executed
over our system. Each of these tests is a sequence of calls to the Adapter methods. An
example of test suite file is shown in Figure 23.

Page 38 of 95

Deliverable 7.3: Security certification methodology development

Figure 23 ‘TestSuite.java’ example

Having both files and having implemented the Adapter with the required functionality the
user is able to execute all the tests by using Maven.

3.3.1.3. Test Implementation and Execution by Using Maven

The software requirement to perform the execution of the tests is to have a Java
environment that allows the creation of projects with Maven.

Once created the Maven project, we must add the ‘Adapter.java’ and ‘TestSuite.java’ files
to the folder test of our project structure. The project should be similar to the one shown
in Figure 24.

Page 39 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 24 Add both Adapter and TestSuite files into the Maven project

Next step is to implement the Adapter methods. The task of the user is to implement
these methods with the part of the SUT functionality to be tested. After implementation
is complete, to perform the execution it is enough to use the maven command:

 mvn test

As result, it generates a new folder in our project structure containing the test report (see
Figure 25):

 target/surefire-reports/

Figure 25 Test report folder

Page 40 of 95

Deliverable 7.3: Security certification methodology development

Finally, two results files are obtained:

1. ‘TEST-TestSuite.xml’: Collects the results of each test (pass/fail), describing the
failing reasons and the assertions messages with the relevant information. This
is the main output of the tests after executing with Maven.

2. TestSuite-output.json: Collects the set of metrics derived of each test, described
in a JSON format.

To generate this second output, it is necessary to modify the ‘pom.xml’ file from our
Maven project adding the plugin which allows you to redirect the output to a new file
created during test execution, as shown in Figure 26.

Figure 26 Plugin added to ‘pom.xml’ in our Maven project

Besides to complete the information included in this output file, the tool Test Adapter

and Suite Generator provides the user with a method within the ‘Adapter.java’ class that

allows to indicate the metrics and values information that are wanted to be included as

extra information to the test execution. The reason is that some of the Graphwalker tests

could be non-binary (not only pass/fail), returning specific values or metrics. The outputs

given are later described with details in section 3.4.1.

Both are later analyzed or used by other BIECO tools (SecurityScorer, MUD Updater) to
obtain conclusions from the generated results.

Page 41 of 95

 Deliverable 7.2: Security certification methodology definition

3.3.2. Fuzzing Testing

The purpose of the Fuzzing tool is to evaluate the possible requests that a platform may
receive, preventing possible errors or vulnerabilities that have not been previously
considered. In this way, risks such as vulnerability exploitations or information leaks,
among others, are detected and controlled. To perform this assessment, the user runs
the Fuzzing tool on a developed platform or endpoint. The tool sends multiple HTTP
requests by combining a number of parameters that may lead to errors. The responses
of these requests are analysed by identifying the parameters that are not contemplated
in the specification file, which may cause some risk to the platform.

The execution process followed by the Fuzzing tool is described in Figure 27.

Figure 27 Conceptual design of the fuzzing tool

Before the execution of the tool and as requirements, it is necessary to provide an
implemented endpoint and its corresponding swagger file. This swagger file documents
the endpoint of the platform where the fuzzing is performed.

Once the necessary information is obtained from the swagger file, a database is created,
which will be internal to the tool. This database is overwritten at each execution. Inside
this database, 4 tables are created where the following will be stored:

1. Information obtained from the swagger, such as URLs, operation, path and
responses that each operation may have.

2. Requests made with the Fuzzing tool, including its header, body, HTTP operation,
parameters entered, and others.

3. Correct requests contemplated by the swagger file and that do not represent any
risk. This table includes information such as URL, path, parameters entered, or
response obtained.

4. Suspicious requests not included in the swagger file. The information stored in
this table is the URL, path, type of vulnerability it may contain or response length,
and others.

The information provided by the swagger file is parsed by the tool to obtain the
necessary information for its execution, including the following:

• The URLs allowed by the endpoint, such as HTTP and/or HTTPS;
• The paths, which are the different pages that each URL can have;

Page 42 of 95

Deliverable 7.3: Security certification methodology development

• HTTP operations, such as POST, GET, PUT;
• The parameters that can contain the requests of each operation;
• The contemplated responses of each HTTP operation.

After having the necessary information from the swagger file, the parameters to be
introduced in the requests are obtained. These data are internal of the tool and are
suspicious in order to check if the different requests give errors, or if exists any
vulnerability (e.g., SQL parameter to perform SQL injection). Once the database is
created and the necessary information is obtained, the tool proceeds to do the petitions.
First, default request is created in order to have a correct response which is used as a
reference for the rest of the responses. Then, the corresponding requests are elaborated
for each URL, path and specific operation. For each request, the default request is taken
and each parameter is changed by the suspicious parameter and sent to the endpoint.
The response is stored in the table that store all responses. The response is checked to
see if it is suspicious of vulnerability or has not been contemplated in the swagger file.
To do this, several analyses are performed, such as the code of the request made is
within the responses contemplated by the swagger file, or the comparison between the
message length of the request response and the reference response, so that, if there is
much difference, the request can be detected as suspicious. The responses that are not
suspicious are stored in the table of the correct responses. The suspicious requests are
stored in the suspicious requests table of the internal database, notified to the user and
sent to the security scorer.

3.3.3. GROOT

GROOT (GdpR-based cOmbinatOrial Testing) is a general combinatorial testing
approach, for validating systems managing GDPR’s concepts (e.g., Data Subject,
Personal Data or Controller)[47]. In the following, we illustrate the GROOT methodology
by using the following definitions:

The GROOT methodology takes as an input a GDPR-based implementation, representing

the GDPR in terms of a specification language. GROOT is composed of three main steps

(see Figure 28): GDPR-based Model Derivation; Test Cases Generation; and Test Cases

Translation.

Page 43 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 28 Contextualization of GROOT within BIECO

GDPR-based Model Derivation (Step1). In line with Definition 1, the GDPR-based SUT

Model of the GDPR-based implementation is then derived. For this, the GDPR-based

implementation is parsed in order to identify the set of parameters P, and the associated

set of sets V. More precisely, for each parameter i, the subset Vi, containing the values

used in the GDPR-based implementation, is derived.

Test Cases Generation (Step2). In this step, combinatorial testing is performed. Based

on the derived parameters’ values sets, different combinatorial strategies can be

adopted such as all-combinations, pairwise combinations, or t-wise combinations. For

instance, in the all-combinations test strategy according to Definition 2, for each

parameter i and its set of value Vi, the power set of Vi(P(Vi)) is derived, i.e., all possible

subsets of Vi. Then, the obtained powersets P(Vi) are combined so as to derive the test

cases, i.e., the TCGDPR(ATT) tuples. Because combinatorial testing is costly, selecting the

best combinatorial strategy that could be adopted may depend on different testing

objectives such as coverage, effectiveness, reduction, or prioritization.

Test Cases Translation (Step3). According to the domain-specific language, each of the

obtained TCGDPR(ATT) tuples in Step 2 is translated into a specific executable test

case. In the context of access control, a test case is represented through an AC request

that the access control mechanism can evaluate.

3.3.3.1. Contextualization of GROOT in BIECO

The contextualization of GROOT methodology is depicted in Figure 29, which involves
different components and artifacts developed within BIECO.

Figure 29 Contextualization of GROOT within BIECO

Page 44 of 95

Deliverable 7.3: Security certification methodology development

The basic idea is to start from the BIECO Claims collected in task T7.1, i.e., the privacy

claims (component 1 in the figure). These claims are then translated into authorization

policies (through the Claim Transformer, component 2); in this context we are referring

to access control policies expressed in ABAC (component 3, Claim-based ABAC Policy,

Attribute-Based Access Control). Component 2 refers to the application of the GROOT

methodology described above. Both the policy and the generated access control quests

(in the form of <policy, {requests}>) are then used to by the Oracle component so as to

associate to each request the expected result. To this end, component 5 integrate a

specific Test Cases Executor able to evaluate each request over the policy by obtaining

the expected authorization response. The result of Oracle represented in the form of

<policy, {(request, response)}> is then used by Results Analysis (component 6) within

task T7.3, and in particular by the SecurityScorer.

3.3.3.2. Supporting Framework

GROOT and its partial contextualization are being supported by a reference framework,

called GROOT Testing Framework, depicted in Figure 30, and it composed of five

components: GROOT Client; three Services, namely GROOT Proxy Service, GROOT

Requests Generator, and GROOT Requests Evaluator, and GROOT Testing DB.

Figure 30 GROOT Reference Architecture

GROOT Client: It allows interacting with the overall framework through a specific GUI,

that enables performing four distinct operations. As depicted in the implemented GUI

reported in Figure 31, the available operations are:

Figure 31 GROOT Client GUI

1. Add GDPR-Based Policy (Op1) aims at uploading the GDPR-based policy into

the system and the contextual access control requests generation.

2. Get GDPR-Based Policies (Op2) allows to retrieve all the access control policies

available into the system.

Page 45 of 95

 Deliverable 7.2: Security certification methodology definition

3. Get AC Requests (Op3) allows retrieving all the access control request (i.e., the

test cases) associated with a given GDPR-based policy.

4. Execute All Requests (Op4) aims at executing and evaluating a set of access

control requests and the visualization of the obtained results, i.e., the

authorization decision associated to each request.

GROOT Requests Generator: It is a generator of access control requests, starting from

the information contained into the access control policy. In the current implementation,

we rely on the XACML standard for expressing both access control policies and access

control requests. This component enables performing the first three operations

described above (Op1, Op2 and Op3)

A possible GDPR-based access control policy (called Alice’s Policy, see Figure 32) and

associated requests (namely, Req1 and Req2, see Figure 33), adopted from [47],are

reported below.

Figure 32 GDPR-based Access Control Policy related to Lawful Processing

Figure 33 Example of GDPR-based Access Control Requests

GROOT Requests Evaluator: This is the component that implement the fourth operation

available in GROOT Testing Framework (Op4), and it allows associating an

authorization response to each of the selected access control request. This

component is used as an Oracle for testing access control systems managing privacy

concerns such as the GDPR.

GROOT Proxy Service: This component interacts with the GROOT Client and based on

the requested operation, forwards the request to the right service.

GROOT Testing DB: This component allows the persistency of the generated data, both

access control policies and requests during the GROOT lifecycle.

Page 46 of 95

Deliverable 7.3: Security certification methodology development

3.4. Risk Estimation

The test results are analysed to get a numeric value of the risk, using the results of the

tools described in Section 3.3 and an additional tool for risk evaluation. In order to gather,

analyse and evaluate the results of the security testing tools used in BIECO, a new tool

was created, SecurityScorer9. This tool parses the results of a given security testing tool,

which can be in various formats, like .json, .xml, .csv, etc., and an input file created by

the user, describing the threats and their impact to calculate a numeric value of a risk for

a given software. The overview is presented in Figure 34.

Figure 34 A general idea of security testing and risk evaluation

Next subsections describe the outputs of the three testing tools considered within

BIECO that are used by the security scorer to calculate the numerical risk value.

3.4.1. GraphWalker

To give an example, this section shows and details a specific output from GraphWalker

tool (see Section 3.3.1). After executing all the steps to generate the tests using

GraphWalker and execute them, the output is ‘TEST-TestSuite.xml’ (Figure 35 and Figure

36), which contains the results of each test (pass/fail), describing the failing reasons

and the assertions messages with the relevant information.

9 https://github.com/7bulls/security-scorer-public.git

https://github.com/7bulls/security-scorer-public.git

Page 47 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 35 XML output example with all tests passed

Figure 36 XML output example with failed tests

As some of the Graphwalker tests could be non-binary, that means that specific values
can be returned instead of PASS or FAIL. The second output of the test execution is the
file TestSuite-output.json (Figure 37), which collects the set of metrics derived of each
test, described in a JSON format. The content found in this file, shown in Figure 37,
describes the test name from which the metrics come (‘test_name’), the name and value
of the metric (‘name’, ‘value’) and the connection name (‘matchWith’) to which these
values apply. To calculate the likelihood associated with these tests, the returned value
should be mapped to a value between 0 and 1 using a scale, which is also indicated on
the file for each metric. This file is later used by the SecurityScorer tool to calculate the
likelihood associated.

Page 48 of 95

Deliverable 7.3: Security certification methodology development

Figure 37 Test metrics and values example ‘TestSuite-output.json’

3.4.2. GROOT

In the following, we report an example of an entry of the report produced by GROOT,

and more precisely by the Oracle component depicted in Figure 29.

A report entry is composed of:

1) A GDPR-based Access Control Policy. Below in Figure 38, we report an extract

of the policy reported in Figure 32 expressed in XACML language.

Page 49 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 38 GROOT: A possible policy related to the Lawfulness of Processing Personal Data (Claim C26).
It is a possible implementation of the GDPR-based Policy reported in Figure 32

2) An access control request. A possible request generated by GROOT is shown in

Figure 39.

Page 50 of 95

Deliverable 7.3: Security certification methodology development

Figure 39 GROOT: A possible request derived from the policy in Figure 38

3) An authorization response access. An example is reported in Figure 40, where

the authorization decision is Deny.

Figure 40 GROOT: A possible decision

3.4.3. Fuzzing Tool

Another example is the one provided by the Fuzzing Tool. This tool provides a report in

a JSON format which indicates if the performed tests pass or fail, together with useful

information for the user or other tools. The structure the Fuzzing output and the

description of each of the parameter is as follow:

{ "passed": [

{

"endpoint": String. Endpoint tested,

"operation": String. HTTP operation type,

Page 51 of 95

 Deliverable 7.2: Security certification methodology definition

"response_body": String. Response given by the tested API,

"response_code": Sring. Response code given by the tested API,

"query_headers": String. Headers used to perform the query,

"query_body": String. Body content used to perform the query,

"expected_code": String. Expected response code following the specification,

"default_response": String. Default response code (given in the specification),

"expected_len": String. Expected response length,

"response_len": String. Actual response length,

"input_test": String. Input given to the test,

"vulnerability_type": String. Tested vulnerability type,

},

...

],

“failed”: [

…

]

}

For a more complete vision, in Figure 41 is presented a short example of output.

Figure 41 A shortened version of the Fuzzing output

Page 52 of 95

Deliverable 7.3: Security certification methodology development

3.5. Risk Evaluation

This section describes the process of the risk evaluation in the BIECO methodology. As

was explained in the previous sections and visually presented in Figure 1, this phase

takes place after security testing phase, using as input the data collected from the

testing tools and the system description (YAML file) created in the Risk identification

phase. All these stages provide an essential set of data to finally evaluate the risk.

The SecurityScorer tool was created to realize the functions of the risk evaluation phase.

These include five main areas:

1. Parsing the system description file (system decomposition and tolerance

profiles);

2. Parsing the outputs of the security testing phase tools ;

3. Using both sources of information to evaluate the risk value for each component;

4. Combine the risks of the components to calculate the overall risk value of the

whole system;

5. Use the tolerance profiles to certify the system properties with an appropriate

label (A, B, C, D, or not certified).

The in-depth description of the SecurityScorer, including the installation and usage

guide, are in the SecurityScorer Anex II at the end of the deliverable. This section intends

to present a general view of the functionality implemented for the risk evaluation phase

to provide an understanding of the whole methodology.

1. The system description: The scheme was presented in Section Error! Reference

source not found. of this deliverable and introduced in Deliverable 7.2.

SecurityScorer parses the file to build an internal scheme of the system.

2. The outputs of the other tools: SecurityScorer provides a module for each of the

risk identification and estimation phase tools (GraphWalker, Groot, Fuzzing Tool)

to parse their outputs. These outputs are then internally linked to specific claims

or vulnerabilities in the system scheme.

3. Evaluating the risk of the component: Evaluation of the risk for each component

follows the procedure described in Deliverable 7.2, Section 6.4 Risk Estimation,

paragraphs: From tests to claims, and From claims to components.

3.5.1. Likelihood Calculation

The first phase is to calculate the likelihoods. For the standard tests, it is straightforward:

each test is either passed or failed. Therefore, the likelihood is either equal to 0 or 1.

For the non-binary tests, the procedure is more complicated. Section 3.4.1 presents the

additional file required to evaluate the risk. It contains a metric and scale for each of the

tests with a non-binary result. The scale scheme is [v1, v2, … ,vn] (ascending or descending

order), meaning that the value range of test results should be divided into n+1 sections:

(-∞, v1), [v1, v2), … , [vn,+∞)

(-inf and +inf should be swapped for the descending scale). If the test result is in the

first section, the resulting probability is
1

𝑛+1
, if it is in the second section, the probability

is
2

𝑛+1
, etc. For the result in the last (n+1)-th section, the probability is:

𝑛+1

𝑛+1
= 1.

Page 53 of 95

 Deliverable 7.2: Security certification methodology definition

For example, let us analyze the metric from Figure 37 example: MAX_CONNECTIONS

metric with scale [1000, 100, 10] and test result value: 2. The sections of the

MAX_CONNECTIONS value space are as follows:

(-inf, 1000), [1000, 100), [100, 10), [10, -inf)

Obviously, the minimal value of the number of connections is 0, but for mathematical

consistency we use the established scheme.

The probabilities assigned to each section are respectively:

¼, ½, ¾, 1

Since the test result value 2 belongs to the last section [10, -inf), the likelihood used in

the rest of the evaluation for this test is 1.

3.5.2. Risk Calculation

The risk associated with each “pure” claim is calculated as an arithmetic mean of

likelihoods from m tests scaled by the impact:

𝑅𝑖𝑠𝑘𝐶𝑙𝑎𝑖𝑚  = 𝐼𝑚𝑝𝑎𝑐𝑡𝐶𝑙𝑎𝑖𝑚  ∑
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑇𝑒𝑠𝑡

𝑚
 
  .

The risk associated with each claim associated with n vulnerabilities is calculated as a

maximum of likelihoods scaled by the impacts:

𝑅𝑖𝑠𝑘𝐶𝑙𝑎𝑖𝑚  = max
1≤𝑖≤𝑛

{𝐼𝑚𝑝𝑎𝑐𝑡𝑖 ⋅  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑖},

Where the likelihood of the vulnerability i, Likelihoodi , is calculated as an arithmetic m of

likelihoods from d tests associated with the vulnerability:

𝑅𝑖𝑠𝑘𝐶𝑙𝑎𝑖𝑚  =
∑ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑇𝑒𝑠𝑡𝑑 𝑑

 

𝑑
.

Then, the risk of the whole component is just a maximum of the risks of the r associated

claims:

𝑅𝑖𝑠𝑘𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  = max
1≤𝑖≤𝑟

{ 𝑅𝑖𝑠𝑘𝐶𝑙𝑎𝑖𝑚𝑖
}.

To evaluate the most high-level risk, i.e., the system property risk, the maximum of the c

system components weighted by their sensitivities is calculated:

𝑅𝑖𝑠𝑘𝑆𝑦𝑠𝑡𝑒𝑚 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦  = max
1≤𝑖≤𝑐

{𝑅𝑖𝑠𝑘𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖}.

All system properties are calculated this way, generating a set of values in range 0-10,

denoting the overall risk evaluated for each system property.

After the whole process of identifying and estimating the risk, parsing the output of the

risk estimation tools, evaluating the risk values for claims, components, and the entire

system, numerical values are obtained. These are in the range [0,10] and denote the

calculated risk for each system property, i.e., Confidentiality, Integrity, Availability,

Authorization, Authentication, Non-Repudiation.

Page 54 of 95

Deliverable 7.3: Security certification methodology development

3.5.3. Risk Evaluation Against the Tolerance Profiles

By using tolerance profiles, SecurityScorer assigns a label for each category. Possible

levels are (from highest): A, B, C, D, and not certified. For example, if the tolerance profile

for confidentiality was [2, 4, 6, 7] and the obtained value is 3, then confidentiality is

certified as B. The reason is that the tolerance profile implies that all values in the range

[2, 4) should be classified as B (a more thorough explanation was presented in

Section3.1.2). As a result, the six levels are returned as a result of the risk evaluation

phase.

3.6. Labelling

The obtained security levels are represented as a spider chart diagram. Figure 42 shows

an example of security label. The higher the green area inside the chart, the more secure

the system is, which is an easy concept to understand for a non-expert user.

The label also includes a public QR code to deal with the security changes on the label

that may happen due to a recertification. This way, the end user can scan the QR code

and access to the updated label. It is worth noting that the label should be

complementary to the notion of a certificate, which may include additional details of the

evaluation and claims. However, the definition of the certificate is outside the scope of

BIECO.

Figure 42 Labelled results of the risk evaluation phase

3.7. Treatment

Based on the results obtained by the BIECO tools, the information contained in the MUD

file could be completed or updated. The collected values from the Graphwalker tests

output, explained in section 3.4.1, can be used to improve the initial version of the

extended MUD, which was originally created after an initial assessment phase in the

Resilblockly tool and stored in the Data Collection tool (DCT). Table 2 shows the claims

and test that may imply an update of the extended MUD file. The first column is the

related claim and the second one the associated test. The third column lists the test

Page 55 of 95

 Deliverable 7.2: Security certification methodology definition

values that are used as input for the MUD update, and the last column indicates which

field of the extended MUD is updated and under which conditions.

Table 2 Mapping between testing outputs and extended MUD fields

Claim Test Test values Field

C9

1. Confidentiality:
strength of
Confidentiality
parameters in
communications

• ALG

• KEY_LENGTH

Keys/alg,

keys/length

Where

keys/purpose=conf

and

Where

keys/key_ops=derive

key

C19

1. Privacy: strength
of confidentiality
parameters for
private data

1. ALG
2. KEY_LENGTH

Keys/alg,

keys/length

Where

keys/purpose=conf

and

Where

keys/key_ops=encry

pt

C10

1. Authentication:
strength of authn
parameters in
communications

• ALG

• KEY_LENGTH

Keys/alg,

keys/length

Where

keys/purpose=authn

and

Where

keys/key_ops=encry

pt

C20

2. Authentication:
strength of authn
parameters in
authn process

• ALG
• KEY_LENGTH

Keys/alg,

keys/length

Where

keys/purpose=authn

and

Where

keys/key_ops=derive

key

C14,

C17

1. Ciphering:
strength of
ciphering
parameters in
communications

• ALG
• KEY_LENGTH

Keys/alg,

keys/length

Page 56 of 95

Deliverable 7.3: Security certification methodology development

2. Ciphering: secure
encryption of
sensitive
parameters

Where

keys/purpose=ciph

and

Where

keys/key_ops=encry

pt

C21

3. Integrity: strength
of ciphering
parameters in
communications

1. ALG
2. LENGTH

Keys/alg,

keys/length

Where

keys/purpose=sign

or verify and

Where

keys/key_ops=Integri

ty

C22
1. Resistance DoS

attacks

2. MAX_CONNECTION
S num-connections

C32,

C43

(vulne

rability

claim)

1. Tests to verify if
the vulnerabilities
identified in
Resilblockly or
WP3 tools are
present or not

2. PASS/FAIL
3. Additional info may

be required (e.g.,
from the test name)
to identify the
vulnerability being
tested

Vulnerabilities,

weaknesses

Where ID coincides

remove if test passes

C40,

C18

1. Check
compliance of
REST interfaces
with swagger file
(fuzzing tool)

2. PASS/FAIL
3. Additional info may

be required (e.g.,
from the test name)
to identify the
resource url

4. Other info: version,
method, resource

Application-protocol

(HTTP)/resource

Where URL coincides

Remove method if

test fails (Whole

resource if method

will be empty)

Add new block if test

passes and it is not

in the MUD file.

- - -

last-update

Current date of MUD
update

- - -

mud-signature

Update MUD signature with
Last version of MUD file

Page 57 of 95

 Deliverable 7.2: Security certification methodology definition

In order to reach this update, BIECO has developed the tool “MUD Updater” that uses the

metrics derived from the tests execution, which are collected in the ‘TestSuite-

output.json’ file (generated as explained in section 3.4.1). The description of the

connections contained in the MUD file is updated or completed based on this output,

being able to locate the connection corresponding to each metric thanks to the field

‘matchWith’.

To illustrate the operation of this tool the following example is shown:

1. On the one hand we have the extended MUD file that describes the SUT

connections:

Figure 43 MUD file fragments of interest for this example (1)

Page 58 of 95

Deliverable 7.3: Security certification methodology development

Figure 44 MUD file fragments of interest for this example (2)

In this case, connection names are ‘loc0-todev’ and ‘ent0-ftdev’.

2. On the other hand, the output file containing the metrics values information:

Figure 45 Metrics file, ‘TestSuite-output.json’

Page 59 of 95

 Deliverable 7.2: Security certification methodology definition

3. Based on the information of these metrics (‘MAX_CONNECTIONS’,

‘KEY_LENGTH’ and ‘ALG’) the MUD file fields are updated with the new

information derived from the tests.

Figure 46 Connection ‘loc0-todev’ information updated

Figure 47 Connection ‘ent0-frdev’ completed with extra information

Page 60 of 95

Deliverable 7.3: Security certification methodology development

Hence, for the first case Figure 46 the number of simultaneous connections allowed is

updated from 3 to 1. In the second case, Figure 47, the field ‘keys’ is added, completing

the previous information in the MUD. This tool will be also integrated inside the BIECO

platform within WP8 and connected with the DCT for the retrieval of the extended MUD

and the storage of the updated version.

3.8. Communication and Auditing

Communication and auditing deals with the security changes that may happen during

the lifecycle of the system. The methodology can be supported in this phase by the

Auditing Framework developed in WP5, which is intended to detect security issues based

on a set of blueprints coming from the design phase and manually specified by the user,

see Deliverable D5.210. One of the blueprints used in the auditing framework is the

updated MUD generated from the security evaluation methodology (treatment phase,

section 3.7), which contains specific configuration that should be controlled to keep the

system in a secure state according to the test results, as shown in Figure 48.

Figure 48 Usage of the extended MUD file for auditing

The used blueprints are converted into rules to be monitored, as shown in Figure 49.

10 Deliverable 5.2:”First version of the simulation environment and monitoring”

Page 61 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 49 Auditing Violation and Alarm Notification (Adopted from D5.1)

For each event notified to the monitoring platform, the Complex Event Processor (CEP)

check if one or more rules will be matched or a new pattern of interest is generated. If a

rule is matched, a notification containing the kind of violation and all the available

information for debugging, will be provided to the BIECO Platform. In particular, as

described in D5.2, Section 3.2.1 (Notification Alarm by the Runtime Monitoring) the

Runtime Monitor component in charge of the notification management is the

Notification Manager, that manages the notification of failure sent by the CEP and

forwards the notification of failure to the specific channel gathering the correct

information (channels details) from the ChannelRegistry component.

Although countermeasures could be provided as soon as a violation is detected and

notified to the monitored system (outside the scope of BIECO), some security issues

may require a revaluation of the system, if they affect the compliance of a specific claim

(see Figure 48).

Page 62 of 95

Deliverable 7.3: Security certification methodology development

Figure 51 SUT in UC4

4. Proof of Concept – Application Over UC4

Figure 50 shows the toolchain used to instantiate part of the methodology within the

UC4 developed by UNINOVA. We focused on the security testing and evaluation part, as

the majority of the tools used for risk identification are still under development. A more

complete validation will be performed in WP8.

Figure 50 Toolchain used for the UC4 validation

The SUT considered for the evaluation is the local planner component (Figure 51). This

component is in charge of producing the velocity commands for the robots according to

a specific global plan.

Page 63 of 95

 Deliverable 7.2: Security certification methodology definition

4.1 Context establishment: claims selection

We selected a set of claims from D7.1 to evaluate the security of the SUT, and we

associated a set of tests to verify the compliance of the claim. Each claim has an impact

vector taking into account the 4 dimensions of the methodology (safety, financial,

operational and privacy). These values were established manually.

• C0: Update software files should be encrypted and be transmitted using encryption

– Impact[S0,F0,O1,P0]=1

o Test1 – Confidentiality1: Update LocalPlanner component in order to check

if updates are encrypted or not.

o Test2 – Confidentiality2 (depends on Test6): Update LocalPlanner

component in order to check if encryption used in updates is strong enough.

• C5: The exchanged messages in the communication should be integrity protected

– Impact[S0,F10,O0,P0]=2

o Test3 – Integrity1: Create an item and tasks for the Navigator, generating the

plan and velocity commands needed to reach a new position for the robot.

Send modified command and analyse if system is capable of detecting the

modification (MITM, Man In The Middle).

• C14: Ciphered communications should use strong algorithms –

Impact[S0,F0,O0,P0]=0

o Test4 – Confidentiality3 (depends on test1): Create an item and tasks for the

Navigator, generating the plan and velocity commands needed to reach a new

position for the robot. Send correct command and analyse if ciphering used

is strong enough.

• C22: Resistance to DoS attacks - Impact[S0,F10,O100,P0]=7

o Test5 – Availability1: DDoS attack based on send/request new velocity

commands to the robot. Calculate how many simultaneous requests is

capable to process before crashing.

• C23: Data input validation - Impact[S10,F0,O100,P0]=7

o Test6 – Availability2: Create an item and tasks for the Navigator, generating

the plan and velocity commands needed to reach a new position for the robot.

Send non valid command and analyse if system continues working and

manages properly the error.

o Test1b – Availability1b: Send requests to the endpoint with special

parameters. Check if the endpoint crash.

o Test2b – Availability2b: Send requests to the endpoint with special

parameters. Check if the endpoint crash.

o …

o TestNb – AvailabilityNb: Send requests to the endpoint with special

parameters. Check if the endpoint crash.

• C24: Data Communications should be ciphered - Impact[S0,F0,O0,P0]=0

o Test7 – Confidentiality4: Create an item and tasks for the Navigator,

generating the plan and velocity commands needed to reach a new position

for the robot. Send correct command and analyze if communications are

ciphered between the different components.

Page 64 of 95

Deliverable 7.3: Security certification methodology development

4.2 Risk Identification

Figure 52 shows the system description mapping the tests with the claims, the claims

with the system components (as the SUT is a single component, all the claims are

mapped to it), and the system components to the security properties evaluated, in this

case Integrity, Availability and Confidentiality.

Figure 52 System decomposition for UC4

4.3 Security testing

The tests were implemented using the Graphwalker and fuzzing tool. Next subsections

detail the implementation and execution of the tests.

4.3.1. Fuzzing Tool

Once the platform to be analysed has been identified, the tool is put into process. To do

this, the platform must be active and ready to receive requests. As previous mentioned,

the tool requires for its operation the swagger file that describes the platform to be

analysed (Figure 53).

Page 65 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 53 Uploading of the swagger file in the Fuzzing tool

Once the swagger file is uploaded to the platform, the Fuzzing tool can proceed to its

execution (Figure 54).

Figure 54 Execution of the Fuzzing tool

At this point, the tool sends a multitude of requests to the API under test combining the

parameters of the same in order to obtain those that has not been contemplated

previously or cause an error. This process may take time depending on the complexity

of the analysed API. Once the process ends, the tool generates two reports: one that is

delivered to the BIECO platform to be used by other tools such as the security scorer,

and another for the user (Figure 55) with the suspicious inputs that can affect the

platform and their corresponding outputs.

Page 66 of 95

Deliverable 7.3: Security certification methodology development

Figure 55 Output database information

The different information provided by the report is:

• Method: HTTP operation used to send the requests to the platform.

• Endpoint: the different paths to which the platform requests are sent.

• Expected: Represents the response codes of the requests expected to be

received as indicated in the swagger file for a specific operation and path.

• Received: The code obtained in the request sent to a specific path and

operation with each combination of parameters.

• Headers: Parameters sent in the request header.

• Queried Body: Parameters sent in the request body.

• Received Body: Message obtained in the response to the request made.

4.3.1. Graphwalker

Figure 56 shows the model of the local planner component of the Use Case 4 necessary

to generate 7 tests for confidentiality, integrity and availability.

Page 67 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 56 Localplanner modeled with Graphwalker Studio

While in general the tests will be binary (PASS or Fail), some tests will measure certain

aspects, for example the maximum number of simultaneous connections before the

system crashes (Test 5).

The tests are labelled using the tag requirements, which is used as a coverage condition

for the automated test generation. Figure 57 shows the tag for the integrity test

(TestIntegrityProtected).

Figure 57 Save SUT model

Page 68 of 95

Deliverable 7.3: Security certification methodology development

The user can export the model as JSON file and use it as input for the test suite generator

tool (Figure 58).

Figure 58 Test Suite Generator Tool from BIECO platform

This tool automatically generates two files. The first one (Figure 59) is the JUnit test

suite (‘TestSuite.java’) with the 7 generated tests and the second one (‘Adapter.java’,

Figure 60) is an interface called adapter to link the high-level test operations with the real

system. The adapter must be implemented by the user to run the test suite over the real

system and obtain the test report.

Figure 59 Generated ‘Adapter.java’ and ‘TestSuite.java’ classes (1)

Page 69 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 60 Generated ‘Adapter.java’ and ‘TestSuite.java’ classes (2)

Both classes must be integrated into a Maven project and the ‘Adapter.java’ must be

implemented with the required functionality to achieve the execution of the tests. Also

the rest of the SUT classes necessary for the execution must be imported into the

project.

Once implemented, the execution is done by executing the maven command: mvn test.

Page 70 of 95

Deliverable 7.3: Security certification methodology development

4.4. Risk estimation and evaluation

Next figure shows the test report generated by Graphwalker. In this case, 7 tests fail, 1

test passes (Figure 61) and the non-binary test obtains a metric of 1 for the number of

simultaneous connections (Figure 62).

Figure 61 Test report output

Figure 62 Non-binary test metrics obtained

Figure 63 shows the internal report generated by the Fuzzing tool for Local Planner API

in XML format. In this case, the tool executed 150 tests where none of them had an error

and 12 failed. The tests made by the Fuzzing Tool always provides a binary output, and

contains the tested claim.

Page 71 of 95

 Deliverable 7.2: Security certification methodology definition

Figure 63 Fuzzing tool report for LocalPlanner

4.5 Evaluation and labelling

The test report generated from the Graphwalker and fuzzing tool are then used as input

in the ecurity scorer tool, which based on the methodology and on the tolerance profile

selected, calculates for each one of the 6 security properties, the security level.

The output of the Security Scorer tool is visualised in the BIECO GUI by generating the

security label associated to the security levels of the 6 security properties. Figure 64

shows the label obtained for UC4 in the BIECO GUI.

Page 72 of 95

Deliverable 7.3: Security certification methodology development

Figure 64 Security label of UC4

4.7. Treatment: Updating the extended MUD file

Based on the tests results from Graphwalker (described Section 3.4.1) and the updating

process of the MUD Updater tool (Section 3.7) the information contained in the MUD file

of our SUT is completed and updated with de derived metrics and values from the tests.

Taking into account the metrics file for this use case after the execution of the test,

shown in Figure 62, the number of maximum simultaneous connections allowed is

updated for the new value “1”. The following figure illustrates:

Figure 65 MUD file of UC4 component localplanner is updated

Page 73 of 95

 Deliverable 7.2: Security certification methodology definition

5. Certificate Composition

Although until recently the certification focused on a specific type of product or process,

the growing complexity of scenarios such as vehicles, IoT, 5G, etc. makes it necessary

to search for more intelligent solutions. In a scenario such as the supply chain, a system

can be made up of components that have been manufactured by different entities

specialized in a specific type of product. In this scenario, a global system certification

can only occur by assembling the certified components, commonly called composition.

In this case, each certified component provides its own evaluation results, creating a

base that facilitates the reuse of this data for global certification. The objective is to

reuse as much as possible the evidence that comes from another certification process,

speeding up and reducing the complexity of the global certification of the system. This

information would allow an evaluator to assess the security of the product in the context

of a security evaluation methodology that defines what to assess, as well as the steps

and techniques that should be applied during the process.

In this section, we analyze different scenarios that may arise in the context of the supply

chain, and how the proposed methodology could be adapted to deal with them. For this,

we take into account the guidelines for product certification composition of the CSA11 and

ECSO (European Cyber Security Organisation)12.

5.1. Product Composition

A product can be a single component, or a system composed by different components. Even

if the methodology seems designed to evaluate a multicomponent system, if the product is

a single component, the certification process is the usual one and the evaluation

methodology can be adapted by considering the SUT as a single component system during

the risk identification phase (system description).

However, when the SUT is a complex system, the overall security depends on the security of

its components and the security of their interactions. In this case, it is not enough just to

reuse the information that the components could provide from previous evaluations, but we

also need an analysis of the interactions between the component and the system.

Additionally, integration testing and retesting of critical parts of the component may be

necessary. The instantiation of the proposed methodology contemplates support tools and

methods for the identification and measurement of dependencies between components like

the one developed in WP3 (T3.4) to measure the degree of dependency, and the

identification of cascade effects and propagation between possible attacks using the attack

paths functionality of WP6 Resilblockly tool. The information obtained from this analysis can

be used to identify additional tests necessary to perform a successful composition.

Although composition can help to reduce costs and time in the certification process by

reusing evidence, it is not always an easy task. It is therefore necessary to identify what can

be reused and what cannot. According to ECSO indications, one of the parameters that most

influences this decision is the level of assurance (EAL), since a component should be

evaluated at least at the same EAL as the system in order to reuse the evidence. If this is not

possible, the previously evaluated component should be reevaluated as part of the SUT, with

white box testing techniques, if the code is available, or black box techniques if the third

party does not allow access to the code.

11 https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32019R0881
12 https://ecs-org.eu/documents/uploads/product-composition-document-november-2020.pdf

Page 74 of 95

Deliverable 7.3: Security certification methodology development

Furthermore, the composition process will be influenced by the relationship between the

component and the system. If the component is an independent product, its functionality

can be easily separated from the system and therefore the available evidence could be

almost completely reused, requiring few integration tests. However, when the component is

highly integrated into the system (e.g., it implements security functions of a larger product)

the separation of component-system functions is more complex. In this scenario, the

evidence that could be reused is reduced and it may be necessary to retest some aspects to

guarantee that the security claims are still maintained. In any case, the claims that the SUT

must fulfill should drive the testing process.

5.2. Scheme composition

If any of the system components has been previously evaluated following the BIECO

methodology, the evidence can be easily reused, since the risk estimation phase combines

the individual risks of each system component.

In this case, the risk associated with that component can be obtained from the previous

evaluation and combined in the risk estimation phase together with the risks of the other

components of the system to obtain the final security level, as shown in Figure 66. It is

important to mention that, although this value can be reused, the combination of individual

risks is modulated by the sensitivity factor, so a detailed analysis of the role of said

component within the system and its dependencies with other components is necessary to

the final calculation of the security level. In addition, as mentioned above, the integration of

the component in the system can lead to additional claims and integration tests that allow

verifying the joint security of the system. In this case, the results of the new tests should be

combined with the previously certified security of the component.

Figure 66 Composition within BIECO methodology

If any of the components of the system has been evaluated under another evaluation

scheme different from the one followed by BIECO, the reuse of evidence requires a more

fine-grained analysis. To allow the reuse, it is necessary to know which claims have been

evaluated in the component, mapping the claims already evaluated with the claims

required for the SUT to be certified.

Page 75 of 95

 Deliverable 7.2: Security certification methodology definition

Those claims that have been previously evaluated can be combined in the risk

estimation phase (component risk), obtaining the probability of their previous result (0:

the component met the claim, 1: the component did not meet the claim) and the impact

through manual analysis in the 4 dimensions considered in the methodology. The claims

that have not been evaluated on the component and affect the system must be evaluated

using black box techniques to ensure compliance with said claim. If this is not possible,

the composition could not be carried out. Finally, as mentioned before, the integration of

the component in the system can lead to claims and additional integration tests that

allow verifying the joint security of the system.

5.3 Supply chain cybersecurity interface agreement

Revealing data from a component's prior security assessment to use in certification

composition is not a trivial process. It is necessary that both parties (the owner of the already

certified component and the security evaluator of the SUT to be certified) agree on the type

and amount of information needed to facilitate the composition and confidentiality of said

information.

Such guidance for establishing agreements can be found in the automotive industry’s

cybersecurity standard ISO 21434. In clause 7 of the standard, the subject of distributing

cybersecurity activities (including e.g., assessment) across supply chain stakeholders is

discussed. Specifically, as seen in Figure 67, the standard explains how an Original

Equipment Manufacturer (OEM) can distribute requirements, responsibilities and overall

activities with its direct and indirect suppliers (aka Tier-N suppliers). In the automotive

domain, and other domains which involve similar types of stakeholders e.g., railway,

OEMs are typically responsible with integrating systems and components provided by

direct suppliers (aka ‘Tier-1’) and indirect suppliers (e.g., Tier-2 suppliers supply Tier-1,

and so on). Distribution of cybersecurity activities is achieved bilateral cybersecurity

interface agreements, which should address, among other things:

- Cybersecurity-related requirements of the technical elements being supplied

- Relationship and responsibilities across the customer-supplier

- Applicable lifecycle phases (which may extend into the post-deployment phase)

Figure 67 - OEM-Tier-N Cybersecurity Interface Agreement Abstract Example (reproduced from ISO
21434:2021, p.20)

Through these bilateral agreements, the timing and responsibility of conducting relevant

cybersecurity activities can be agreed-upon beforehand. Provisions in such agreements

can include, for example, that the cybersecurity validation of the integrated system

should be conducted by the OEM, whereas the supplied component’s cybersecurity

assessment should be assigned to a third party. Distributing activities in such ways

allows proprietary information to remain protected, while still providing cybersecurity

assurance to an acceptable degree.

Page 76 of 95

Deliverable 7.3: Security certification methodology development

Moreover, as mentioned previously, the distribution of activities can also extend into the

post-deployment phase of the system. For instance, the parties could agree that the

supplier should be responsible for monitoring cybersecurity vulnerability information

channels for new vulnerabilities e.g., by periodically searching the NIST NVD CVE dataset

[34]. When a relevant vulnerability for the supplied component is brought to the attention

of the supplier, they could then be responsible for assessing its risk themselves, and

deciding on its treatment, which includes (per ISO 21434:2021:15.9.2):

- Avoiding the risk, e.g., by halting system operation;

- Reducing the risk, e.g., by restricting or degrading the system’s performance;

- Sharing the risk, e.g., based on contracts and/or insurance;

- Retaining the risk.

Naturally, in cases where the decision impacts the customer (e.g., OEM), it would be

expected that the agreement stipulates that the customer should be made aware of the

decision. In cases of sharing or retaining the risk, the standard explicitly states that

corresponding cybersecurity statement about a risk should be established (or updated)

to reflect the rationale leading to the respective risk treatment decision.

The BIECO methods and corresponding tools support such distribution of activities

across the supply chain, as indicated in the previous subsections of Section 5.

https://www.iso.org/obp/ui/fr/#iso:std:iso-sae:21434:ed-1:v1:en:term:3.1.29

Page 77 of 95

 Deliverable 7.2: Security certification methodology definition

6. Conclusions

This deliverable has culminated the work developed during WP7, which started by the

definition of a basic set of security and privacy claims in T7.1, the design of a flexible

security evaluation methodology in T7.2 and a specific proposal instantiation of the

methodology in T7.3.

Each of the methodology phases, including establishing the context, risk identification,

risk estimation, security testing, risk evaluation, treatment, and labelling were described,

identifying which tools from the BIECO platform could be used and how to support the

user in each of them. Each phase has its own methods and tools, which were also

described in this document.

The goal was to bring the methodology defined theoretically in deliverable D7.2 to real

use, integrating tools developed within BIECO. Therefore, each phase was instantiated

and in Chapter 4 a proof-of-concept application was provided. A more complete

validation of the methodology will be provided within WP8, based on the claims selected

in the Annex I. Finally, Chapter 5 included a discussion on certificate composition, a

scenario very common y the supply chain scenario, and how the methodology could be

adapted to fit in.

Page 78 of 95

Deliverable 7.3: Security certification methodology development

7. Artifacts

Table 3 shows the artifacts produced in this deliverable.

Table 3 Artifactts produced in T7.3

Name Description

SecurityScorer
A tool responsible for parsing the system description and risk
estimation tools’ outputs and evaluating the numerical risk
value and system properties’ labels.

Graphwalker
Improvement of the Graphwalker open-source tool to integrate
it in the methodology, allowing automated test suite generation
and non-binary values.

GROOT

GROOT stands for GdpR-based cOmbinatOrial Testing. It is a
general combinatorial testing approach, for validating systems
(including access control) managing GDPR’s concepts (e.g.,
Data Subject, Personal Data or Controller).

Page 79 of 95

 Deliverable 7.2: Security certification methodology definition

8. Annex I: Use Case Selected Claims

8.1 UC1: ICT GW

ID Description
STRIDE

category

C0
Update software files should be encrypted and be
transmitted using encryption

Confidentiality

C1 Update software files should be integrity protected Integrity

C2
Update software files should be encrypted using strong keys
and algorithms

Confidentiality

C3 Update software files should be authenticated Authentication
C4 The update mechanism shall prevent downgrade Availability

C5
The exchanged messages in the communication should be
integrity protected

Integrity

C6 Automatically generated passwords should be unique
Authentication,
Confidentiality

C7 Passwords should avoid common patterns
Authentication,
Confidentiality

C8 Passwords are not obviously linked to public information
Authentication,
Confidentiality

C9 Passwords should be strong in terms of complexity
Authentication,
Confidentiality

C11
Sensitive security parameters exchanged during the
communication for the establishment of a secure
association should be integrity protected

Integrity

C12
Stored sensitive security parameters should be integrity
protected

Integrity

C13 Stored critical security parameters should be ciphered Confidentiality
C14 Ciphered communications should use strong algorithms Confidentiality

C15
Access to device functionality via a network interface in the
initialized state should only be possible after authentication
on that interface.

Authentication

C16
The system should have a mechanism available which
makes brute-force attacks on authorization mechanisms via
network interfaces impracticable.

Authentication

C17
Sensitive security parameters should be encrypted in transit,

with such encryption appropriate
Confidentiality

C18 All unused network interfaces shall be disabled. Authorization

C19
The confidentiality of personal data transiting between a
device and a service, especially associated services, should
be protected, with best practice cryptography

Confidentiality

C20 Authentication mechanisms must use strong passwords Authentication
C21 Integrity mechanisms must be strong Integrity
C22 Resistance to DoS attacks Availability
C23 Data input validation Availability

C24 Data communications should be ciphered Confidentiality

C28
The source code must not contain SQL injection
vulnerabilities

Integrity,
Availability,
Confidentiality

Page 80 of 95

Deliverable 7.3: Security certification methodology development

C29
The source code must not contain command injection
vulnerabilities

Integrity,
Availability,
Confidentiality

C30
The source code must not contain code injection
vulnerabilities

Integrity,
Availability,
Confidentiality

C31
The source code must not contain path traversal
vulnerabilities

Integrity,
Availability,
Confidentiality

C32
The source code must not use components with known
vulnerabilities

Integrity,
Availability,
Confidentiality

C36
Warning must be issued in case of potentially reduced

functionality
Integrity,
Availability

C37 Warning must be followed by triggering fail-over behaviour
Integrity,
Availability

C38 Safety Risk Management has been applied
Integrity,
Availability

C39

Automatic updates should not change the network protocol

interfaces in any way that is incompatible with previous

versions

Integrity,
Availability

C42
Connections to remote services, interfaces, and end-points
should be cryptographically authenticated

Authentication

C43
The software should not use unsafe libraries that contain
vulnerabilities

All

C44
Device should remain operating and locally functional in the
case of a lost network connection

Availability

C45 Protocols and libraries used by the system are updated All

C46
Authentication protocols should be secure, using
recommended algorithms.

Authentication

C47
Authenticated sessions should expire, and a new re-
authentication required.

Authentication

C49 Authentication algorithms should avoid channel side attack Authentication
C50 System should work in case of power outage Availability

C53
The system should allow data subject to withdraw its given
consent

Authorization,
Confidentiality

C54
The system shall implement mechanisms of protection from
malicious code manipulation

Integrity,
Availability

C55
The system shall update protection mechanisms whenever
new releases are available

Integrity,
Availability

C56
The system shall prevent anyone from circumventing
malicious code protection mechanisms.

Integrity,
Availability

C57
The system shall enforce assigned authorizations for
controlling the flow of information within the system and
from interconnected systems

Authorization,
Confidentiality

C58
The system shall enforce a limit of consecutive invalid login
attempts during a time period.

Authentication

C59
The system shall notify, upon successful logon, of the date
and time of the last logon and the number of unsuccessful
logon attempts since the last successful logon.

Authentication

Page 81 of 95

 Deliverable 7.2: Security certification methodology definition

C60
The system shall execute a fail-safe procedure upon the loss
of communications with other systems.

Integrity,
Availability

C61 The system shall uniquely identify and authenticate users.
Authentication,
Integrity, Non-
repudiation

C62
The system shall uniquely identify and authenticate a
defined list of devices before establishing a connection

Authentication,
Non-repudiation

C63
The system shall isolate security functions from non-
security functions.

Integrity

C64
The system shall separate user functionalities from
management functionalities.

Integrity

C65

The system shall monitor events to detect attacks,

unauthorized activities or conditions, and non-malicious

errors

Authorization,
Integrity, Non-
repudiation

C66
The system shall lock the session after a configurable time
period of inactivity.

Authentication,
Non-repudiation

C67
The system shall set outputs to a predetermined state if
normal operation cannot be maintained as a result of an
attack.

Availability

C68
The system shall prevent messages from being received
from external users or systems.

Integrity,
Confidentiality

C69
The system shall operate in a degraded mode during a DoS
event.

Integrity,
Availability

C70
The system shall limit the use of resources by security
functions to prevent resource exhaustion.

Integrity,
Availability

C71
The system shall terminate a remote session at the end of
the session or after a period of inactivity.

Authentication,
Authorization

C74

The system should ensure that only authorised users may

gain access to the information under the circumstances

specified in the access control policy
Authorization

C75
The system shall monitor events to detect attacks,
unauthorized activities or conditions, and non-malicious
errors.

Integrity

Page 82 of 95

Deliverable 7.3: Security certification methodology development

8.2 UC2: AI INVESTMENT

ID Description
STRIDE

category

C11
Sensitive security parameters exchanged during the
communication for the establishment of a secure
association should be integrity protected

Integrity

C12
Stored sensitive security parameters should be integrity
protected

Integrity

C13 Stored critical security parameters should be ciphered Confidentiality

C14 Ciphered communications should use strong algorithms Confidentiality

C17
Sensitive security parameters should be encrypted in transit,

with such encryption appropriate
Confidentiality

C18 All unused network interfaces shall be disabled. Authorization

C20 Authentication mechanisms must use strong passwords Authentication

C21 Integrity mechanisms must be strong Integrity

C23 Data input validation Availability

C24 Data communications should be ciphered Confidentiality

C28
The source code must not contain SQL injection
vulnerabilities

Integrity,
Availability,
Confidentiality

C29
The source code must not contain command injection
vulnerabilities

Integrity,
Availability,
Confidentiality

C30
The source code must not contain code injection
vulnerabilities

Integrity,
Availability,
Confidentiality

C31
The source code must not contain path traversal
vulnerabilities

Integrity,
Availability,
Confidentiality

C32
The source code must not use components with known
vulnerabilities

Integrity,
Availability,
Confidentiality

C42
Connections to remote services, interfaces, and end-points
should be cryptographically authenticated

Authentication

C43
The software should not use unsafe libraries that contain
vulnerabilities

All

C45 Protocols and libraries used by the system are updated All

C46
Authentication protocols should be secure, using
recommended algorithms.

Authentication

C47
Authenticated sessions should expire, and a new re-
authentication required.

Authentication

C48 Random bit generators should be strong enough All

C49 Authentication algorithms should avoid channel side attack Authentication

C54
The system shall implement mechanisms of protection from
malicious code manipulation

Integrity,
Availability

C56
The system shall prevent anyone from circumventing
malicious code protection mechanisms.

Integrity,
Availability

Page 83 of 95

 Deliverable 7.2: Security certification methodology definition

C58
The system shall enforce a limit of consecutive invalid login
attempts during a time period.

Authentication

C59
The system shall notify, upon successful logon, of the date
and time of the last logon and the number of unsuccessful
logons attempts since the last successful logon.

Authentication

C60
The system shall execute a fail-safe procedure upon the loss
of communications with other systems.

Integrity,
Availability

C61 The system shall uniquely identify and authenticate users.
Authentication,
Integrity, Non-
repudiation

C65

The system shall monitor events to detect attacks,

unauthorized activities or conditions, and non-malicious

errors

Authorization,
Integrity, Non-
repudiation

C68
The system shall prevent messages from being received
from external users or systems.

Integrity,
Confidentiality

C72 Logs should be protected against removal Non-repudiation

C74

The system should ensure that only authorised users may

gain access to the information under the circumstances

specified in the access control policy
Authorization

C75
The system shall monitor events to detect attacks,
unauthorized activities or conditions, and non-malicious
errors.

Integrity

Page 84 of 95

Deliverable 7.3: Security certification methodology development

8.3 UC3: MICROFACTORY – SOFTWARE UPDATES

ID Description
STRIDE
category

C0
Update software files should be encrypted and be
transmitted using encryption

Confidentiality

C1 Update software files should be integrity protected Integrity

C2
Update software files should be encrypted using strong keys
and algorithms

Confidentiality

C3 Update software files should be authenticated Authentication

C4 The update mechanism shall prevent downgrade Availability

C5
The exchanged messages in the communication should be
integrity protected

Integrity

C6 Automatically generated passwords should be unique
Authentication,
Confidentiality

C7 Passwords should avoid common patterns
Authentication,
Confidentiality

C9 Passwords should be strong in terms of complexity
Authentication,
Confidentiality

C11
Sensitive security parameters exchanged during the
communication for the establishment of a secure
association should be integrity protected

Integrity

C12
Stored sensitive security parameters should be integrity
protected

Integrity

C13 Stored critical security parameters should be ciphered Confidentiality

C14 Ciphered communications should use strong algorithms Confidentiality

C15
Access to device functionality via a network interface in the
initialized state should only be possible after authentication
on that interface.

Authentication

C16
The system should have a mechanism available which
makes brute-force attacks on authorization mechanisms via
network interfaces impracticable.

Authentication

C17
Sensitive security parameters should be encrypted in transit,
with such encryption appropriate

Confidentiality

C18 All unused network interfaces shall be disabled. Authorization

C20 Authentication mechanisms must use strong passwords Authentication

C21 Integrity mechanisms must be strong Integrity

C22 Resistance to DoS attacks Availability

C23 Data input validation Availability

C24 Data communications should be ciphered Confidentiality

C29
The source code must not contain command injection
vulnerabilities

Integrity,
Availability,
Confidentiality

C30
The source code must not contain code injection
vulnerabilities

Integrity,
Availability,
Confidentiality

C31
The source code must not contain path traversal
vulnerabilities

Integrity,
Availability,
Confidentiality

Page 85 of 95

 Deliverable 7.2: Security certification methodology definition

C32
The source code must not use components with known
vulnerabilities

Integrity,
Availability,
Confidentiality

C36
Warning must be issued in case of potentially reduced
functionality

Integrity,
Availability

C38 Safety Risk Management has been applied
Integrity,
Availability

C39
Automatic updates should not change the network protocol
interfaces in any way that is incompatible with previous
versions

Integrity,
Availability

C42
Connections to remote services, interfaces, and end-points
should be cryptographically authenticated

Authentication

C43
The software should not use unsafe libraries that contain
vulnerabilities

All

C44
Device should remain operating and locally functional in the
case of a lost network connection

Availability

C45 Protocols and libraries used by the system are updated All

C46
Authentication protocols should be secure, using
recommended algorithms.

Authentication

C47
Authenticated sessions should expire, and a new re-
authentication required.

Authentication

C48 Random bit generators should be strong enough All

C49 Authentication algorithms should avoid channel side attack Authentication

C54
The system shall implement mechanisms of protection from
malicious code manipulation

Integrity,
Availability

C55
The system shall update protection mechanisms whenever
new releases are available

Integrity,
Availability

C56
The system shall prevent anyone from circumventing
malicious code protection mechanisms.

Integrity,
Availability

C57
The system shall enforce assigned authorizations for
controlling the flow of information within the system and
from interconnected systems

Authorization,
Confidentiality

C58
The system shall enforce a limit of consecutive invalid login
attempts during a time period.

Authentication

C59
The system shall notify, upon successful logon, of the date
and time of the last logon and the number of unsuccessful
logons attempts since the last successful logon.

Authentication

C61 The system shall uniquely identify and authenticate users.
Authentication,
Integrity, Non-
repudiation

C62
The system shall uniquely identify and authenticate a
defined list of devices before establishing a connection

Authentication,
Non-repudiation

C63
The system shall isolate security functions from non-
security functions.

Integrity

C65
The system shall monitor events to detect attacks,
unauthorized activities or conditions, and non-malicious
errors

Authorization,
Integrity, Non-
repudiation

C66
The system shall lock the session after a configurable time
period of inactivity.

Authentication,
Non-repudiation

Page 86 of 95

Deliverable 7.3: Security certification methodology development

C67
The system shall set outputs to a predetermined state if
normal operation cannot be maintained as a result of an
attack.

Availability

C68
The system shall prevent messages from being received
from external users or systems.

Integrity,
Confidentiality

C69
The system shall operate in a degraded mode during a DoS
event.

Integrity,
Availability

C70
The system shall limit the use of resources by security
functions to prevent resource exhaustion.

Integrity,
Availability

C71
The system shall terminate a remote session at the end of
the session or after a period of inactivity.

Authentication,
Authorization

C72 Logs should be protected against removal Non-repudiation

C74
The system should ensure that only authorised users may
gain access to the information under the circumstances
specified in the access control policy

Authorization

Page 87 of 95

 Deliverable 7.2: Security certification methodology definition

9. Annex II: SecurityScorer – Technical Annex

SecurityScorer is a tool developed for the BIECO methodology. It is responsible for the

entire risk evaluation phase. To be precise, the result of the SecurityScorer (so the result

of the risk identification phase) should be a numerical value representing risk for each

of the six STRIDE properties of the system under evaluation. Alternatively, the output can

be understood as a certification of each of the system properties with labels inferred

from the tolerance profile of the system.

To achieve this, SecurityScorer needs the YAML file with the system description and

tolerance profiles in order to build an internal system scheme and labelling scheme.

Moreover, it needs the outputs from the testing tools used in the previous phases of the

BIECO methodology: risk identification and estimation, i.e.: Graphwalker, Fuzzing Tool,

and Groot. SecurityScorer is responsible for parsing the output of each of these tools

and, combining all the results with the whole system scheme, evaluating the results.

SecurityScorer implements a separate module for each of the tools, but the modules and

the implementation of the calculation of the risk is out of scope of this description. A

general analytical derivation was presented in Section 3.

SecurityScorer is a standalone tool, therefore it can be independently as a Python

application with FastAPI interface, although in practice, its main use case is to be called

by other actors in the BIECO methodology. To be able to evaluate the results, it is using

local YAML and output files, which are provided through API endpoints.

9.1.1. Installation Guide

Prerequisites:

- pipenv

- tox

Steps to install and run:

1. Clone the repository:

git clone https://github.com/7bulls/security-scorer-public.git

2. Install:

pipenv install --keep-outdated

3. Run as a uvicorn server:

pipenv run uvicorn security_scorer:app

4. (optional) To run tests, run in the main project directory:

tox

9.1.2. Usage Guide

After installing and running the uvicorn sever using the default settings, the API is

accessible from:

http://127.0.0.1:8000/docs#/

Page 88 of 95

Deliverable 7.3: Security certification methodology development

Figure 68 SecurityScorer REST API graphical interface

Figure 68 presents the graphical version of the documentation, where the SecurityScorer

endpoint can be easily executed.

Alternatively, user can send the POST request manually to /estimate_risk, with request

body as JSON:

{

 "metadata": {

 "blob": "..."

 },

 "tool_outputs": {

 "graphwalker": "...",

 "fuzzing": "...",

 "groot": "..."

 }

 }

From the set of graphwalker, fuzzing, groot tools, user should use only these tools that
were used to test his system. Ellipsis denote a base64-encoded contents of the system
description YAML file (metadata), or tools outputs.

The default result is a list of values for each system property and a list of labels:

{
 "scores": {
 "confidentiality": 3.0,
 "integrity": 1.5,
 "availability": 2.7,
 "authorization": 1.1,
 "authentication": 4.0,
 "non_repudiation": 2.0
 },

Page 89 of 95

 Deliverable 7.2: Security certification methodology definition

 "labels": {
 "confidentiality": B,
 "integrity": A,
 "availability": B,
 "authorization": A,
 "authentication": C,
 "non_repudiation": B
 }
}

The labels are evaluated using the tolerance profiles, passed in the YAML file with the
system description. A more detailed description of the labelling was presented in Section
3.6 of this document.

After returning these results, SecurityScorer’s API waits for new requests. Because the
tool is stateless, all the data from previous execution is not persisted.

Page 90 of 95

Deliverable 7.3: Security certification methodology development

10. References
[1] MELL, Peter, et al. CAESARS Framework Extension: An Enterprise Continuous Monitoring

Technical Reference Architecture. National Institute of Standards and Technology, 2012.

[2] DIGITALEUROPE's views on cybersecurity certification and labelling schemes.

DIGITALEUROPE, 02-Mar-2017. [Online] Available:

https://www.digitaleurope.org/resources/digitaleuropes-views-on-cybersecurity-

certification-and-labelling-schemes/

[3] WG1: Standardisation, Certification and Supply Chain Management. ECSO. [Online] Available:

https://ecs-org.eu/working-groups/wg1-standardisation-certification-and-supply-chain-

management

[4] Methods for Testing & Specification; Risk-based Security Assessment and Testing

Methodologies. ETSI, Nov-2015 [Online] Available:

https://www.etsi.org/deliver/etsi_eg/203200_203299/203251/01.01.01_50/eg_203251v

010101m.pdf

[5] Methods for Testing & Specification; Risk-based Security Assessment and Testing

Methodologies. ETSI, Nov-2015 [Online] Available:

https://www.etsi.org/deliver/etsi_eg/203200_203299/203251/01.01.01_50/eg_203251v

010101m.pdf

[6] ARMOUR. [Online] Available:

https://www.sciencedirect.com/science/article/abs/pii/S0920548918301375

[7] Common Criteria for Information Technology Security Evaluation. Part 1: Introduction and

general model. Common Criteria, 2017.

[8] Arrangement on the Recognition of Common Criteria Certificates In the field of Information

Technology Security. Common Criteria, 2014. [Online] Available:

https://www.commoncriteriaportal.org/files/operatingprocedures/cc-recarrange.pdf

[9] C. Zhou, S. Ramacciotti, Common Criteria: Its Limitations and Advice on Improvement, ISSA
J., 2011. [Online] Available:
https://www.difesa.it/SMD_/Staff/Reparti/II/CeVa/Pubblicazioni/Estere/Documents/Co
mmonCriteria_ISSA%20Journal_0411.pdf

[10] S. P. Kaluvuri, M. Bezzi, Y. Roudier, A Quantitative Analysis of Common Criteria Certification
Practice, in Trust, Privacy, and Security in Digital Business, vol. 8647, Cham: Springer
International Publishing, 2014, pp. 132-143.

[11] F. Keblawi, D. Sullivan, Applying the common criteria in systems engineering, IEEE Secur. Priv.

Mag., vol. 4, n.o 2, pp. 50-55, 2006, doi: 10.1109/MSP.2006.35.

[12] CyberSecurity Certification: EUCC Candidate Scheme. ENISA. [Online] Available:

https://www.enisa.europa.eu/publications/cybersecurity-certification-eucc-candidate-

scheme-v1-1.1

[13] Cloud Service Scheme. EUCS, 22-Dec-2020, [Online] Available:

https://www.enisa.europa.eu/topics/publications/eucs-cloud-service-scheme

[14] Securing EU’s Vision on 5G: Cybersecurity Certification. EUCS, 03-Feb-2021, [Online]

Available: https://www.enisa.europa.eu/news/enisa-

news/securing_eu_vision_on_5g_cybersecurity_certification

[15] Certification de sécurité de premier niveau (CSPN), ANSSI, 2008. [Online] Available:

https://www.ssi.gouv.fr/administration/produits-certifies/cspn/

[16] Certification de securite de premier niveau. CryptoExperts [Online] Available:

https://www.cryptoexperts.com/services/cspn/

[17] G. Baldini, G. Giannopoulos, A. Lazari, Annex 8: JRC Analysis and recommendations for a

European certification and labelling framework for cybersecurity in Europe, European

Commission, 2017.

[18] UL 2900 Standards Process. Underwriters Laboratories [Online] Available:

https://industries.ul.com/cybersecurity/ul-2900-standards-process

[19] The Commercial Product Assurance (CPA) build standard. CESG, 2014, [Online] Available:

https://www.nccgroup.trust/uk/our-services/cyber-security/compliance-and-

accreditations/cpa-and-cc/

https://www.digitaleurope.org/resources/digitaleuropes-views-on-cybersecurity-certification-and-labelling-schemes/
https://www.digitaleurope.org/resources/digitaleuropes-views-on-cybersecurity-certification-and-labelling-schemes/
https://ecs-org.eu/working-groups/wg1-standardisation-certification-and-supply-chain-management
https://ecs-org.eu/working-groups/wg1-standardisation-certification-and-supply-chain-management
https://www.etsi.org/deliver/etsi_eg/203200_203299/203251/01.01.01_50/eg_203251v010101m.pdf
https://www.etsi.org/deliver/etsi_eg/203200_203299/203251/01.01.01_50/eg_203251v010101m.pdf
https://www.etsi.org/deliver/etsi_eg/203200_203299/203251/01.01.01_50/eg_203251v010101m.pdf
https://www.etsi.org/deliver/etsi_eg/203200_203299/203251/01.01.01_50/eg_203251v010101m.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0920548918301375
https://www.commoncriteriaportal.org/files/operatingprocedures/cc-recarrange.pdf
https://www.difesa.it/SMD_/Staff/Reparti/II/CeVa/Pubblicazioni/Estere/Documents/CommonCriteria_ISSA%20Journal_0411.pdf
https://www.difesa.it/SMD_/Staff/Reparti/II/CeVa/Pubblicazioni/Estere/Documents/CommonCriteria_ISSA%20Journal_0411.pdf
https://www.enisa.europa.eu/publications/cybersecurity-certification-eucc-candidate-scheme-v1-1.1
https://www.enisa.europa.eu/publications/cybersecurity-certification-eucc-candidate-scheme-v1-1.1
https://www.enisa.europa.eu/topics/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/news/enisa-news/securing_eu_vision_on_5g_cybersecurity_certification
https://www.enisa.europa.eu/news/enisa-news/securing_eu_vision_on_5g_cybersecurity_certification
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/
https://www.cryptoexperts.com/services/cspn/
https://industries.ul.com/cybersecurity/ul-2900-standards-process
https://www.nccgroup.trust/uk/our-services/cyber-security/compliance-and-accreditations/cpa-and-cc/
https://www.nccgroup.trust/uk/our-services/cyber-security/compliance-and-accreditations/cpa-and-cc/

Page 91 of 95

 Deliverable 7.2: Security certification methodology definition

[20] Foundation Grade explained. National Cybersecurity Center of United Kingdom, 2017,

[Online] Available: https://www.ncsc.gov.uk/articles/foundation-grade-explained

[21] Jungmayr, S. (2002). Testability measurement and software dependencies. undefined.

Retrieved from https://www.semanticscholar.org/paper/Testability-measurement-and-

software-dependencies-Jungmayr/f3a04f41fb801bda8de726b284bdc3dae1c5ea50

[22] The Commercial Product Assurance (CPA) build standard. CESG, 2014. [Online] Available:

https://www.nccgroup.trust/uk/our-services/cyber-security/compliance-and-

accreditations/cpa-and-cc/

[23] STATE OF THE ART SYLLABUS. ECSO, Jun-2017, [Online] Available: http://www.ecs-

org.eu/documents/uploads/state-of-the-art-syllabus-v1.pdf

[24] IEC 62443-4-1:2018. IEC Webstore, 15-Jan-2018, [Online] Available:

https://webstore.iec.ch/publication/33615

[25] Security of Industrial Automation and Control Systems. International Society of Automation

(ISA), Oct-2020, [Online] Available: https://www.isasecure.org/en-

US/Documents/Articles-and-Technical-Papers/ISAGCA-Security-Lifecycles-whitepaper

[26] CNSSI 4009 Committee on National Security Systems (CNSS) Glossary, 2015. [Online]

Available: https://www.serdp-estcp.org/Tools-and-Training/Installation-Energy-and-

Water/Cybersecurity/Resources-Tools-and-Publications/Resources-and-Tools-

Files/CNSSI-4009-Committee-on-National-Security-Systems-CNSS-Glossary

[27] Common Weakness Scoring System (CWSS). MITRE, 2014. [Online] Available:

https://cwe.mitre.org/cwss/cwss_v1.0.1.html

[28] J. R. C. Nurse, S. Creese, and D. D. Roure, Security Risk Assessment inInternet of Things

Systems, IEEE Computer Society, IT Pro, 2017.

[29] Eclipse Modelling Framework. [Online] Available: https://www.eclipse.org/modeling/emf/

[30] Common Weakness Enumeration (CWE), [Online] Available: https://cwe.mitre.org/

[31] OWASP Top Ten, [Online] Available: https://owasp.org/www-project-top-ten/

[32] Common Vulnerability Score System (CVSS) v3. IRST, 2015, [Online] Available:

https://www.first.org/cvss/v3.0/cvss-v30-specification_v1.9.pdf

[33] Common Vulnerabilities and Exposures (CVE), [Online] Available: https://cve.mitre.org/

[34] National Vulnerability Database (NVD), [Online] Available: https://nvd.nist.gov/

[35] Common Attack Pattern Enumeration (CAPEC), [Online] Available: https://capec.mitre.org/

[36] R. A. Caralli, J. F. Stevens, L. R. Young, y W. R. Wilson, Introducing OCTAVE Allegro:

Improving the Information Security Risk Assessment Process, CERT, 2007

[37] C. J. Alberts, A. J. Dorofee, J. F. Stevens, y C. Woody, OCTAVE-S Implementation Guide,

Version 1, 2005

[38] DREAD scheme. Microsoft, 2010, [Online] Available: https://docs.microsoft.com/en-
us/previous-versions/msp-n-p/ff648644(v=pandp.10)#dread

[39] Graphwalker, an open-source model-based testing tool. [Online] Available:
https://graphwalker.github.io/

[40] A. B. Garcia, R. F. Babiceanu, y R. Seker, Trustworthiness requirements and models for
aviation and aerospace systems, 2018 Integrated Communications, Navigation,
Surveillance Conference (ICNS), Herndon, VA, 2018, pp. 1-16, doi:
10.1109/ICNSURV.2018.8384911

[41] Threat prioritisation: DREAD is dead, baby?. NCCgroup, 2016, [Online] Available:
https://www.nccgroup.trust/uk/about-us/newsroom-and-
events/blogs/2016/march/threat-prioritisation-dread-is-dead-baby/

[42] VerAfied Methodology. VERACODE [Online] Available: https://www.veracode.com/verified

[43] Veracode Detailed Report. Nextcloud, 2016, [Online] Available: https://nextcloud.com/wp-

content/themes/next/assets/files/veracode_report.pdf?x53054

[44] The Cenzic HARM (Hailstorm Application Risk Metric) Score. Cenzic, [Online] Available:

https://owasp.org/www-pdf-

archive//OWASP_Cloudy_with_a_chance_of_hack_Nov_2010.pdf

[45] OWASP Application Security Verification Standard (ASVS) Project. OWASP, [Online]

Available: https://owasp.org/www-project-application-security-verification-standard/

https://www.ncsc.gov.uk/articles/foundation-grade-explained
https://www.semanticscholar.org/paper/Testability-measurement-and-software-dependencies-Jungmayr/f3a04f41fb801bda8de726b284bdc3dae1c5ea50
https://www.semanticscholar.org/paper/Testability-measurement-and-software-dependencies-Jungmayr/f3a04f41fb801bda8de726b284bdc3dae1c5ea50
https://www.nccgroup.trust/uk/our-services/cyber-security/compliance-and-accreditations/cpa-and-cc/
https://www.nccgroup.trust/uk/our-services/cyber-security/compliance-and-accreditations/cpa-and-cc/
http://www.ecs-org.eu/documents/uploads/state-of-the-art-syllabus-v1.pdf
http://www.ecs-org.eu/documents/uploads/state-of-the-art-syllabus-v1.pdf
https://webstore.iec.ch/publication/33615
https://www.isasecure.org/en-US/Documents/Articles-and-Technical-Papers/ISAGCA-Security-Lifecycles-whitepaper
https://www.isasecure.org/en-US/Documents/Articles-and-Technical-Papers/ISAGCA-Security-Lifecycles-whitepaper
https://www.serdp-estcp.org/Tools-and-Training/Installation-Energy-and-Water/Cybersecurity/Resources-Tools-and-Publications/Resources-and-Tools-Files/CNSSI-4009-Committee-on-National-Security-Systems-CNSS-Glossary
https://www.serdp-estcp.org/Tools-and-Training/Installation-Energy-and-Water/Cybersecurity/Resources-Tools-and-Publications/Resources-and-Tools-Files/CNSSI-4009-Committee-on-National-Security-Systems-CNSS-Glossary
https://www.serdp-estcp.org/Tools-and-Training/Installation-Energy-and-Water/Cybersecurity/Resources-Tools-and-Publications/Resources-and-Tools-Files/CNSSI-4009-Committee-on-National-Security-Systems-CNSS-Glossary
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://www.eclipse.org/modeling/emf/
https://cwe.mitre.org/
https://owasp.org/www-project-top-ten/
https://www.first.org/cvss/v3.0/cvss-v30-specification_v1.9.pdf
https://cve.mitre.org/
https://nvd.nist.gov/
https://capec.mitre.org/
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=pandp.10)#dread
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=pandp.10)#dread
https://graphwalker.github.io/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/march/threat-prioritisation-dread-is-dead-baby/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/march/threat-prioritisation-dread-is-dead-baby/
https://www.veracode.com/verified
https://nextcloud.com/wp-content/themes/next/assets/files/veracode_report.pdf?x53054
https://nextcloud.com/wp-content/themes/next/assets/files/veracode_report.pdf?x53054
https://owasp.org/www-pdf-archive/OWASP_Cloudy_with_a_chance_of_hack_Nov_2010.pdf
https://owasp.org/www-pdf-archive/OWASP_Cloudy_with_a_chance_of_hack_Nov_2010.pdf
https://owasp.org/www-project-application-security-verification-standard/

Page 92 of 95

Deliverable 7.3: Security certification methodology development

[46] R. M. R. K, Security risk assessment of Geospatial Weather Information System (GWIS) using
integrated CVSS approach, Int. J. Adv. Comput. Sci. Appl., vol. 1, n.o 3, 2010

[47] Daoudagh, S., Marchetti, E. (2022). GROOT: A GDPR-Based Combinatorial Testing
Approach. In: Clark, D., Menendez, H., Cavalli, A.R. (eds) Testing Software and Systems.
ICTSS 2021. Lecture Notes in Computer Science, vol 13045. Springer, Cham.
https://doi.org/10.1007/978-3-031-04673-5_17

[48] A. R. Ruddle, H. Mira, and S. Information, Security requirements for automotive on-board

networks based on dark-side scenarios. E-safety vehicle intrusion protected applications.

EVITA project, Tech. Rep. February 2016, 2009, [Online] Available:

https://www.researchgate.net/publication/46307752_Security_requirements_for_automo

tive_on-board_networks_based_on_dark-side_scenarios_Deliverable_D23_EVITA_E-

safety_vehicle_intrusion_protected_applications

[49] L. Aljoscha and M. Islam, HEAling Vulnerabilities to ENhance Software Security and Safety -

Project Proposal HEAVENS. 2016.

[50] ETSI TS 102 165-1 Methods and protocols; Part 1: Method and pro forma for Threat,

Vulnerability, Risk Analysis (TVRA). ETSI, 2017.

[51] Macher, G., Armengaud, E., Brenner, E., Kreiner, C.: A review of threat analysis and risk

assessment methods in the automotive context. In International Conference on Computer

Safety, Reliability, and Security. pp. 130–141. Springer (2016)

[52] Palin, R., Ward, D., Habli, I., Rivett, R.: Iso 26262 safety cases: Compliance and assurance. In

6th IET International Conference on System Safety 2011. pp. 1–6.IET (2011)

[53] ISO: ISO/SAE FDIS 21434 Road vehicles. Cybersecurity engineering, [Online] Available:
https://www.iso.org/standard/70918.html

[54] SESAMO: Security and Safety Modelling. 2015, [Online] Available: http://www.sesamo-

project.eu/

[55] SESAMO: D4.2 Integrated Design and Evaluation Methodology. 2014, [Online] Available:

http://sesamo-project.eu/content/d42-integrated-design-and-evaluation-methodology

[56] Ramaiah, B.S.M.P.S., Gokhale, A.A.: Fmea and fault tree based software safety analysis of a

railroad crossing critical system. Global Journal of Computer Science and Technology

(2011)

[57] Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security application of failure mode

and effect analysis (fmea). In International Conference on Computer Safety, Reliability, and

Security. pp. 310–325. Springer (2014)

[58] Ref: Stolte, T., Bagschik, G., Reschka, A., Maurer, M.: Hazard analysis and risk assess-ment

for an automated unmanned protective vehicle. In 2017 IEEE Intelligent Vehicles Symposium

(IV). pp. 1848–1855. IEEE (2017)

[59] Macher, G., Sporer, H., Berlach, R., Armengaud, E., Kreiner, C.: Sahara: A security-

aware hazard and risk analysis method. In 2015 Design, Au-tomation Test in

Europe Conference Exhibition (DATE). pp. 621–624 (2015). [Online] Available:

https://doi.org/10.7873/DATE.2015.0622

[60] Ishimatsu, T., Leveson, N.G., Thomas, J.P., Fleming, C.H., Katahira, M., Miyamoto,Y., Ujiie,

R., Nakao, H., Hoshino, N.: Hazard analysis of complex spacecraft usingsystems-theoretic

process analysis. Journal of Spacecraft and Rockets51(2), 509–522(2014)

[61] Young, W., Porada, R.: System-theoretic process analysis for security (stpa-sec): Cyber

security and stpa. In 2017 STAMP Conference (2017)

[62] Raspotnig, C., Katta, V., Karpati, P., Opdahl, A.L.: Enhancing chassis: a methodfor combining

safety and security. In 2013 International Conference on Availability,Reliability and Security.

pp. 766–773. IEEE (2013)

[63] Pentti, H., Atte, H.: Failure mode and effects analysis of software-based automationsystems.

VTT Industrial Systems, STUK-YTO-TR190, 190 (2002)

[64] Macher, G., Armengaud, E., Brenner, E., Kreiner, C.: Threat and risk assessment

methodologies in the automotive domain. Procedia computer science 83, 1288–

1294(2016)

https://www.researchgate.net/publication/46307752_Security_requirements_for_automotive_on-board_networks_based_on_dark-side_scenarios_Deliverable_D23_EVITA_E-safety_vehicle_intrusion_protected_applications
https://www.researchgate.net/publication/46307752_Security_requirements_for_automotive_on-board_networks_based_on_dark-side_scenarios_Deliverable_D23_EVITA_E-safety_vehicle_intrusion_protected_applications
https://www.researchgate.net/publication/46307752_Security_requirements_for_automotive_on-board_networks_based_on_dark-side_scenarios_Deliverable_D23_EVITA_E-safety_vehicle_intrusion_protected_applications
https://www.iso.org/standard/70918.html
http://www.sesamo-project.eu/
http://www.sesamo-project.eu/
http://sesamo-project.eu/content/d42-integrated-design-and-evaluation-methodology
https://doi.org/10.7873/DATE.2015.0622

Page 93 of 95

 Deliverable 7.2: Security certification methodology definition

[65] G ̈oßling-Reisemann, S.: Resilience–preparing energy systems for the unexpected. An edited

collection of authored pieces comparing, contrasting, and integrating riskand resilience

with an emphasis on ways to measure resilience p. 73 (2016)

[66] Cioroaica E., Kar S.R., Sorokos I. (2022) Comparison of Safety and Security Analysis

Techniques. In: Gude Prego J.J., de la Puerta J.G., García Bringas P., Quintián H., Corchado

E. (eds) 14th International Conference on Computational Intelligence in Security for

Information Systems and 12th International Conference on European Transnational

Educational (CISIS 2021 and ICEUTE 2021). CISIS - ICEUTE 2021. Advances in Intelligent

Systems and Computing, vol 1400. Springer, Cham. [Online] Available:

https://doi.org/10.1007/978-3-030-87872-6_23

[67] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, andM. Utting, A Subset of

Precise UML for Model-Based Testing, in Proceedings of the 3rd International Workshop on

Advances in Model-Based Testing - A-MOST ’07. London, United Kingdom: ACM Press,

2007, pp.95–104.

[68] M. Felderer, B. Agreiter, P. Zech, and R. Breu, A Classification for Model-Based Security

Testing, in VALID 2011, The Third International Conference on Advances in System Testing

and Validation Lifecycle, 2011, pp. 109–114.

[69] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska, and W. Xu, Automated Security Test

Generation with Formal Threat Models, IEEE Transactions on Dependable and Secure

Computing, vol. 9, no. 4, pp. 526–540, 2012.

[70] A. Cretin, B. Legeard, F. Peureux, and A. Vernotte, Increasing the Resilienceof ATC systems

against False Data Injection Attacks using DSLbased Testing, in Doctoral Symposium ICRAT,

2018.

[71] W. Li, F. Le Gall, and N. Spaseski, A Survey on Model-Based Testing Tools for Test Case

Generation, in Tools and Methods of Program Analysis, Itsykson, A. Scedrov, and V.

Zakharov, Eds., vol. 779. Cham: Springer International Publishing, 2018, pp. 77–89.

[72] B. Legeard and A. Bouzy, Smartesting CertifyIt: Model-Based Testing for Enterprise IT, in

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation.

Luxembourg, Luxembourg: IEEE, 2013, pp. 391–397.

[73] GraphWalker, an open-source model-based testomg tool. [Online] Available:

https://graphwalker.github.io/

[74] MISTA. [Online] Available: http://cs.boisestate.edu/~dxu/research/MBT.html

[75] A. Vernotte, Research Questions for Model-Based Vulnerability Testing of Web Applications,

in IEEE International Conference on Software Testing, Verification, and Validation

Workshops, 2013.

[76] J. Bozic and F. Wotawa, Security Testing Based on Attack Patterns, in IEEE International

Conference on Software Testing, Verification, and Validation Workshops, 2014.

[77] M. Felderer and E. Fourneret, A Systematic Classification of Security Regression Testing

Approaches, International Journal on Software Tools for Technology Transfer, vol. 17, no.

3, pp. 305–319, 2015.

[78] M. Bishop, About Penetration Testing, IEEE Security & Privacy Maga-zine, vol. 5, no. 6, pp.

84–87, 2007

[79] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, State of the Art: Auto-mated Black-Box Web

Application Vulnerability Testing, in 2010 IEEESymposium on Security and Privacy. Oakland,

CA, USA: IEEE, 2010, pp. 332–345

[80] ISECOM, The Open-Source Security Testing Methodology Manual (OS-STMMv3), 2010

[81] M. Sutton, A. Greene, and P. Aminir, Fuzzing: Brute Force VulnerabilityDiscovery. Pearson

Education, 2007, pp. 1–51.

[82] C. Chen, B. Cui, J. Ma, R. Wu, J. Guo, and W. Liu, A Systematic Reviewof Fuzzing Techniques,

Computers & Security, vol. 75, pp. 118–137, 2018

[83] M. Schneider, J. Grossmann, I. Schieferdecker, and A. Pietschker, OnlineModel-Based

Behavioral Fuzzing, in IEEE Sixth International Conferenceon Software Testing, Verification

and Validation Workshops, 2013.

https://doi.org/10.1007/978-3-030-87872-6_23
https://graphwalker.github.io/
http://cs.boisestate.edu/~dxu/research/MBT.html

Page 94 of 95

Deliverable 7.3: Security certification methodology development

[84] P. Tsankov, M. T. Dashti, and D. Basin, SECFUZZ: Fuzz-testing SecurityProtocols, in Proc. of

the 7th International Workshop on Automation ofSoftware Test, 2012

[85] C. Miller and Z. Peterson, Analysis of Mutation and Generation-BasedFuzzing, 2007
[86] W. Krenn, R. Schlick, S. Tiran, B. Aichernig, E. Jöbstl, and H. Brandl, MoMut::UML model-

based mutation testing for UML, in2015 IEEE 8thInternational Conference on Software

Testing, Verification and Validation,ICST 2015 - Proceedings, 2015.

[87] F. Duchene, Detection of Web Vulnerabilities via Model Inferenceassisted Evolutionary

Fuzzing, Ph.D. dissertation, Grenoble University,2014. [Online] Available:

https://hal.archives-ouvertes.fr/tel-01102325/document

[88] J. Bozic and F. Wotawa, Model-based Testing - From Safety to Security, STV Bozic, Wotawa,

2012

[89] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, andA. Pretschner, “Chapter One -

Security Testing: A Survey,” inAdvancesin Computers. Elsevier, 2015, vol. 101, pp. 1–51

[90] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, Finding Software Vulner-abilities by Smart
Fuzzing, inFourth IEEE International Conference onSoftware Testing, Verification and
Validation, 2011

[91] Yoo y M. Harman, Regression testing minimization, selection and prioritization: a survey,
Softw. Test. Verification Reliab., vol. 22, n.o 2, pp. 67-120, mar. 2012, doi: 10.1002/stv.430

[92] E. Fourneret, F. Bouquet, Frederic Dadeau, y Stephane Debricon, Selective Test Generation

Method for Evolving Critical Systems, in 2011 IEEE Fourth International Conference on

Software Testing, Verification and Validation Workshops, Berlin, Germany, 2011, pp. 125-

134, doi: 10.1109/ICSTW.2011.95

[93] L. Cseppento y Z. Micskei, Evaluating code-based test input generator tools, Softw. Test.

Verification Reliab., vol. 27, n.o 6, p. e1627, sep. 2017, doi: 10.1002/stvr.1627

[94] B. Chess y J. West, Secure programming with static analysis. Gary McGraw, 2007

[95] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, y W. Pugh, Using Static Analysis to

Find Bugs, IEEE Softw., vol. 25, n.o 5, pp. 22-29, sep. 2008, doi: 10.1109/MS.2008.130

[96] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman.

Chapter six - mutation testing advances: An analysis and survey. Volume 112 of Advances

in Computers, pages 275 – 378. Elsevier, 2019

[97] H. Baars, R. Lassche, R. Massink, y H. Pille, «Smart grid security certification in Europe.

Challenges and recommendations». ENISA, 2014

[98] A Meta-Scheme Approach. ECSO, Dec-2017 [Online] Available: https://www.ecs-

org.eu/documents/uploads/european-cyber-security-certification-a-meta-scheme-

approach.pdf

[99] S. Murdoch, M. Bond, R. J. Anderson, How Certification Systems Fail: Lessons from the Ware
Report, IEEE Secur. Priv. Mag., vol. 10, n.o 6, pp. 1-1, 2012, doi: 10.1109/MSP.2012.89

[100] S. P. Kaluvuri, M. Bezzi, Y. Roudier, A Quantitative Analysis of Common Criteria Certification
Practice, in Trust, Privacy, and Security in Digital Business, vol. 8647, Cham: Springer
International Publishing, 2014, pp. 132-143.

[101] AIOTI, Report on Workshop on Security and Privacy in the Hyper-Connected World. 2016.

[102] J. Hubner, M. Lastovka, BOSCH Political Viewpoint. Security in IoT. 2017.
[103] Iot Security & Privacy Label [Online] Available: https://iotsecurityprivacy.org/labels

[104] CYBERSECURITY MADE IN EUROPE. ECSO, [Online] Available: https://ecs-

org.eu/initiatives/cybersecurity-made-in-europe

[105] M. Bartoletti, P. Degano, G. L. Ferrari, Security Issues in Service Composition, in Formal

Methods for Open Object-Based Distributed Systems, Berlin, Heidelberg, 2006, vol. 4037, pp.

1-16, doi: 10.1007/11768869_1.

[106] Regulation (EU) 2019/881 of the European Parliament and of the Council on ENISA (the

European Union Agency for Cybersecurity) and on information and communications

technology cybersecurity certification and repealing Regulation (EU) No 526/2013 [Online]

Available: https://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32019R0881&from=EN

https://hal.archives-ouvertes.fr/tel-01102325/document
https://www.ecs-org.eu/documents/uploads/european-cyber-security-certification-a-meta-scheme-approach.pdf
https://www.ecs-org.eu/documents/uploads/european-cyber-security-certification-a-meta-scheme-approach.pdf
https://www.ecs-org.eu/documents/uploads/european-cyber-security-certification-a-meta-scheme-approach.pdf
https://iotsecurityprivacy.org/labels
https://ecs-org.eu/initiatives/cybersecurity-made-in-europe
https://ecs-org.eu/initiatives/cybersecurity-made-in-europe
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0881&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0881&from=EN

Page 95 of 95

 Deliverable 7.2: Security certification methodology definition

[107] Methods for Testing & Specification; Risk-based Security Assesment and Testing

Methodologies. ETSI, Nov-2015. [Online] Available:

https://www.etsi.org/deliver/etsi_eg/203200_203299/203251/01.01.01_50/eg_203251v

010101m.pdf

[108] S. N. Matheu, J. L. Hernandez-Ramos, and A. F. Skarmeta, Toward a Cybersecurity
Certification Framework for the Internet of Things, IEEE Security Privacy, vol. 17, no. 3, pp.
66–76, 5 2019

[109] Lorrain, E. Fourneret, F. Dadeau, and B. Legeard, MBeeTle - un outil pour la génération de

tests à-la-volée à l’aide de modèles, in Groupement De Recherche CNRS du Génie de la

Programmation et du Logiciel, 2016, [Online] Available: https://hal.archives-

ouvertes.fr/hal-02472608

[110] IoT-LAB : The Very Large Scale IoT Testbed. FIT (Future Internet Testing Facility) [Online]

Available: https://www.iot-lab.info/

[111] HEAVENS: HEAling Vulnerabilities to ENhance Software Security and Safety – Project

Proposal, 2012.

[112] NIST SP 800-30 Rev. 1 Guide for Conducting Risk Assessments. NIST, Sep-2012, [Online]

Available: https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final

[113] HEAling Vulnerabilities to ENhance Software Security and Safety (HEAVENS). D2: Security

models (2016)

[114] Overview of ICT certification laboratories. ENISA, Jan-2018. [Online] Available:

https://european-accreditation.org/wp-content/uploads/2018/10/document-ict-

certification-laboratories.pdf

[115] Directive 2010/30/EU on the indication by labelling and standard product information of the

consumption of energy and other resources by energy-related products. European

Commission, 19-May-2010, [Online] Available: https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:32010L0030

[116] Katie Boeckl, Michael Fagan, William Fisher, Naomi Lefkovitz, Katerina N. Megas, Ellen

Nadeau, Danna Gabel O Rourke, Ben Piccarreta, and Karen Scarfone. 25-Jun-2019.

Considerations for Managing Internet of Things (IoT) Cybersecurity and Privacy Risks.

[Online] Available: https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8228-draft.pdf

[117] European Commission. DIRECTIVE (EU) 2016/1148 OF THE EUROPEAN PARLIAMENT AND

OF THE COUNCIL of 6 July 2016 concerning measures for a high common level of security of

network and information systems across the Union. [Online] Available: https://eur-

lex.europa.eu/eli/dir/2016/1148/oj

https://www.etsi.org/deliver/etsi_eg/203200_203299/203251/01.01.01_50/eg_203251v010101m.pdf
https://www.etsi.org/deliver/etsi_eg/203200_203299/203251/01.01.01_50/eg_203251v010101m.pdf
https://hal.archives-ouvertes.fr/hal-02472608
https://hal.archives-ouvertes.fr/hal-02472608
https://www.iot-lab.info/
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
https://european-accreditation.org/wp-content/uploads/2018/10/document-ict-certification-laboratories.pdf
https://european-accreditation.org/wp-content/uploads/2018/10/document-ict-certification-laboratories.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0030
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0030
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8228-draft.pdf
https://eur-lex.europa.eu/eli/dir/2016/1148/oj
https://eur-lex.europa.eu/eli/dir/2016/1148/oj

