

This project has received funding from the European Union´s Horizon 2020 Research and

Innovation Programme under Grand agreement No. 952702.

Deliverable 8.1

BIECO Verification and Testing Strategy

Technical References

Document version : 1.0

Submission Date : 31/08/2021

Dissemination Level

Contribution to

:

:

Public

WP8 - Integration, Pilots, and Validation

Document Owner : HOLISUN

File Name

Revision

:

:

BIECO_D8.1_30.08.2021_V1.0

3.0

Project Acronym : BIECO

Project Title : Building Trust in Ecosystem and Ecosystem Components

Grant Agreement n. : 952702

Call : H2020-SU-ICT-2018-2020

Project Duration : 36 months, from 01/09/2020 to 31/08/2023

Website : https://www.bieco.org

Ref. Ares(2021)5354499 - 30/08/2021

Page 2 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Revision History

REVISION DATE
INVOLVED
PARTNERS

DESCRIPTION

0.0 17.04.2021 HS Skeleton and TOC Creation

0.1 24.05.2021 HS Content added

0.2 08.06.2021 HS Content added to section 1 and 2

0.3 15.06.2021 HS Content added to section 3, 4 and 5

0.4 06.07.2021 HS Content added to section 6, 7, 8, 10

0.5 15.07.2021 HS Content improvement

0.6 27.07.2021 HS Content added to section 9

0.7 02.08.2021 HS Content improvement

0.8 05.08.2021 HS Content added to section 9.1

0.9 12.08.21 IESE Content added to section 9.12 and 9.15

1.0 17.08.2021 UNI Review

1.1 19.08.2021 UTC Content added to Verification Strategy Section

1.2 23.08.2021 CNR Testing of Runtime phase added

1.3 25.08.2021 7B, IFEVS Content added to section 9.3, 9.4. and 9.16

2.0 27.08.2021 HS
Finalizing deliverable and delivering to

coordinator

2.1 28.08.2021 UNI Revision by Coordinator

3.0 30.08.2021 UNI Finalizing deliverable and submission

List of Contributors

Contributor(s): Oliviu Matei (HOLISUN), Daniela Delinschi (HOLISUN), Rudolf Erdei

(HOLISUN), Antonello Calabrò (CNR), Said Daoudagh (CNR), Eda Marchetti (CNR), Emilia

Cioroaica (IESE), Enrico Schiavone (RES), Paweł Skrzypek (7B), Radosław Piliszek (7B),

Eva Sotos (GRAD), Riccardo Introzzi (IFEVS), Francisco Marques (UNI), Ovidiu Cosma

(UTC), Cosmin Sabo (UTC)

Reviewer(s): Pietro Perlo (IFEVS), Sara Matheu (UMU), Sanaz Nikghadam-Hojjati (UNI),

Jose Barata (UNI)

Page 3 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Disclaimer: The information in this document is subject to change without notice.

Company or product names mentioned in this document may be trademarks or

registered trademarks of their respective companies.

All rights reserved.

The document is proprietary of the BIECO consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written

agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not

liable for any use that may be made of the information contained herein.

BIECO project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
952702.

Page 4 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Acronyms

Acronym Term

AIT AI Investments use case application
CI Continuous Integration
DB Database
GW Gateway
GUI Graphical User Interface
HW Hardware
ICT Information and Communication Technology
ICT GW ICT Gateway
ISO International Organization for Standardization
JSON JavaScript Object Notation
KPI Key Performance Indicator
SW Software
TC Test Case
TS Test Scenario
TQI TIOBE Quality Indicator

Page 5 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Glossary
Term Definition

Actor

An Actor represents a non-cyber-physical party of the ecosystem,
such as a specific person, company, or some other legal entity that
interacts with systems and digital assets, such as software
components.

Framework
Composition of tools that interact over well specified interfaces. It
enables implementation of methods.

ICT
Information and Communication Technology - it indicates the domain
of telematics, computer science, multimedia and internet.

Software
Smart Agent

An intelligent software component involved in the automation of
processes within a system, system component or ecosystem.

Stub
 A piece of code simulating a method/object interaction and
response

User
An actor or an ecosystem, or system or a system component that
interacts with the ecosystems.

Validation

A set of activities intended to ensure that a system or system
component meets the operational needs of the user. The user in this
sense can be an actor within the ecosystem, or another system or
system components that receives its services.

Verification
A set of activities that checks whether a system or a system
component meets its specifications.

Vulnerability
A weakness an adversary could take advantage of to compromise the
confidentiality, availability, or integrity of a resource.

Security
Testing

The validation or verification process to be executed to determine that
the system or component under test can: protect its data and
resources; and /or maintains its properties and functionalities and/or
is free from specific weaknesses.

Unit Testing
Unit tests are typically automated tests written and run by software
developers to ensure that a section of an application (known as the
"unit") meets its design and behaves as intended.

Integration
Testing

Integration testing (sometimes called integration and testing,
abbreviated I&T) is the phase in software testing in which individual
software modules are combined and tested as a group. Integration
testing is conducted to evaluate the compliance of a system or
component with specified functional requirements.

System
Testing

System Testing is a level of testing that validates the complete and
fully integrated software product. The purpose of a system test is to
evaluate the end-to-end system specifications.

Non-
Functional
Testing

Non-functional testing is the testing of a software application or
system for its non-functional requirements: the way a system
operates, rather than specific behaviours of that system.

Continuous
Integration

Continuous integration (CI) is the practice of automating the
integration of code changes from multiple contributors into a single
software project. It's a primary DevOps best practice, allowing
developers to frequently merge code changes into a central repository
where builds and tests then run

Continuous
Deployment

Continuous Deployment (CD) is a software release process that uses
automated testing to validate if changes to a codebase are correct
and stable for immediate autonomous deployment to a production
environment

Page 6 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Continuous
Delivery

Continuous delivery (CD) is a software engineering approach in which
teams produce software in short cycles, ensuring that the software
can be reliably released at any time and, when releasing the software,
without doing so manually.

Page 7 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Executive Summary

This deliverable presents the verification and testing strategy of BIECO platform.

The objective of software verification and testing is to give insight in quality and to

minimize effort by detecting software errors in an early stage of a project life cycle.

This deliverable has been elaborated within task T8.1, which is responsible for defining

the strategy for the verification and testing of the BIECO modules that will be defined in

the scope of WP3, WP4, WP5, WP6 and WP7. The objective of this task is twofold: 1. to

quantify and understand module performance in a meaningful way through test cases

and 2. to define a sound methodology for development and testing.

The strategy described here applies to the BIECO Platform and all modules developed

within the project, but it is also highly recommended for any module developed for the

BIECO Platform.

Project Summary

Nowadays most of the ICT solutions developed by companies require the integration or

collaboration with other ICT components, which are typically developed by third parties.

Even though this kind of procedures are key in order to maintain productivity and

competitiveness, the fragmentation of the supply chain can pose a high-risk regarding

security, as in most of the cases there is no way to verify if these other solutions have

vulnerabilities or if they have been built taking into account the best security practices.

In order to deal with these issues, it is important that companies make a change on their

mindset, assuming an “untrusted by default” position. According to a recent study only

29% of IT business know that their ecosystem partners are compliant and resilient with

regard to security. However, cybersecurity attacks have a high economic impact and it

is not enough to rely only on trust. ICT components need to be able to provide verifiable

guarantees regarding their security and privacy properties. It is also imperative to detect

more accurately vulnerabilities from ICT components and understand how they can

propagate over the supply chain and impact on ICT ecosystems. However, it is well

known that most of the vulnerabilities can remain undetected for years, so it is necessary

to provide advanced tools for guaranteeing resilience and also better mitigation

strategies, as cybersecurity incidents will happen. Finally, it is necessary to expand the

horizons of the current risk assessment and auditing processes, taking into account a

much wider threat landscape. BIECO is a holistic framework that will provide these

mechanisms in order to help companies to understand and manage the cybersecurity

risks and threats they are subject to when they become part of the ICT supply chain. The

framework, composed by a set of tools and methodologies, will address the challenges

related to vulnerability management, resilience, and auditing of complex systems.

Page 8 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Partners

Disclaimer

The publication reflects only the author´s view and the European Commission is

not responsible for any use that may be made of the information it contains.

Page 9 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Table of Contents

Technical References ... 1

Revision History ... 2

List of Contributors ... 2

Acronyms ... 4

Glossary ... 5

Executive Summary ... 7

Project Summary ... 7

Partners .. 8

Disclaimer .. 8

Table of Contents .. 9

List of Figures .. 12

List of Tables ... 13

1. Introduction .. 14

2. Approach .. 16

2.1. Mapping to the development process .. 16

2.2. Testing strategy ... 16

 Quality characteristics per test level ... 17

3. Test Implementation Principles ... 19

3.1. Traceability ... 19

3.2. Test Activities ... 19

 Completion ... 20

 Entry criteria .. 20

 Acceptance criteria .. 21

 Validation criteria ... 22

3.3. Regression Testing .. 22

 Manual regression .. 23

 Automated regression ... 23

 Recommended regression testing tools .. 23

3.4. Issue Reporting .. 23

 Guidelines ... 23

 Issue Template ... 24

 Recommended regression testing tools .. 24

4. Unit Testing .. 26

Page 10 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

4.1. Purpose ... 26

4.2. Scope .. 26

4.3. Approach .. 26

4.4. Recommended unit testing tool .. 26

5. Integration Testing .. 27

5.1. Purpose ... 27

5.2. Scope .. 27

5.3. Approach .. 27

5.4. Continuous Integration .. 28

6. System Testing .. 31

6.1. Purpose ... 31

6.2. Scope .. 31

6.3. Approach .. 31

7. Non-Functional Testing ... 33

7.1. Purpose ... 33

7.2. Scope .. 33

7.3. Reliability and Security... 33

 Code Coverage ... 33

 Abstract Interpretation ... 33

 Compiler Warnings ... 33

7.4. Testability ... 34

 Cyclomatic Complexity .. 34

 Modularity ... 34

7.5. Maintainability .. 34

 Coding Standard ... 34

 Duplicated Code ... 34

 Dead Code... 35

7.6. Metric Relations ... 35

 Recommended non-functional testing tool .. 35

8. Continuous Integration, Deployment and Delivery of BIECO 37

8.1. Continuous Integration .. 37

8.2. Continuous Deployment .. 38

8.3. Continuous Delivery ... 39

8.4. Common Practice .. 41

Page 11 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

8.5. Continuous Integration Tools ... 42

9. Verification Strategy .. 44

9.1. Test Plan for BIECO Platform .. 44

9.2. Test Plan for Use Case 1: The ICT Gateway .. 49

9.3. Test Plan for Use Case 2: AI Investments .. 54

9.4. Test Plan for Use Case 3: Smart Microfactory and FOTA 59

9.5. Test Plan for Use Case 4: Autonomous Navigation .. 64

9.6. Test Plan for Data collection and pre-processing tool 67

9.7. Test Plan for Vulnerability Detection tool .. 72

9.8. Test Plan for Vulnerability Propagation tool .. 73

9.9. Test Plan for Exploitability forecasting tool ... 74

9.10. Test Plan for Vulnerabilities forecasting tool .. 75

9.11. Test Plan for periodic self-checking of HW/SW failures tool 76

9.12. Test Plan for Co-Simulation tool ... 77

9.13. Test Plan for Forecasting systems failures tool .. 78

9.14. Test Plan for ResilBlockly tool .. 79

9.15. Test Plan for safeTBox tool ... 85

9.16. Test Plan for Accountability through Blockchain tool ... 85

9.17. Test scenario for the Runtime phase ... 86

10. Conclusions ... 91

11. References ... 92

Page 12 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

List of Figures

Figure 1 Use cases addressed by the BIECO project.. 14

Figure 2 Continuous Integration diagram .. 28

Figure 3 Black box testing .. 31

Figure 4 Metric effort comparison ... 35

Figure 5 Flow diagram for Continuous Integration ... 37

Figure 6 Flow diagram for Continuous Deployment ... 38

Figure 7 Flow diagram for Continuous Delivery .. 39

Figure 8 Collaboration framework ... 43

Figure 9 Actor scenarios for BIECO Platform ... 44

Figure 10 Audit framework main behaviour (taken from D5.1 Figure 4). 88

Figure 11 Software Testing Pyramid ... 91

Page 13 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

List of Tables

Table 1 Relative importance of Quality Attributes .. 16

Table 2 Quality Attributes assigned to the Test Levels .. 18

Table 3 Test basis of BIECO ... 20

Table 4 Coverage targets for acceptance: .. 22

Table 5 Pass/Fail criteria for test execution ... 22

Page 14 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

1. Introduction

BIECO is a holistic framework that will help companies to understand and manage the

cybersecurity risks and threats they are subject to when they become part of the ICT

supply chain. The framework, composed by a set of tools and methodologies, will

address the challenges related to vulnerability management, resilience, auditing of

complex systems, risk analysis, mitigation strategies and security certification

harmonization. The validation of BIECO will be achieved through the application of the

tools and methodologies to four use cases (energy, finance, industry, and navigation),

which include also complex IoT ecosystems.

The platform is an online software portal and orchestrator that is integrating all the tools

developed in BIECO project, making them easy to use and integrate in the company’s

workflow. The platform will be able to plug in all the use cases.

The platform developed will:

a) deploy the tools of BIECO’s framework;

b) manage the datasets of the project (use cases datasets and public datasets);

c) deploy the applications of the pilots.

BIECO’s building blocks will be deployed as containers within a cloud platform, which

will increase the efficiency of the developments and the use of the resources. As the

cybersecurity landscape evolves rapidly and new threats are emerging every day, the

framework will be instantiated in an iterative manner, which will enable a continuous

evaluation and improvement of the security of the supply chain.

The methodologies and tools provided by BIECO’s framework will be evaluated in four

use cases (Figure 1) from different sectors:

Figure 1 Use cases addressed by the BIECO project

1. ICT gateway (smart grid/energy): a software system that acts as a mediator with data

sources and actuators, and connects to the smart grid. Analysing the behaviour of the

system from the security perspective and making it resilient against attacks and failures

is essential, not only from the systems’ point of view, but also to avoid the propagation

of vulnerabilities to the smart grid.

2. Investment portfolio optimization platform (financial): consumers are consistently

ranking trust as a more important factor in their decision of where to deposit or invest

their money. Online investment platforms are complex ICT systems that manage

sensitive data and need to be trustworthy, so it is necessary to secure and monitor them

accordingly.

3. Smart microfactory (industry): microfactories are IoT based systems that need to be

connected to the Internet and to communicate among each other. However, this offers

opportunities to cybercriminals to exploit flaws and vulnerabilities, whether those flaws

may be human, hardware, or software based. Systems can be challenged via non-

invasive (stolen password, eavesdropping, or exploiting system bugs to gain access),

Page 15 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

semi-invasive (taking advantage of uncontrolled states or injecting faults into a system),

invasive (embedding software or modifying internal signals) or physical attacks.

4. Autonomous Navigation: is meant to serve as a pre-demonstration environment for

the internal workshop. It entails the assurance of trust and safety in the context of the

addition/update of a new module within the navigation environment, more specifically

the local planner.

Page 16 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

2. Approach

This chapter describes the verification and validation approach within the BIECO
Platform. For the testing of BIECO, the following general rules are applicable:

• Software testing is done according to the applicable guide described by sections
0 to 7;

• Reviews are done according to the applicable review process, namely peer review
by the individual developing partners.

2.1. Mapping to the development process

The development and the testing activities should run in parallel. Test implementation

activities should start as soon as development activities start. Clearly, the actual testing

will start as soon as the target of evaluation (TOE) is available.

2.2. Testing strategy

The quality attributes and their relative importance were derived from (Gorton, 2011).

The results are reported in the Table 1 below.

Table 1 Relative importance of Quality Attributes

Quality
attribute

Description
Relative

importance (%)

Maintainability
The degree of effectiveness and efficiency with
which the product can be modified.

22% (12/53)

Performance,
Scalability and

Capacity

The performance relative to the number of
resources used under stated conditions. 19% (10/53)

Reliability

The degree to which a system or component
performs specified functions under specified
conditions for a specified period of time.
Includes also ‘Availability’.

28% (8+7/53)

Security

The degree of protection of information and data
so that unauthorized persons or systems cannot
read or modify them and authorized persons or
systems are not denied access to them.

23% (12/53)

Usability

The degree to which the product has attributes
that enable it to be understood, learned, used and
attractive to the user, when used under specified
conditions. Includes also ‘Serviceability and
Manageability’.

8% (4+0/53)

There are a series of points noteworthy to mention:

The testing requirements [1] under the “Availability” attribute were merged under

‘Reliability’ to match the quality attribute description mentioned by ISO-25010.1

1 https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

Page 17 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

The non-functional requirements under ‘Serviceability and Manageability’ were

considered under ‘Usability’ since ISO-25010 does not mention this quality attribute. In

[1], this attribute refers to the ease of use, installation, and management of the platform

by the final user.

The relative importance in the Table 1 above gives an indication of how to divide the test

effort over the quality attributes.

Relative importance has been determined based on the priority levels assigned to the

non-functional requirements. The only levels considered are Must and Should, since they

are stated to be the levels that designate the requirements that must be satisfied by the

implemented platform. For every quality attribute, the importance was determined by

summing the assigned weight (Must=2, Should=1, others=0) for the priority level

assigned to a requirement pertaining to that quality. The total number of points across

all categories was 53. This score is meant only as a purely-indicative value.

The quality attributes will be measured using TIOBE’s Quality Index (TQI) as described in

section 7 Non-Functional Testing, which is also based on ISO-25010. This matching

guarantees that all quality attributes mentioned above are managed using a single

instrument. Serviceability and Manageability, which is not part of ISO-25010, will be

evaluated using user feedback and usability testing.

Although Maintainability is not a quality that can be tested through the usual testing

activities, it can be measured, monitored, and enforced statically. Hence, by testing

Maintainability we refer to the compliancy of the metrics detected on the source code.

Besides the quality attributes mentioned in [1], the testing activities also include tests for

functional suitability, namely fulfilling the Functional Requirements and Use Cases. Since

implementation efforts will follow the priority assigned in such a document, testing will

follow the same priority of requirement testing.

 Quality characteristics per test level

Testing based on quality attributes needs not be done for all quality attributes on each

test level. In this paragraph, the quality attributes are assigned to one or more test levels.

There can be different quality attributes for different sub-systems or modules. The

system’s software architecture is not yet defined at the moment of writing; thus, we refer

to such components based on the use cases diagrams.

Unit testing

Security should be tested in this test level only in the modules which code handles user

sensitive data.

Maintainability is checked at unit level by the developing partners that must comply,

individually, to the related non-functional requirements.

Integration test

Performance should be tested in this level because there might be several interactions

between different software components implemented by the same partner or by

Page 18 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

different partners. Such components will be identified in the software architecture, but

according to the Use Cases definitions, the following subsystems emerge: extensive

source code-based analyses, data manipulation and analysis, and forecasting are the

main subject of testing activities.

Functional suitability needs be tested at integration level due to the presence of several

architectural components that provide key functionality by interacting between each

other. These components may be implemented either by the same partner or by different

partners. In both cases, testing at this level is required.

System test

• Security should be covered in the system tests in order to avoid possible data

leaks and unauthorized accesses caused by unchecked sensible data exchange

between system components;

• Usability should be covered in the system tests because the user-experience

depends on the whole system. All the user interfaces must be tested here;

• Performance should be tested in this level because the overall performance of

the systems depends on multiple components working together;

• Reliability should be tested in this test level because malfunctioning in one

component may interrupt the service offered by the whole system;

• Functional suitability is thoroughly tested at this level to guarantee that the key

requirements (Must have) have been correctly implemented.

 Acceptance test

• Usability, because the final user has to approve the ease-of-use of the final

system;

• Functional suitability is finally also tested by the end user of the system, checking

whether it fulfils her expectations.

The quality attributes are assigned to the test level(s) they best fit in as follows:

Table 2 Quality Attributes assigned to the Test Levels

Quality Attribute Unit test Integration Test System Test Acceptance Test

Maintainability +

Performance +

Reliability ++

Security ++ +

Usability + ++

Functional suitability + ++ +

(Empty) The quality attribute is not an issue at this level;
+ This test level will cover this quality attribute;
++ The quality attribute will be covered thoroughly- it is a major goal at this
test level.

Page 19 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

3. Test Implementation Principles

This section describes the basic test implementation principles that underlie the entire

test approach for the BIECO project. This is further elaborated at the appropriate level in

each test specification section.

3.1. Traceability

Traceability of the requirements tested at each test level is achieved as follows:

• Traceability is done by associating test-case-identifiers to requirement identifiers

using dedicated traceability matrixes. The matrix has one column for the test id,

one column for the functional or non-functional requirement id, and a description

column dedicated for extra information;

• The matrices will be filled-in after the individual test design process and are part

of this document.

Checking whether the requirements are actually tested by each test is part of the review

process.

Each test case is traced to the corresponding software requirement(s), if applicable, and

eventually to the corresponding use-case (using an extra column).

Test specification documentation shall indicate which software requirements are

covered by each specified test.

3.2. Test Activities

The following activities have to be performed:

• Planning and Control

The main purpose of this activity is to provide guidance for execution and testing

completion activities.

• Execution

This activity mainly consists of executing the specified testware using the implemented

test infrastructure and generating a report on the results.

Prior the actual execution of the tests, the code will be automatically compiled and

checked for software quality control. Compiler errors and warnings will also be checked,

which will not allow L1 and L2 warnings/errors.

The execution of system testing and integration testing will be part of the continuous

integration activity. Their execution is hence fully automated.

However, for unit testing activities, the individual partners are responsible for adopting

their own strategy for testing as long as it complies with the test strategy described in

the previous section.

Hence, individual partners have the ability to individually specify their own test

infrastructure and test units based on the architecture of their own tool. However, for

what concerns testing results reporting and logging they must comply with the

guidelines mentioned below.

Page 20 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

 Completion

In this activity all testware, the test logs and test basis are archived and an evaluation

report is generated. The following guidelines apply for all test level:

• All tests executions must be tracked;

• Test coverage (code and possibly path), when available, and test results are the

main variables that need to be tracked;

• The execution logs must be in XML format, or easily convertible, in order to ease

automatic report generation, and must include, besides the other information,

their unique test id;

• Test execution logs must be uploaded on the designated platform;

• The tool that will be used for report generation has to support XML as output.

 Entry criteria

Before testing can start the following entry general criteria have to be met:

o Test basis must be available as described in Table 3;

o The code must be buildable without any compiler errors and the complete

environment to get from code to executable must be available;

o For static testing of documents (review) the test items must be under version control

and in ‘Internal proposal state’;

o For static testing of code, the test items must be buildable without compiler errors.

Table 3 Test basis of BIECO

Document ID Description Available

D2.1 Project Requirements M4
D2.2 Use Case Definition M9
D2.4 Architecture Update (Final) M12

D3.3
Report of the tools for vulnerability detection and

forecasting
M18

D4.1
Report on Self-checking of vulnerabilities and

failures
M30

D4.2
Report on methods and tools for the failure

prediction
M24

D5.2
First version of the simulation environment and

monitoring solutions
M24

D5.3
Final version of the simulation environment and

monitoring tools
M30

D6.1 Blockly4SoS model and simulator M10

Page 21 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Furthermore, for each test level, the following must be met as well.

Unit testing

• The technical deliverables from WP2 must be at least in an advanced draft

state, because the development itself and subsequently unit testing rely entirely

on the architecture described in D2.3.

• Testable codes and units are available.

• The test environment is ready.

Integration testing

• Unit testing has been successfully completed.

• Top-priority bugs found during unit testing must have been fixed and closed.

• Integration testing plan and test environment for integration testing are ready.

• The technical deliverables from WP2 must be in their final version state and

tools from WP3, WP4, WP5, WP6 must be at least in an advanced draft state, so

that they may be integrated in BIECO ecosystem.

System testing

• Integration testing has been successfully completed.

• Top-priority bugs found during integration testing must have been fixed and

closed.

• The technical deliverables from WP2 to WP7 must be in their final version state.

• Detailed system testing plans (using WP2 and WP8 pilots as a basis) are

defined and system testing environment is ready.

• Artefacts (i.e. source code) from test cases pilots defined by task T2.2 and T8.3

are available to be provided as input to the BIECO platform for system testing,

because this is the stage when one can talk about BIECO system: a working

platform and working tools (in a pretty advanced stage of development).

Acceptance testing

• System testing has been successfully completed and acceptance testing

environment is ready to be deployed (test cases from UNI, 7B, RES, IFEVS).

• Top-priority bugs found during system testing must have been fixed and closed.

• Top-priority functional and non-functional requirements are met.

• A beta version of the system is available to be deployed to the use case partners

providers (UNI, 7B, RES, IFEVS). The alpha version of the system is to be tested

internally by the consortium partners. The beta version is already a public release

(although with limited spread ability) meant to be tested and accepted by the

End-User (that is why it is called User Acceptance Testing).

 Acceptance criteria

This paragraph describes for the static and dynamic test the targets to decide whether

a test has passed or failed.

Page 22 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Minimal test Coverage

Minimal test coverage will be measured with different tools depending on the

development platform used by the developing partner. In general, for Java-based

projects, JUnit should be used as a test platform at the unit level and TTCN3 language,

which is a standardized testing language and TITAN tool, that executes TTCN3 tests.

Table 4 shows the minimal coverage percentages per test level.

Table 4 Coverage targets for acceptance:

Test level
% Code

Coverage
% Path

coverage
% Requirements

coverage
% Pilot test

case coverage

Unit Test 50% 50% - -
Integration Test - - 20% -
System Test - - 80% 33% (1/3)
Acceptance Test - - - 100% (3/3)

Requirement coverage will be measured using test execution traces and logs.

Pass/Fail criteria

The Table 5 below shows the criteria whether a test pass.

Table 5 Pass/Fail criteria for test execution

Test level Pass\fail Criterion

Unit Test
The part of the code tested complies with the expected behaviour
implemented by the test.

Integration Test
The requirement is correctly implemented and fully provides the
expected functionality within the constraint defined by the non-
functional requirements.

System Test
The requirement is correctly implemented and fully provides the
expected functionality within the constraint defined by the non-
functional requirements.

 Validation criteria

The validation criteria of delivered work products and the execution of acceptance test

cases is not part of this document. Such activities are indeed part of task T8.4 and the

related deliverable.

3.3. Regression Testing

Regression testing is the core activity that reduces the risk of introducing bugs in the

existing source code by adding functionality, fixing other bugs, or revising existing

features.

Regression testing is usually applied in the advanced stages of development when the

system has already started assuming a shape and there are several functionalities

already available to be used. The first regression tests should start in parallel with

system testing activities.

Page 23 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

The regression testing strategy adopted in this project will be a combination of manual

and automatic regression testing. This choice allows detecting types of bugs that cannot

be detected only by adopting a single strategy.

 Manual regression

Manual regression strategy is fully delegated to development teams, which should

manually check the correct execution of the changed functionalities and the adjacent

areas. Since this is a very time-consuming activity, it is only advised to perform after

important changes that might impact the core functionality of the system have been

made.

Additionally, in order to check the code related to minor changes, it is good for

development teams to prepare a checklist of minor functionalities that have to be

checked and check them all together once.

 Automated regression

This kind of testing consists in re-executing a selected set of unit and integration tests

that have been found to identify multiple bugs in the past. There are different regression

testing techniques depending the test coverage [2].

To select such a set, it is necessary to collect statistics of passed and failed tests during

past testing activities. However, developers and testers can also suggest specific tests

to be used based on their experience with the code and previous bugs. Automated

regression testing is considered part of continuous integration, applicable on all test

levels.

 Recommended regression testing tools

For regression testing we recommend Jenkins which is a popular CI orchestration tool.

It provides numerous plugins for integration with multiple test automation tools and

frameworks into the test pipeline. When it comes to test automation, Jenkins provides

plugins that help run test suites, gather and dashboard results, and provide details on

failures.2

3.4. Issue Reporting

 Guidelines

To maintain an effective bugfix workflow and make sure the open issues will be solved

in a timely manner, the reporter will follow some simple guidelines.

Before creating an issue, please do the following:

2 https://www.jenkins.io/doc/developer/testing/

https://www.jenkins.io/doc/developer/testing/

Page 24 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

• Check the Developer Documentation and User Guide to make sure the behaviour

you are reporting is really a bug, not a feature;

• Check the existing issues to make sure you are not duplicating somebody’s work;

• Make sure, that information you are about to report is a technical issue;

• If you are sure that the problem you are experiencing is caused by a bug, file a

new issue.

 Issue Template

Issue Reporting Template is a default placeholder for every new issue. Please note, that

higher level of detail in the report increases chance that a developer will be able to

reproduce the issue. It is hard to advice on any problems which cannot be replicated.

 Recommended regression testing tools

For issue reporting we recommend JIRA which is a very popular project tracking

software. This tool provides the full set of recording, reporting and workflow features, as

well as code integration, planning and wiki. With its robust set of APIs, JIRA can be

integrated with almost all tools your team uses.3

• Issue Title

Title is a vital part of bug report for developer and helps to quickly identify a unique issue.

A well written title should contain a clear, brief explanation of the issue, making emphasis

on the most important points.

• Issue Description

Preconditions

Describing preconditions is a great start, provide information on system configuration

settings you have changed, detailed information on entities created (Products,

Customers, etc.), Magento version. Basically, everything that would help developer set

up the same environment as you have.

Steps to reproduce

This part of the bug report is the most important, as a developer will use this information

to reproduce the issue. Problem is more likely to be fixed if it can be reproduced. One

should precisely describe each step one has taken to reproduce the issue. Much

information as possible should be included, sometimes even minor differences can be

crucial.

Actual and Expected result

To make sure that everybody involved in the fix are on the same page, precisely describe

the result you expected to get and the result you actually observed after performing the

steps.

Additional information

3 https://www.atlassian.com/software/jira/free

https://www.atlassian.com/software/jira/free

Page 25 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Additional information is often requested when the bug report is processed, one can

save time by providing logs, screenshots, repository branch and revision that has been

checked out to install BIECO or any other artifacts related to the issue at the tester’s

judgement.

Page 26 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

4. Unit Testing

4.1. Purpose

Unit testing is a level of software testing where individual units/ components of a

software are tested. The purpose is to validate that each unit of the software performs

as designed.

4.2. Scope

Unit Testing is the first level of software testing and is performed prior to Integration

Testing and focuses on the source code itself.

4.3. Approach

A unit is the smallest testable part of any software. It usually has one or a few inputs and

usually a single output. In procedural programming, a unit may be an individual program,

function, procedure, etc. In object-oriented programming, the smallest unit is a method,

which may belong to a base/ super class, abstract class or derived/ child class. Unit

testing frameworks, drivers, stubs, and mock/ fake objects are used to assist in unit

testing. Unit test frameworks will be used for continuous integration purposes as well,

to enable automated regression testing.

As unit testing is closely related to development, it will be adopted in the development

process itself.

4.4. Recommended unit testing tool

The unit testing tools depend on the programming language. For Java, the most

common tool is Junit, which is a Java unit testing framework that's one of the best test

methods for regression testing. An open-source framework, it is used to write and run

repeatable automated tests. As with anything else, the JUnit testing framework has

evolved over time.4

Also, TTCN-3, which is supported by TITAN tool, is a strongly typed testing language

used in conformance testing of communicating systems. TTCN-3 was developed by

ETSI in the ES 201 873 series, and standardized by ITU-T in the Z.160 Series. TTCN-3 is

a language for testing reactive systems, so the system accepts stimuli from the

environment and issues response.

4 https://junit.org/junit5/

https://junit.org/junit5/

Page 27 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

5. Integration Testing

5.1. Purpose

This chapter aims at defining and describing the overall integration testing process that

will be adopted within the scope of BIECO, based on the selection of an integration

testing approach and use of collaborative environments and continuous integration

tools to support it.

5.2. Scope

Integration Testing is the second level of testing performed after Unit Testing and before

System Testing. During Integration Testing, all individual units are combined and tested

as a group to expose faults in the interaction between integrated units.

5.3. Approach

There are several Integration Testing approaches and the most widely used are:

• Big Bang: is an approach to Integration Testing where all or most of the units are

combined together and tested at one go. This approach is followed when the

testing team receives the entire software in a bundle. Big Bang Integration

Testing should not be confused with System Testing, as the former tests only the

interactions between the units while the latter tests the entire system.

• Top Down: is an approach to Integration Testing where top-level units are tested

first and lower-level units are tested gradually after that. This approach is

followed when top-down development is performed. Usually, lower-level units are

not available during the initial phases of the development, so Test Stubs are used

to simulate them.

• Bottom Up: is an approach to Integration Testing where bottom level units are

tested first and top-level units are tested gradually after that. This approach is

followed when bottom-up development is performed. Usually, higher level units

are not available during the initial phases of the development, so Test Drivers are

used to simulate them.

Among the aforementioned Integration Testing approaches the Bottom-up approach is

the most suitable for the case of the BIECO Platform. The overall platform consists of

individual components (i.e., toolboxes), which are implemented independently by the

relevant partners, and will be available as individual microservices, unified under the

BIECO platform. Both the top-down and the bottom-up approaches fit well in the

Continuous Integration testing strategy that will be adopted for the implementation of

the final platform, since they allow the integration testing to begin in parallel to the actual

development of the platform. They provide higher flexibility, since the individual

components are integrated to the broader system as soon as they are available and

functional, while the behavior of components that are not ready yet are simulated

through Test Drivers and Stubs, leading in that way to a reduced time to market. Between

the two hierarchical approaches, the bottom-up approach is more suitable, since the

bottom-up development process will be adopted for the implementation of the platform.

- Actually, the development will start from the low-level individual functionalities that the

Page 28 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

overall platform -should -provide, and will progress with gradual integration of these

functionalities into broader components and modules.

Before starting Integration Testing, it is important to ensure that there is at least one

proper -design document available, where interactions between each unit are clearly–

specified. In D2.4 Architecture Update (Final) deliverable, main system components and

interfaces between them are specified. In addition, it is important that each separate unit

is Unit tested prior to Integration Testing and that all tests are properly automated to the

greatest extend, since manual testing can be inefficient because developers have to

retain many build artefacts and test them manually. This can be achieved by enabling

Continuous Integration, i.e., the process of automating the build and testing of code

every time a team member commits changes to a collaborative environment.

5.4. Continuous Integration

The overall integration approach of BIECO will be based on the use of a collaborative

environment, continuous integration tools and a plan of releases. The above strategy will

allow on the one hand all developers to progress with the development of their own

module working in independent processes, also using their own testing tools, and on the

other hand to integrate their modules with each other into major releases, adhering to

the foreseen plan of releases. This will also result in detecting deficiencies early on in

development, where issues are typically smaller and easier to resolve. In particular,

BIECO will use Continuous Integration (Figure 2) in order to automate the execution of

Unit and Integration Test scripts included as part of the main toolkit on which all main

APIs of the modules are integrated (i.e. Manage TD, Manage Dependability, Manage

Energy Consumption, Forecaster and Decision Support Module). These scripts initially

perform a series of Unit Tests in order to assert the smooth operation of each module

and ensure that the APIs are working as expected. While running, they invoke a number

of testing components, each one isolated from the others, to ensure that every resource

or item endpoint works exactly as specified and documented. As soon as Unit Tests are

successful, Integration Test comes next. All individual units (i.e., modules) are combined

according to the Integration approach described above, and tested as a group to expose

faults in the interaction between integrated units while reducing the risk of new updates

causing unexpected side effects.

Figure 2 Continuous Integration diagram

Page 29 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

One of the most widely used tools for Continuous Integration is Jenkins. Jenkins is used

to build and test software projects continuously, allowing developers to integrate

changes to their projects easily regardless of the platform they are working on. It can be

integrated with a number of testing and development technologies and is entirely

configurable via its friendly web GUI. Typical use-cases of Jenkins involve building an

application from a version control system and running a series of automated tests. On

the other hand, by using Jenkins immediate testing of the latest changes can be

achieved and developers can get immediate feedback on the functionality of the written

code. In case a bug emerges, the code can be reverted easily to a bug-free state without

wasting too much time for debugging.

By enabling Jenkins in BIECO, the execution of tests will be triggered automatically every

time a change in the code is pushed to the web-based Git-repository manager (e.g.,

GitHub, GitLab, etc.). As soon as the tests execution is completed, some useful pieces

of information can be displayed such as the number of tests that were executed, how

long did it take to execute and the details of a test failure. With Jenkins, automated

testing the details of a particular failure can be accessed easily by just clicking on the

corresponding link. Moreover, team members who will need to know when the tests have

been completed along with the corresponding test results can be notified through

Jenkins’ support for email notifications.

Besides Jenkins there are other CI tools like:

• Bitbucket Pipelines which is a CI tool directly integrated into Bitbucket, a cloud

version control system offered by Atlassian. Bitbucket Pipelines is an easy next

step to enable CI if your project is already on Bitbucket. Bitbucket Pipelines are

managed as code so you can easily commit pipeline definitions and kick off

builds. Bitbucket Pipelines, additionally offers CD. This means projects built with

Bitbucket Pipelines can be deployed to production infrastructure as well.

• Amazon Web Services (AWS) is one of the most dominant cloud infrastructure

providers in the market. They offer tools and services for all manner of

infrastructure and code development tasks. CodePipeline is their CI Tool

offering. CodePipeline can directly interface with other existing AWS tools to

provide a seamless AWS experience.

• CircleCI is CI Tool that gracefully pairs with Github, one of the most popular

version control system cloud hosting tools. CircleCi is one of the most flexible CI

Tools in that it supports a matrix of version control systems, container systems,

and delivery mechanisms. CircleCi can be hosted on-premise or used through a

cloud offering.

• Travis CI is a CI platform that automates the process of software testing and

deployment of applications. It’s built as a platform that integrates with GitHub

projects so that developers can start testing their code on the fly. With customers

like Facebook, Mozilla, Twitter, Heroku, and others, it’s one of the leading

continuous integration tools on the market.

For the implementation of the BIECO project we chose Jenkins because is the number

one open-source for automating the project.

Advantages of using Jenkins are the followings:

▪ It is an open-source tool with great community support.

▪ It is easy to install.

Page 30 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

▪ It has 1000+ plugins to ease your work. If a plugin does not exist, you can code it

and share it with the community.

▪ It is free of cost.

▪ It is built with Java and hence, it is portable to all the major platforms.

Page 31 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

6. System Testing

6.1. Purpose

This chapter aims at defining and describing the overall system testing process that will

be adopted within the scope of BIECO, based on the selection of a system testing

approach and partial use of collaborative environments and continuous integration tools

to support it.

6.2. Scope

System Testing is the third level of testing performed after Integration Testing and

before Acceptance Testing. During System Testing, the software complete and

integrated software is tested to verify if the functional requirements are correctly

implemented.

6.3. Approach

The most widely used approach for system testing is Black box testing also known as

Behavioral Testing. Black box testing is a software testing method in which the internal

structure/design/implementation of the item being tested is not known to the tester.

These tests can be functional or non-functional, though usually functional.

This method is named so because the software program, in the eyes of the tester, is like

a black box; inside which one cannot see. This method attempts to find errors in the

following categories:

• Incorrect or missing functions;

• Interface errors;

• Errors in data structures or external database access;

• Behavior or performance errors;

• Initialization and termination errors.

Following are some techniques that can be used for designing black box tests.

• Equivalence Partitioning: It is a software test design technique that involves

dividing input values into valid and invalid partitions and selecting representative

values from each partition as test data.

• Boundary Value Analysis: It is a software test design technique that involves the

determination of boundaries for input values and selecting values that are at the

boundaries and just inside/ outside of the boundaries as test data.

BIECO

Platform
Input Output

Figure 3 Black box testing

Page 32 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

• Cause-Effect Graphing: It is a software test design technique that involves

identifying the cases (input conditions) and effects (output conditions),

producing a Cause-Effect Graph, and generating test cases accordingly.

Page 33 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

7. Non-Functional Testing

7.1. Purpose

The goal of non-functional testing is to retrieve metrics from the targeted source code

that give a measure to indicate maintainability, reliability, compatibility, security and to

some extend functional suitability and performance efficiency.

7.2. Scope

The focus is on code quality as opposed to e.g., quality of requirements or the

architecture. Also, after describing the metrics, indicators for the effort to improve the

software are given and the relations between metrics are described as well.

7.3. Reliability and Security

 Code Coverage

In order to test the functionality of source code, it is important that developers write unit

tests and make sure that these tests are applied via automated scripts to detect

regressions as soon as possible. The maturity of unit tests can be measured with the aid

of “statement coverage” and “branch coverage”

These metrics indicate the percentage of tested lines of code and the percentage of

tested branches in the software, respectively. If the test coverage is low then either some

parts of the code are not tested at all or some parts of the code are not reachable at all.

The TQI takes the average of the “statement coverage” and the “branch coverage”.

 Abstract Interpretation

Abstract interpretation, also known as “deep flow analysis”, is a rather new technology

that is capable of finding all kinds of fatal errors in software without actually running it.

This is done by inspecting all possible execution paths through the code. In this way

issues can be found such as “null pointer dereferences”, “array out of bounds”, “division

by zero”, “memory leaks” and “resource leaks” (for instance a database connection is

opened but never closed for a certain execution path). Therefore, abstract interpretation

will also cover some security related aspects.

The detected violations of this kind of fatal errors are weighted based on their

importance and quantity. The eventual result is mapped on a scale between 0 and 100

according to a method as described in [3]. This is called the “compliance factor” or in

short “compliance”.

 Compiler Warnings

Most software programs must be compiler before they can be executed. A compiler

issues both compiler errors and compiler warnings during this process. If there are

compiler errors in a program it can't be executed. On the other hand, compiler warnings

Page 34 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

are non-fatal but are an important indication whether there are still important issues in

the software.

Compiler warnings are valued in the TQI in the same way as abstract interpretation. The

number of occurrences is taken into account together with the importance of a compiler

warning. This is the compiler warning compliance. The results are mapped on a scale

between 0 and 100 according to a method as described in [3]. The compliance of

compiler warnings is valued as defined in the table below.

7.4. Testability

 Cyclomatic Complexity

The cyclomatic complexity of a function calculates the number of linear-independent

execution paths of a function as defined by McCabe [4]. This metrics is used to measure

the code complexity and testability of a software system. Usually, the average

cyclomatic complexity of all functions is measured. An average cyclomatic complexity

lower than 3 is generally considered as being very good.

 Modularity

The modularity of a system at code level is measured by calculating the number of

external dependencies per module, this is also called “fan out”. In case the average

number of dependencies per module is high, it becomes hard to understand the software

system and to test it in isolation. Moreover, the chances to reuse parts of the system is

low in such a case.

7.5. Maintainability

 Coding Standard

TIOBE is a high-tech company specialized in measuring and monitoring software code

quality and they defines and maintains coding standards for various programming

languages for their customers. These standards consist of generally accepted rules to

which developers should adhere to in order to prevent errors and maintenance issues.

The coding standard TQI value is calculated in a similar way as is done for metrics

“compiler warnings” and “abstract interpretation”. Besides the number of violations

against the standard, also the severity of the violations and the size of the system is

taken into account. The calculated results are mapped on a scale from 0 to 100

according to the method as described in [3]. The TQI value of this compliance factor for

coding standards is as follows.

 Duplicated Code

If a software system contains a lot of similar code at various locations, then this might

influence the maintainability of the system. Suppose that a bug has been fixed in such a

Page 35 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

piece of code, then there is chance that the bug won't be fixed at one of the duplicated

code locations.

Duplicate code has the following TQI score. Duplication measured by identifying 100

consecutive identical tokens without taking comments and layout into account.

 Dead Code

Dead code in a software system is unnecessary waste. It costs maintenance effort.

Despite the fact that this metric only counts for a very small part of the total code quality,

it is a good indication of tidiness of the system.

7.6. Metric Relations

In order to improve on a specific metric, one has to put effort into the software

engineering activities, aimed at this improvement. How much effort that will cost, can’t

exactly be described. What can be described though, is the comparison in effort to

improve on a specific metrics. If we then consider the influence metrics have on each

other, strategic planning can be applied.

The Figure 4 above indicates the effort to improve on a metric. The larger the box, the

more effort it will cost to improve on that particular metric. From there the prioritization

scheme can be retrieved.

 Recommended non-functional testing tool

For Non-Functional testing we recommend Apache JMeter™ application which is open-

source software, a 100% pure Java application designed to load test functional behavior

and measure performance. It was originally designed for testing Web Applications but

has since expanded to other test functions.5

5 https://jmeter.apache.org/

Figure 4 Metric effort comparison

Page 36 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Apache JMeter may be used to test performance both on static and dynamic resources,

Web dynamic applications.

It can be used to simulate a heavy load on a server, group of servers, network or object

to test its strength or to analyze overall performance under different load types.

Apache JMeter features include:

• Ability to load and performance test many different applications/server/protocol

types:

o Web - HTTP, HTTPS (Java, NodeJS, PHP, ASP.NET, …)

o SOAP / REST Webservices

o FTP

o Database via JDBC

o LDAP

o Message-oriented middleware (MOM) via JMS

o Mail - SMTP(S), POP3(S) and IMAP(S)

o Native commands or shell scripts

o TCP

o Java Objects

• Full featured Test IDE that allows fast Test Plan recording (from Browsers or

native applications), building and debugging.

• CLI mode (Command-line mode (previously called Non GUI) / headless mode) to

load test from any Java compatible OS (Linux, Windows, Mac OSX, …)

• A complete and ready to present dynamic HTML report

• Easy correlation through ability to extract data from most popular response

formats, HTML, JSON, XML or any textual format

• Complete portability and 100% Java purity.

• Full multi-threading framework allows concurrent sampling by many threads and

simultaneous sampling of different functions by separate thread groups.

• Caching and offline analysis/replaying of test results.

• Highly Extensible core:

o Pluggable Samplers allow unlimited testing capabilities.

o Scriptable Samplers (JSR223-compatible languages like Groovy and

BeanShell)

o Several load statistics may be chosen with pluggable timers.

o Data analysis and visualization plugins allow great extensibility as well as

personalization.

o Functions can be used to provide dynamic input to a test or provide data

manipulation.

o Easy Continuous Integration through 3rd party Open-Source libraries for

Maven, Gradle and Jenkins.

Page 37 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

8. Continuous Integration, Deployment and Delivery of BIECO

8.1. Continuous Integration

Continuous integration boils down to the practice where developers merge together their

sources in a code repository [5]. A build system then builds the sources and test

frameworks run their available tests. Doing these steps manually is laborious and

cumbersome. However, by automating this process, it becomes very powerful as build

and test results are quickly available and created consistently.

Continuous integration and Continuous Delivery are the processes in which the

development team involves frequent code changes that are pushed in the main branch

while ensuring that it does not impact any changes made by developers working in

parallel (Figure 5). The aim of it is to reduce the chance of defects and conflicts during

the integration of the complete project.

Figure 5 Flow diagram for Continuous Integration

Continuous Integration is a development methodology that involves frequent integration

of code into a shared repository. The integration may occur several times a day, verified

by automated test cases and a build sequence. It should be kept in mind that automated

testing is not mandatory for CI. It is only practiced typically for ensuring a bug-free code.

The benefits of continuous integration for our application development lifecycle are

listed below:

• Early Bug Detection: If there is an error in the local version of the code that has

not been checked previously, a build failure occurs at an early stage. Before

proceeding further, the developer will be required to fix the error. This also

benefits the QA team since they will mostly work on builds that are stable and

error-free.

• Reduces Bug Count: In any application development lifecycle, bugs are likely to

occur. However, with Continuous Integration and Continuous Delivery being used,

the number of bugs is reduced a lot. Although it depends on the effectiveness of

the automated testing scripts. Overall, the risk is reduced a lot since bugs are

now easier to detect and fix early.

Page 38 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

• Automating the Process: The Manual effort is reduced a lot since CI automates

build, sanity, and a few other tests. This makes sure that the path is clear for a

successful continuous delivery process.

• The Process Becomes Transparent: A great level of transparency is brought in

the overall quality analysis and development process. The team gets a clear idea

when a test fails, what is causing the failure and whether there are any significant

defects. This enables the team to make a real-time decision on where and how

the efficiency can be improved.

• Cost-Effective Process: Since the bug count is low, manual testing time is greatly

reduced and the clarity increases on the overall system, it optimizes the budget

of the project.

8.2. Continuous Deployment

Continuous deployment is similar to continuous integration. It is the process where your

application can be deployed at any time to production or test environment if the current

version passes all the automated unit test cases [6].

Continuous Deployment focuses on the deployment; the actual installation and

distribution of the bits. During a deployment, the application binary/packaging can

transverse the topology on where the application or application infrastructure needs to

serve traffic (Figure 6). In the traditional sense, Continuous Deployment focuses on the

automation to deploy across environments or clusters. As you traverse environments

from non-prod to the staging environment and eventually to production, the number of

endpoints you deploy to increases. Continuous Deployment focuses on the path of least

resistance to get the software into the needed environment(s).

Figure 6 Flow diagram for Continuous Deployment

Deployments encompass two pairs: the installation/activation pair and the

uninstallation/deactivation pair. From a pure deployment standpoint, leveraging a rolling

deployment is the de facto standard. A rolling deployment allows for old application

nodes to be replaced in an incremental interval, typically one by one, until all the nodes

are the new version. The application instance/node being upgraded is taken out of the

Page 39 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

load balancer pool, then when the installation is complete, it is reconstituted back into

the pool.

Having a clear map of the topology, especially if the infrastructure is elastic or on-

demand, is key to understanding where your artifacts are going. Similar to the goals of

Continuous Integration, keeping the deployment fast is a good goal to have. The

appearance of speed can be there if certain tasks have to be run in parallel (i.e.: spinning

up the infrastructure for artifacts to be deployed onto).

8.3. Continuous Delivery

Continuous delivery is the process of getting all kinds of changes to production. Changes

may include configuration changes, new features, error fixes etc. They are delivered to

the user in a safe, quick and sustainable manner [7] .

The goal of Continuous Delivery is to make deployment predictable and scheduled in a

routine manger. It is achieved by ensuring that the code always remains in a state where

it can be deployed whenever demanded, even when an entire team of developers is

constantly making changes to it (Figure 7). Unlike continuous integration, testing and

integrating phases are eliminated and the traditional process of code freeze is followed.

Figure 7 Flow diagram for Continuous Delivery

The benefits of continuous delivery for our application development lifecycle are listed

below:

• Reducing the Risk: The main goal of Continuous Delivery is to make deployment

easier and faster. Patterns like blue-green deployment make it possible to deploy

the code at very low risk and almost no downtime, making deployment totally

undetectable to the users.

• High-Quality Application: Most of the process is automated, testers now have a

lot of time to focus on important testing phases like exploratory, usability,

security and performance testing. These activities can now be continuously

performed during the delivery process, ensuring a higher quality application.

Page 40 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

• Reduced Cost: When an investment is made on testing, build and deployment,

the product evolves quite a lot throughout its lifetime. The cost of frequent bug

fixes and enhancements are reduced since certain fixed costs that are

associated with the release is eliminated because of continuous delivery.

• Happier Team and Better Product: Since the aim of Continuous Delivery is to

make a product release painless, the team can work in a relaxing manner.

Because of frequent release, the team works closely with users and learn what

ideas work and what new can be implemented to delight the users. Continuous

user feedback and new testing methodologies also increase the product’s

quality.

The process flow for performing continuous delivery:

The new and updated code is finally ready for the next stage, i.e. testing or deployment. In the next section, we
shall discuss some basic checklist for continuous delivery.

After the code is committed, another build of the source code is run on the integration system.

The changes are now ready to be checked in. This process is known as a “code commit.”

In case there is any conflict, they should be fixed to make sure the changes made are in sync with the main
branch.

Because of the newly merged copies, syncing the code with the main branch may cause certain conflicts.

If there are any incoming changes, they should be accepted by the developer to make sure that the copy he is
uploading is the most recent one.

After a successful build, the developer checks if any of his team members or peers have checked-in anything
new.

A local build is executed which ensures that no breakage is occurring in the application because of the code.

Once coding is completed, the developer needs to write automated unit testing scripts that will test the code.
This process is optional, however, and can be done by the testing team as well.

The developer builds their code on the local system that has all the new changes or new requirements.

Page 41 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

8.4. Common Practice

Best practices for Continuous Integration, Continuous Deployment and Continuous

Delivery that should be followed by all software professionals as well as organizations

are the following:

• Keep a Central Repository: A large project involves multiple developers

constantly pulling and pushing codes that are organized together to build the

application. A revision control system should be kept that will help the team to

get the latest clean code from the repository at any point of time during the

development cycle.

• Automated Deployment and Build: Automated build ensures that the team only

gets the latest source code available in the repository and it is compiled every

time before the final product is built. Automated Build cycle also allows the

developers to push the code into different environments quickly, saving a lot of

time.

• Include Automated Unit Testing: This will help the team to detect bugs before

the code is pushed in the repository. Unit testing, as well as interface testing,

have greater clarity on the product’s state before it is released. Testing phase

becomes easier and issues can be fixed rapidly.

• Test in the Production’s Clone: Often an application that has passed all testing

scenarios fails when it is deployed in production because of the environment is

different. To prevent this, testing should be executed in an environment that is

exactly the same as the production environment. This will allow testers and

developers to understand how the application behaves before it is deployed into

production.

• Commit the Code Everyday: To prevent any conflicts, developers should make it

a mandatory practice to commit the code every day in the repository. It provides

very little scope to look for errors occurring due to conflicts. It also improves the

communication between the team members and allows developers to divide

their work into small sections and track the progress of their code.

• Build Faster: Continuous integration fundamental purpose is to get feedback

instantly after a build. A quick and perfect build keeps the development team

ahead and prevents any bottleneck that may occur during unit testing.

• Everyone can see what others are doing: Continuous Integration and Continuous

Delivery essential goal is to make the communication between team members

smooth and effective. Everyone should have a clear idea regarding the state of

the application and the latest changes that are made on it. Builds that have failed

should be reported immediately to the stakeholders who can then make the

relevant changes. IMs, Emails and other monitoring tools are used by various

organizations to monitor the state of the builds.

The first step is to maintain a common repository. If possible, each component of the

BIECO will have its own placeholder in the repository, where each developer can commit

its sources or so-called artifacts. This is needed so a Continuous Integration tool (CI)

can retrieve these sources to provide it to a build system. During continuous integration,

continuous deployment, and continuous delivery the process is designed to deal both

with tools that can provide the source-code (preferable from the common repository), as

well as already built, proprietary tools.

Page 42 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

The second step is to have one or more build systems, one for each component. These

build systems will be provided with the sources, retrieved from the repository by the CI.

The build will be invoked by the CI as well. The CI then can verify, looking at the standard

out or standard error whether the build succeeded or not.

Lastly, the third step is used to plug-in test and quality frameworks. The CI will invoke the

configured frameworks, so each framework can fulfill its duty. The CI can also collect

the results from these frameworks for presentation and reporting purposes.

The steps above are repeated at least once a day. It is common practice to apply an

incremental approach to speed-up the process and have quick feedback.

8.5. Continuous Integration Tools

For Continuous Integration [8] there are the following tools:

• Jenkins: An open-source Java-based CI tool that is platform independent. The

best part is, it can be configured both using a console or a graphical user

interface.

• Team City: This is a cloud-based CI server, developed by JetBrains. Although the

enterprise edition is paid, there is a free version as well that allowed 3 build

agents and a maximum of 100 builds.

• Travis CI: One of the oldest Continuous Integration and Continuous Delivery

solution, the tool is free for all projects that are open source. It is hosted on

GitHub and based on the usage you can choose the appropriate package from

several options.

• Gitlab: The CI developed by GitLab is cloud-based, hosted on their official

website. It is supported on multiple platforms and has both free and paid

versions.

• Circle CI: A cloud-based CI tool, it supports GitHub and languages like Node.js,

Java, Ruby, Python, Scala, Haskell, and PHP. It allows the parallel building of your

code.

• Codeship: This is also another hosted tool that comes with basic as well as

enterprise editions. The basic version comes with several packages and with

expensive enterprise edition, it brings you more options to run parallel builds.

• SonarQube: This is a Code Quality Assurance tool that collects and analyzes

source code, and provides reports for the code quality of your project. It

combines static and dynamic analysis tools and enables quality to be measured

continually over time.

To enable continuous integration, BIECO employs Jenkins. Jenkins is an automation

server that enables one to automate repetitive actions during software development.

Jenkins highly integrates with version control tools and build systems. It is capable of

executing scripts on external nodes, making it a powerful tool to be the center of

integration for a software project.

To apply the measuring method, the code quality framework SonarQube which

integrates with Jenkins, build systems, repositories and numerous code checkers.

Depending on the used programming language, different code checkers can be

employed to measure the TQI.

Page 43 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

In Figure 8 is represented the BIECO Collaboration framework:

Figure 8 Collaboration framework

Page 44 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9. Verification Strategy

This Section recalls the general goals of the project, already introduced in D2.1, with the

aim of deriving from them the specific goals of UC1, as well as requirements and KPIs

related to the ICT GW Use Case that are presented in the following sections. The general

goals are listed below:

• G1 – Providing a framework that will allow the reinforcement of trust in ICT

supply chains;

• G2 – Performing advanced vulnerability assessment over ICT supply chains;

• G3 – Achieving resilience in ecosystems formed by unreliable components;

• G4 – Extending auditing process to evaluate interconnected ICT systems;

• G5 – Providing advanced risk analysis and mitigation strategies that support a

view of the complete ICT supply-chain;

• G6 – Performing evidence-based security assurance and a harmonized

certification for ICT systems;

• G7 – Industrial validation of BIECO’s framework within IoT ecosystems.

9.1. Test Plan for BIECO Platform

BIECO Platform has 3 actors:

• Tool Developer;

• End-User;

• Platform Administrator.

The scenarios for each of the actors is depicted in Figure 9.

Figure 9 Actor scenarios for BIECO Platform

The test scenarios described in the next sections are based on this figure.

Page 45 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

The tools involved in the Test Plan for BIECO Platform:

Tool How it is involved

jUnit6
Unit tests are written for all of the components. At each run, all tests
must pass.

SonarQube7

This tool will provide quality and security assessment for all the source
code written for the platform. Vulnerabilities and bugs will be
discovered easier and solved before proceeding to the next steps of
development and testing.

Selenium8
Automated Selenium based tests will be designed and deployed in
order to assure system integration and platform validity.

9.1.1. Test scenario identifier 1

Test Scenario ID HS-TS-01
Test Scenario Name User Authentication and Validation

Test Case
Description

Testing the functionalities associated with the user (actor)
access to the platform. This includes: user register, user
activation, user authentication.

Actors End-User, Tool Developer, Platform Administrator
Pre-Conditions Actor must have a valid email address and access to it.

Post-Condition
Actor will have a valid user account and be able to login to the
platform.

Associated goal G1

9.1.1.1 Test-case-identifier 1.1
Test Case ID HS-TC-01-1

Test Case
Description

Actor can register for a new End-User account.

Pre-Conditions
Actor must have a valid email address. Actor must introduce
information in all required fields. Email address must be valid
and accessible by the Actor

Test Steps

- Introduction of valid data into the fields;
- Introduction of valid data into the fields with a repeated

email address;
- Introduction of data that does not comply with platform

requirements.
Test Data Both valid and invalid faked user information.

Expected Result

- Platform must allow the existence of only one copy of an
email address;

- Platform must invalidate and prevent registration for users
that enter invalid data.

Post Condition

- Actor must have an activate and valid account, if valid data
was used;

- Registration must be prevented if invalid data or repeated
email address was used.

Actual Result The users table must have only valid information entered into it.

6 https://junit.org/junit5/
7 https://www.sonarqube.org/
8 https://www.selenium.dev/

Page 46 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.1.1.2. Test-case-identifier 1.2

Test Case ID HS-TC-01-2

Test Case Description Actor can login into the BIECO platform.
Pre-Conditions Actor must have an activated account.

Test Steps

- Introduction of valid data into the email and password
fields;

- Introduction of invalid data into the email and password
fields;

- Check when the fields are blank and submit button is
clicked.

Test Data Both valid and invalid (faked) actor credentials.

Expected Result

- Platform must allow user to login only if the email and
password entered are valid and actor has an activated
account;

- When the required fields are not entered correctly the
user should not be able to login and an error message
should be displayed.

Post Condition
- Actor is successfully logged in the platform;
- Login must be prevented if invalid data was used.

Actual Result The user has successfully logged in or not.

9.1.2. Test scenario identifier 2
Test Scenario ID HS-TS-02

Test Scenario Name Template Definition and Visualisation

Test Case Description
Testing the functionalities associated with the template
creating and editing. This includes: template create, save,
edit, delete and visualisation.

Actors End-User, Tool Developer, Platform Administrator
Pre-Conditions An activated and authenticated user

Post-Condition
Actor will have a valid template and will be able to use it in
the Job section.

Associated goal G2, G3, G4, G5

9.1.2.1. Test-case identifier 2.1

Test Case ID HS-TC-02-1

Test Case Description Actor can create and edit his own template
Pre-Conditions Actor must be correctly authenticated in the platform.

Test Steps

- Create a valid template where all the tools have inputs
and outputs;

- Attempt to create an invalid template where no tools are
defined.

Test Data Both valid and invalid template creation

Expected Result

- Platform allows the creation of a valid template;
- Error message when the template is not valid, preventing

the template to be saved;
- The save button saves the valid template in the database;
- The actor can set the visibility of the template created

between Public and Private possibilities;
- Actor must be able to edit only the templates created by

him.

Page 47 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Post Condition
Actor will have a valid template which will be use after in the
Job section.

Actual Result The actor has successfully created a template

9.1.2.2. Test-case identifier 2.2
Test Case ID HS-TC-02-2

Test Case Description
Actor can view public templates and the ones created by
him.

Pre-Conditions Actor must have an activated and authenticated account.

Test Steps

- Visualisation the templates created by actor;
- Visualisation of public templates;
- When the template is private the platform must not

allow the other user to view or use it.
Test Data - User and public templates.

Expected Result

- Actor is able to visualise the public templates and the
ones created by him;

- The Private templates should not be displayed to other
users.

Post Condition Actor must successfully view the correct templates.
Actual Result Actor can successfully view the correct templates.

9.1.3. Test scenario identifier 3
Test Scenario ID HS-TS-03

Test Scenario Name Job Creation and Execution

Test Case Description

Testing the functionalities associated with the job creating
and execution. This includes: the job definition, save, edit,
view and run, the history information regarding the execution
of the job.

Actors End-User, Tool Developer, Platform Administrator
Pre-Conditions An activated and authenticated user
Post-Condition Actor will have a defined Job.
Associated goal G2, G3, G4, G5

9.1.3.1. Test-case identifier 3.1

Test Case ID HS-TC-03-1

Test Case Description Actor can create a Job.
Pre-Conditions Actor must have an activated and authenticated account.

Test Steps
- Create a new Job, introduce the name of the job and

select the desired Template;
- Save the new Job if all fields are completed;

Test Data - Job name and desired Template

Expected Result
Correct generation of Job with the name and Template
provided.

Post Condition Existence of generated Job.
Actual Result The Job has the name and Template provided by the actor.

Page 48 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.1.3.2. Test-case identifier 3.2

Test Case ID HS-TC-03-2

Test Case Description Actor can run a Job.
Pre-Conditions Actor must have an activated and authenticated account.

Test Steps

- Opening an existing Job;
- Input the needed data in the fields;
- Input invalid and/or incomplete data;
- Click the run button;

Test Data Depending on tools used in the Template

Expected Result

- Prevention of Job start if the data is incomplete or
invalid;

- Job is running in parameters if all the provided
information is correct.

Post Condition Job information from the Platform is presented to the actor.

Actual Result
The table of events and other data is visible in real-time on
the UI.

9.1.4. Test scenario identifier 4

Test Scenario ID HS-TS-04

Test Scenario Name Tool Registration

Test Case
Description

Testing the functionalities associated with the tool registration
and un-registration. This includes: the tool definition, save,
edit, view.

Actors Tool Developer, Platform Administrator
Pre-Conditions An activated and authenticated user
Post-Condition Actor will have a registered Tool.
Associated goal G2, G3, G4, G5

9.1.4.1. Test-case identifier 4.1

Test Case ID HS-TC-04-1

Test Case
Description

Actor can register a Tool.

Pre-Conditions Actor must have an activated and authenticated account.

Test Steps
- Registration of a new Tool, introduce the name of the Tool

and introduce the inputs required for the Tool functionality;
- Save the new Tool if all fields are completed;

Test Data Tool name and inputs required
Expected Result Correct registration of Tool with the name and inputs provided.
Post Condition Existence of a registered Tool.
Actual Result The Tool has the name and inputs provided by the actor.

Page 49 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.1.4.2. Test-case identifier 4.2

Test Case ID HS-TC-04-2

Test Case Description Actor can unregister a Tool

Pre-Conditions
Actor must have an activated, authenticated account and
Tool Registered.

Test Steps
- Check that actor is able to delete his Tool;
- Check that Tool get deleted or not.

Test Data Registered Tool
Expected Result Correct unregistered Tool.
Post Condition Delete a Tool from database
Actual Result The Tool has unregistered and deleted from the database

9.2. Test Plan for Use Case 1: The ICT Gateway

Regarding UC1, the main goal is analyzing the behavior of the ICT GW from the security

perspective, improving its trustworthiness and making it resilient against attacks and

failures. This is particularly important, not only from the ICT GW point of view, which is

the software that can be used for validating some of the BIECO solutions and tools, but

also to avoid the propagation of vulnerabilities to the smart grid and the other systems

interconnected with the ICT GW itself.

In BIECO, the goals related to the ITC GW are:

• UC1_G1 - detecting vulnerabilities that might exist in the software, and determine if

a possible vulnerability of the gateway could propagate to other software

components of the smart grid (WP3);

• UC1_G2 - performing self-checks that allow to detect residual vulnerabilities,

software and hardware failures; using simulation tools that enable a virtual

evaluation when an adversary is influencing clock synchronization (WP4);

• UC1_G3 - auditing and monitoring the integration with other third-party systems and

components, as well as the correct runtime behavior of the gateway and its

subsystems (WP5);

• UC1_G4 - performing a risk assessment and threat modelling of the status of the

system, taking into account also how a vulnerability in the ICT GW could impact the

smart grid (WP6);

• UC1_G5 - obtaining guarantees that certify the security of the software (WP7).

The tools involved in this use case:

Tool How it is involved

ResilBlockly (RES)

Modelling of the ICT GW in ResilBlockly;
Specification of MUD-compliant communication
rules for the ICT GW;
Model-based Risk Assessment of the ICT GW;

Vulnerability Detection tool (GRAD) Vulnerability Detection in the ICT GW

Vulnerability Propagation tool (GRAD) Vulnerability Propagation within the ICT GW

Exploitability forecasting tool (GRAD)
Vulnerability Exploitability Forecasting in the ICT

GW

SafeTBox (IESE) Determine mitigations for the ICT GW model

Periodic self-checking of SW failures
tool (RES)

Introduction of a self-checking mechanism into
the ICT GW

Page 50 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.2.1. Test scenario identifier 1
Test Scenario ID UC1-TS-01

Test Scenario Name Vulnerability Detection in the ICT GW

Test Case Description
Detection and identification of any existing vulnerability
in the source code of the ICT GW

Actors ICT GW provider (RES), Tool Developer (GRAD)

Pre-Conditions
The vulnerability detection tool is installed or runs in a
RES server where the ICT GW is deployed. ICT GW
source code language is compatible with detection tool.

Post-Condition
All vulnerabilities are identified, the result is not
ambiguous and correctly interpreted

Associated goal UC1_G1
Associated Requirement UC1_FR1

9.2.1.1. Test-case-identifier 1.1

Test Case ID UC1-TC-01-1

Test Case Description
Detect vulnerabilities to all applicable attack tests
envisioned in the relevant UC1 scenarios

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data The files to be tested
Expected Result The vulnerabilities are output
Post Condition The run was all the way to the end
Actual Result

9.2.2. Test scenario identifier 2

Test Scenario ID UC1-TS-02

Test Scenario Name Vulnerability Propagation within the ICT GW

Test Case Description
Determine the propagation of an identified vulnerability
in the source code of the ICT GW

Actors ICT GW provider (RES), Tool Developer (GRAD)

Pre-Conditions

The vulnerability propagation tool is installed or runs in
a RES server where the ICT GW is deployed. ICT GW
source code language is compatible with propagation
tool.

Post-Condition
The propagation of the vulnerability in the source code
is determined, and the result is not ambiguous and
correctly interpreted

Associated goal UC1_G1
Associated Requirement UC1_FR2

Page 51 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.2.2.1. Test-case-identifier 2.1

Test Case ID UC1-TC-02-1

Test Case Description
Study vulnerability propagation (e.g., paths and possible
level of risk) among the ICT GW

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data The propagation graph is shown
Expected Result The vulnerabilities are output
Post Condition The run was all the way to the end
Actual Result -

9.2.3. Test scenario identifier 3

Test Scenario ID UC1-TS-03

Test Scenario Name Vulnerability Exploitability Forecasting in the ICT GW

Test Case Description
Forecasting the exploitability of an identified
vulnerability in the source code of the ICT GW

Actors ICT GW provider (RES), Tool Developer (GRAD)

Pre-Conditions
The exploitability forecasting tool is installed or runs in
a RES server where the ICT GW is deployed. ICT GW
source code language is compatible with detection tool.

Post-Condition
The exploitability of an identified vulnerability is
predicted, the result is not ambiguous and correctly
interpreted

Associated goal UC1_G1
Associated Requirement -

9.2.3.1. Test-case-identifier 3.1

Test Case ID UC1-TC-03-1

Test Case Description
Study vulnerability Exploitability Forecasting among the
ICT GW

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data The Exploitability Forecasting is shown
Expected Result The vulnerabilities are output
Post Condition The run was all the way to the end
Actual Result -

9.2.4. Test scenario identifier 4

Test Scenario ID UC1-TS-04

Test Scenario Name Modelling of the ICT GW in ResilBlockly

Test Case Description
Modelling of the ICT GW and its Smart Grid Ecosystem
with ResilBlockly Model Designer

Actors ResilBlockly end-user (Model Designer User)

Pre-Conditions

The information about the ICT GW system architecture
is available and sufficiently detailed for modelling. The
end-user is familiar with the Tool (e.g., has read the user
guide). The profile used for modelling exists.

Post-Condition
The end-user creates a model of the ICT GW (and
eventually of the Smart Grid Ecosystem surrounding it).

Associated goal UC1_G4
Associated Requirement UC1_FR5

Page 52 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.2.4.1. Test-case-identifier 4.1

Test Case ID UC1-TC-04-1

Test Case Description Modelling of the ICT GW in ResilBlockly
Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data -
Expected Result The model of ICT GW in ResilBlockly
Post Condition The run was all the way to the end
Actual Result -

9.2.5. Test scenario identifier 5

Test Scenario ID UC1-TS-05

Test Scenario Name
Specification of MUD-compliant communication rules for
the ICT GW

Test Case Description
Specification of extended MUD-compliant communication
rules for the ICT GW components/interfaces

Actors
ResilBlockly end-user (Model Designer User), Security
Expert

Pre-Conditions
The model of the ICT GW has been created or imported
within ResilBlockly. The structure of the extended MUD is
available.

Post-Condition
The model of the ICT GW is provided with communication
rules, compliant with an extended MUD model, specifying
the behaviour of its components/interfaces.

Associated goal UC1_G4
Associated Requirement UC1_FR5

9.2.5.1. Test-case-identifier 5.1

Test Case ID UC1-TC-05-1

Test Case Description
Specification of MUD-compliant communication rules for
the ICT GW

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data -

Expected Result
The specification of MUD-compliant communication rules
for the ICT GW

Post Condition The run was all the way to the end
Actual Result -

Page 53 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.2.6. Test scenario identifier 6
Test Scenario ID UC1-TS-06

Test Scenario Name
Model-based Risk Assessment of the ICT GW in
ResilBlockly

Test Case Description
The already modelled ICT GW is analysed leveraging the
risk assessment features of ResilBlockly

Actors
ResilBlockly end-user (Model Designer User), Security
Expert

Pre-Conditions
The model of the ICT GW has been created or imported
within ResilBlockly.

Post-Condition
The model is enriched with weaknesses and
vulnerabilities, and for each of them a risk assessment
is conducted.

Associated goal UC1_G4
Associated Requirement UC1_FR5, UC1_FR6

9.2.6.1. Test-case-identifier 6.1

Test Case ID UC1-TC-06-1

Test Case Description
Model-based Risk Assessment of the ICT GW in
ResilBlockly

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data -

Expected Result
The model-based Risk Assessment of the ICT GW in
ResilBlockly

Post Condition The run was all the way to the end
Actual Result -

9.2.7. Test scenario identifier 7

Test Scenario ID UC1-TS-07

Test Scenario Name Determine mitigations for the ICT GW model

Test Case Description
The model of the ICT GW is given as input to SafeTbox
and complemented with mitigations

Actors SafeTbox user, Security Expert

Pre-Conditions
The model of the ICT GW, together with the risk
assessment results, is imported from ResilBlockly into
SafeTbox

Post-Condition
SafeTbox provides mitigations for the identified
vulnerabilities, weaknesses or attack scenarios

Associated goal UC1_G4
Associated Requirement UC1_FR7

9.2.7.1. Test-case-identifier 7.1

Test Case ID UC1-TC-07-1

Test Case Description Determine mitigations for the ICT GW model
Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data -
Expected Result The mitigations for the ICT GW model
Post Condition The run was all the way to the end
Actual Result -

Page 54 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.2.8. Test scenario identifier 8
Test Scenario ID UC1-TS-08

Test Scenario Name
Introduction of a self-checking mechanism into the ICT
GW

Test Case Description
The ICT GW is provided with a self-checking mechanism
for detecting residual software vulnerabilities

Actors ICT GW use case owner, tool developer

Pre-Conditions
The specific self-checking mechanism has been designed
and developed

Post-Condition
The ICT GW is provided with the mechanism and is
therefore capable of performing self-checks for residual
software vulnerabilities

Associated goal UC1_G2
Associated Requirement UC1_FR3

9.2.8.1. Test-case-identifier 8.1

Test Case ID UC1-TC-08-1

Test Case Description
Introduction of a self-checking mechanism into the ICT
GW

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data -

Expected Result
The introduction of a self-checking mechanism into the
ICT GW

Post Condition The run was all the way to the end
Actual Result -

9.3. Test Plan for Use Case 2: AI Investments
The main goal to achieve in BIECO from the AI Investments use case perspective is

analyzing the behavior of the AI Investments application (AII application) from the

security perspective and making it resilient against attacks and failures. This is

particularly important, not only from the AII point of view, which is the software that can

be used for validating BIECO, but also to avoid the propagation of vulnerabilities to the

stock brokers and the other systems interconnected with the AII application.

In BIECO the AII application will be used to:

• UC2_G1 - detect software vulnerabilities that might exist in the software, and

determine how a possible vulnerability of the application could propagate to the

stock brokers (WP3);

• UC2_G2 - perform self-checks that allow to detect residual vulnerabilities,

software and hardware failures; using simulation tools that enable a virtual

evaluation when an adversary is influencing clock synchronization (WP4);

• UC2_G3 - audit and monitor the integration with other third-party systems and

components, as well as the correct runtime behavior of the application and its

subsystems (WP5)

• UC2_G4 - perform a risk assessment and threat modelling of the status of the

system, taking into account also how a vulnerability in the AII application could

impact the stock brokers and financial assets (WP6);

• UC2_G5 - obtain guarantees that certify the adherence of the software to its

expected behavior (WP7).

Page 55 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

The tools involved in this use case:

Tool How it is involved

ResilBlockly (RES)

Modelling of the AI Investments application in
ResilBlockly;
Model-based Risk Assessment of the AI
Investments application;

Vulnerability Detection tool (GRAD)
Vulnerability detection in the AI Investments
application;

Vulnerability Propagation tool
(GRAD)

Vulnerability propagation in the AI Investments
application;

SafeTBox (IESE)
Determine mitigations for the AI Investments
application model;

Periodic self-checking of SW
failures tool (RES)

Introduction of a self-checking mechanism into
the AI Investments application.

9.3.1. Test scenario identifier 1

Test Scenario ID UC2-TS-01

Test Scenario Name
Vulnerability detection in the source code of AI
Investments application

Test Case Description
Detection and identification of any existing vulnerability in
the source code of the AI Investments application

Actors
AI Investments application developer (7b), Tool Developer
(GRAD)

Pre-Conditions

The vulnerability detection tool is installed or runs in a 7b
server where the AI Investments application is deployed.
AI Investments application source code language is
compatible with detection tool.

Post-Condition
All vulnerabilities are identified, the result is not ambiguous
and correctly interpreted

Associated goal UC2_G1
Associated Requirement UC2_FR1

9.3.1.1. Test-case-identifier 1.1

Test Case ID UC2-TC-01-1

Test Case Description
Detect vulnerabilities to all applicable attack tests
envisioned in the relevant UC2 scenarios

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data The files to be tested
Expected Result The vulnerabilities are output
Post Condition The run was all the way to the end
Actual Result -

Page 56 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.3.2. Test scenario identifier 2
Test Scenario ID UC2-TS-02

Test Scenario Name
Vulnerability propagation among the AI Investments
application components.

Test Case Description
Determine the propagation of an identified vulnerability in
the source code of the components in AI Investments
application.

Actors
AI Investments application developer (7b), Tool Developer
(GRAD)

Pre-Conditions
The vulnerability propagation tool is installed or runs in a
7b server where the AI Investments application is
deployed.

Post-Condition
The propagation of the vulnerability in the source code is
determined, and the result is not ambiguous and correctly
interpreted

Associated goal UC2_G1
Associated Requirement UC2_FR2

9.3.2.1. Test-case-identifier 2.1

Test Case ID UC2-TC-02-1

Test Case Description
Study vulnerability propagation (e.g., paths and possible
level of risk) among the AI Investments application
components.

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data The propagation graph is shown
Expected Result The vulnerabilities are output
Post Condition The run was all the way to the end
Actual Result -

9.3.3. Test scenario identifier 3

Test Scenario ID UC2-TS-03

Test Scenario Name
Modelling of the AI Investments application in
ResilBlockly

Test Case Description
Modelling of the AI Investments application with
ResilBlockly Model Designer

Actors ResilBlockly end-user (Model Designer User)

Pre-Conditions

The information about the AI Investments application
system architecture is available and sufficiently detailed
for modelling. The end-user is familiar with the Tool (e.g.,
has read the user guide). The profile used for modelling
exists.

Post-Condition
The end-user creates a model of the AI Investments
application.

Associated goal UC2_G4
Associated Requirement UC2_FR5

Page 57 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.3.3.1. Test-case-identifier 3.1

Test Case ID UC2-TC-03-1

Test Case Description
Modelling of the AI Investments application in
ResilBlockly

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data AI Investments application

Expected Result
The modelled application in ResilBlockly was created
successfully

Post Condition The run was all the way to the end
Actual Result -

9.3.4. Test scenario identifier 4

Test Scenario ID UC2-TS-04

Test Scenario Name
Model-based Risk Assessment of the AI Investments
application in ResilBlockly

Test Case Description
The already modelled AI Investments application is
analysed leveraging the risk assessment features of
ResilBlockly

Actors
ResilBlockly end-user (Model Designer User), Security
Expert

Pre-Conditions
The model of the AI Investments application has been
created or imported within ResilBlockly.

Post-Condition
The model is enriched with weaknesses and
vulnerabilities, and for each of them a risk assessment
is conducted.

Associated goal UC2_G4
Associated Requirement UC2_FR5, UC2_FR6

9.3.4.1. Test-case-identifier 4.1

Test Case ID UC2-TC-04-1

Test Case Description
Model-based Risk Assessment of the AI Investments
application in ResilBlockly

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data AI Investments application

Expected Result
The model-based Risk Assessment of the AI
Investments application in ResilBlockly

Post Condition The run was all the way to the end
Actual Result -

Page 58 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.3.5. Test scenario identifier 5
Test Scenario ID UC2-TS-05

Test Scenario Name
Determine mitigations for the AI Investments
application

Test Case Description
The model of the AI Investments application is given as
input to SafeTbox and complemented with mitigations

Actors SafeTbox user, Security Expert

Pre-Conditions
The model of the AI Investments application together
with the risk assessment results, is imported from
ResilBlockly into SafeTbox

Post-Condition
SafeTbox provides mitigations for the identified
vulnerabilities, weaknesses or attack scenarios

Associated goal UC2_G4
Associated Requirement UC2_FR7

9.3.5.1. Test-case-identifier 5.1

Test Case ID UC2-TC-05-1

Test Case Description
Determine mitigations for the AI Investments
application

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data AI Investments application

Expected Result
Determination of mitigations for the AI Investments
application

Post Condition The run was all the way to the end
Actual Result -

9.3.6. Test scenario identifier 6

Test Scenario ID UC2-TS-06

Test Scenario Name
Introduction of a self-checking mechanism into the AI
Investments application components.

Test Case Description
The AI Investments application components are
provided with a self-checking mechanism for detecting
residual software vulnerabilities

Actors
AI Investments application use case owner (7b), tool
developer

Pre-Conditions
The specific self-checking mechanism has been
designed and developed

Post-Condition

The AI Investments application provided with the built-
in feature capable of performing self-checks for
vulnerabilities in source code or running
application/component.

Associated goal UC2_G2
Associated Requirement UC2_FR3

Page 59 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.3.6.1. Test-case-identifier 6.1

Test Case ID UC2-TC-06-1

Test Case Description
Introduction of a self-checking mechanism into the AI
Investments application components.

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data AI Investments application
Expected Result The potential attacks and failures are displayed
Post Condition The run was all the way to the end
Actual Result -

9.4. Test Plan for Use Case 3: Smart Microfactory and FOTA

For UC3, the FOTA implementation (according to the UPTANE guidelines) has been

chosen as a representative and particularly relevant case of security for communication

in the automotive field, with the aim to extend it to the whole industrial production,

management and maintenance environment of the microfactory.

Likely, due to restrictions on IP in the automotive industrial sector and company policy,

a Hardware-in-the-loop approach will be adopted and a realistic cyberattack situation

will be evaluated and possible mitigation strategies and countermeasures will be

studied and proposed.

For the UPTANE/FOTA system, particular goals have been derived from the general

ones of the project (see section 4.7.1). The UC3 specific goals are given hereafter:

• UC3_G1 (WP3) – analyse the system to find any possible vulnerability or weakness

of any HW node and SW component in the platform. Propagation of anomalous

behaviour from one element to another in the networked system will also be studied.

• UC3_G2 (WP4) – test the implemented protocols to verify signature, authentication,

integrity etc. on metadata and firmware image, thus providing a vulnerability

assessment.

• UC3_G3 (WP5) – audit and monitor the network data traffic to detect anomalies or

issues which can lead to critical situation with the rise of new vulnerabilities and

provide the tools to enhance resilience.

• UC3_G4 (WP6) – carry out the risk analysis and provide mitigation strategies based

on previous tests results; eventually, this will allow threat modelling as well.

• UC3_G5 (WP7) – gather test results to support the definition of the security level

implemented in the system and its certification.

9.4.1. Test scenario 1

Test Scenario ID UC3-TS-01

Test Scenario Name
Detect vulnerabilities to all applicable attack tests
envisioned in the relevant UC3 scenarios

Test Case Description
Detect vulnerabilities to all applicable attack tests
envisioned in the relevant UC3 scenarios

Actors User
Pre-Conditions User authenticated
Post-Condition
Associated goal UC3_G1
Associated Requirement UC3_FR1

Page 60 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.4.1.1. Test-case-identifier 1.1

Test Case ID UC3-TC-01-1

Test Case Description
Detect vulnerabilities to all applicable attack tests
envisioned in the relevant UC3 scenarios

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data The files to be tested
Expected Result The vulnerabilities are output
Post Condition The run was all the way to the end
Actual Result

9.4.2. Test scenario 2

Test Scenario ID UC3-TS-02

Test Scenario Name
Study vulnerability propagation (e.g., paths and possible
level of risk) among HW nodes and SW components of the
UPTANE-FOTA platform

Test Case Description
Study vulnerability propagation (e.g., paths and possible
level of risk) among HW nodes and SW components of the
UPTANE-FOTA platform

Actors User
Pre-Conditions User authenticated
Post-Condition -
Associated goal UC3_G1
Associated Requirement UC3_FR2

9.4.2.1. Test-case-identifier 2.1

Test Case ID UC3-TC-02-1

Test Case Description
Study vulnerability propagation (e.g., paths and possible
level of risk) among HW nodes and SW components of
the UPTANE-FOTA platform

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data The propagation graph is shown
Expected Result The vulnerabilities are output
Post Condition The run was all the way to the end
Actual Result

9.4.3. Test scenario 3

Test Scenario ID UC3-TS-03

Test Scenario Name

Verify cross-checking protocols that allow to counter
potential attacks and failures during the remote FW update
and detect behavioural anomalies which can open breaches
to further vulnerabilities or failures

Test Case Description

Verify cross-checking protocols that allow to counter
potential attacks and failures during the remote FW update
and detect behavioural anomalies which can open breaches
to further vulnerabilities or failures

Actors User
Pre-Conditions User authenticated
Post-Condition
Associated goal UC3_G3
Associated Requirement UC3_FR3

Page 61 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.4.3.1. Test-case-identifier 3.1

Test Case ID UC3-TC-03-1

Test Case Description

Verify cross-checking protocols that allow to counter
potential attacks and failures during the remote FW
update and detect behavioural anomalies which can open
breaches to further vulnerabilities or failures

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data
Expected Result The potential attacks and failures are displayed
Post Condition The run was all the way to the end
Actual Result

9.4.4. Test scenario 4

Test Scenario ID UC3-TS-04

Test Scenario Name

Audit/Monitor the behaviour of the networked
communications with ongoing attack attempts or
failures, in particular with those described in the
scenarios.

Test Case Description

Audit/Monitor the behaviour of the networked
communications with ongoing attack attempts or
failures, in particular with those described in the
scenarios.

Actors User
Pre-Conditions User authenticated
Post-Condition
Associated goal G4
Associated Requirement UC3_FR4

9.4.4.1. Test-case-identifier 4.1

Test Case ID UC3-TC-04-1

Test Case Description

Audit/Monitor the behaviour of the networked
communications with ongoing attack attempts or
failures, in particular with those described in the
scenarios.

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data

Expected Result
The behaviour of the networked communications with
ongoing attack attempts or failures

Post Condition The run was all the way to the end
Actual Result

Page 62 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.4.5. Test scenario 5

Test Scenario ID UC3-TS-05

Test Scenario Name
Collect evidences of possible weaknesses and
vulnerabilities to support the evaluation of the overall
security of the system

Test Case Description
Collect evidences of possible weaknesses and
vulnerabilities to support the evaluation of the overall
security of the system

Actors User

Pre-Conditions User authenticated

Post-Condition

Associated goal G5

Associated Requirement UC3_FR5

9.4.5.1. Test-case-identifier 5.1.
Test Case ID UC3-TC-05-1

Test Case Description
Collect evidences of possible weaknesses and
vulnerabilities to support the evaluation of the overall
security of the system

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data -

Expected Result
The evidences of possible weaknesses and
vulnerabilities to support the evaluation of the overall
security of the system

Post Condition The run was all the way to the end
Actual Result

9.4.6. Test scenario 6

Test Scenario ID UC3-TS-06

Test Scenario Name
Assess weakness and vulnerability risks of relevant
attacks, with reference to those indicated in UC3
scenarios.

Test Case Description
Assess weakness and vulnerability risks of relevant
attacks, with reference to those indicated in UC3
scenarios.

Actors User
Pre-Conditions User authenticated
Post-Condition
Associated goal G5
Associated Requirement UC3_FR6

Page 63 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.4.6.1. Test-case-identifier 6.1

Test Case ID UC3-TC-06-1

Test Case Description
Assess weakness and vulnerability risks of relevant
attacks, with reference to those indicated in UC3
scenarios.

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data
Expected Result The weakness and vulnerability risks of relevant attacks
Post Condition The run was all the way to the end
Actual Result

9.4.7. Test scenario 7

Test Scenario ID UC3 TS-07

Test Scenario Name
Find possible mitigation actions including those needed
to counter the attacks described in UC3 scenarios.

Test Case Description
Find possible mitigation actions including those needed
to counter the attacks described in UC3 scenarios.

Actors User
Pre-Conditions User authenticated
Post-Condition
Associated goal G5
Associated Requirement UC3_FR7

9.4.7.1. Test-case-identifier 7.1

Test Case ID UC3-TC-07-1

Test Case Description
Find possible mitigation actions including those needed
to counter the attacks described in UC3 scenarios.

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data
Expected Result The possible mitigation actions
Post Condition The run was all the way to the end
Actual Result

9.4.8. Test scenario 8

Test Scenario ID UC3-TS-08

Test Scenario Name
Carry out WP7 security certification methodology and
risk assessment to the UPTANE-FOTA system.

Test Case Description
Carry out WP7 security certification methodology and
risk assessment to the UPTANE-FOTA system.

Actors User
Pre-Conditions User authenticated
Post-Condition
Associated goal G6
Associated Requirement UC3_FR8

Page 64 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.4.8.1. Test-case-identifier 8.1

Test Case ID UC3-TC-08-1

Test Case Description
Carry out WP7 security certification methodology and
risk assessment to the UPTANE-FOTA system.

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data

Expected Result
The UPTANE-FOTA system IS CERTIFIED ACCORDING
TO THE METHODOLOGY

Post Condition The run was all the way to the end
Actual Result

9.4.9. Test scenario 9

Test Scenario ID UC3-TS-09

Test Scenario Name
After implementing mitigation actions, evaluate and
certify UC3 security level

Test Case Description
After implementing mitigation actions, evaluate and
certify UC3 security level

Actors User
Pre-Conditions User authenticated
Post-Condition
Associated goal G6
Associated Requirement UC3_FR9

9.4.9.1. Test-case-identifier 9.1

Test Case ID UC3-TC-09-1

Test Case Description
After implementing mitigation actions, evaluate and
certify UC3 security level

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data
Expected Result UC3 security level is certified
Post Condition The run was all the way to the end
Actual Result

9.5. Test Plan for Use Case 4: Autonomous Navigation

 In UC4, the main goal is analysing the behaviour of an autonomous navigation system.

Concretely, BIECO will apply its tools and methodology in order to find possible safety

and security vulnerabilities in the local planning of mobile robots. Improving

trustworthiness and resilience against attacks and failures.

In BIECO, the goals related to the ITC GW are:

• UC4_G1 (WP3) – analyse the system to find any possible vulnerability or

weakness of any SW component in the controlled environment. Chain

propagation of anomalous behaviour from one element to another in the ROS

based networked system will also be studied.

• UC4_G2 (WP4) – test the implemented protocols to verify the behaviour of the

local planner module to ensure safe behaviour.

Page 65 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

• UC4_G3 (WP5) – audit and monitor each entity (robots and stations) in presence

of attempts of attacks (I.e., the ones identified in the scenarios) and the

consequences for other third-party systems and components.

• UC4_G4 (WP6) – carry out the risk analysis and provide mitigation strategies

based on previous tests results; eventually, this will allow threat modelling as

well.

• UC4_G5 (WP7) – gather test results to support the definition of the security level

implemented in the system and its certification.

 The tools involved in this use case:
Tool How it is involved

Vulnerability Detection tool
(GRAD)

Vulnerability Detection in the ROS based navigation
system of UC4

Vulnerability Propagation
tool (GRAD)

Vulnerability Propagation within the ROS network of
UC4

SafeTBox (IESE) Determine mitigations for the UC4 model

TOOLNAME (IESE)
Perform continuous behaviour analysis that can create
breaches and vulnerabilities in the navigation software

Periodic self-checking of
SW failures tool (RES)

Introduction of a self-checking mechanism that
confirms all ROS SW modules.

9.5.1. Test scenario identifier 1

Test Scenario ID UC4-TS-01
Test Scenario Name Vulnerability Detection in the ROS network of UC4

Test Case Description
Detection and identification of any existing vulnerability
in the source code of the navigation system in UC4

Actors UC4 provider (UNI), Tool Developer (GRAD)

Pre-Conditions

The vulnerability detection tool is installed or runs in a
controlled environment where UC4 is deployed. ROS SW
code source code language is compatible with
detection tool.

Post-Condition
All vulnerabilities are identified, the result is not
ambiguous and correctly interpreted

Associated goal UC4_G1
Associated Requirement UC4_FR1

9.5.1.1. Test-case-identifier 1.1

Test Case ID UC4-TC-01-1

Test Case Description
Detect vulnerabilities to all applicable attack tests
envisioned in the relevant UC4 scenarios

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data The files to be tested
Expected Result The vulnerabilities are output
Post Condition The run was all the way to the end
Actual Result

Page 66 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.5.2. Test scenario identifier 2
Test Scenario ID UC4-TS-02
Test Scenario Name Vulnerability Propagation within the ROS network of UC4

Test Case Description
Determine the propagation of an identified vulnerability
in the source code of the ROS SW modules and its
impact on the complete ROS network

Actors UC4 provider (UNI), Tool Developer (GRAD)

Pre-Conditions

The vulnerability detection tool is installed or runs in a
controlled environment where UC4 is deployed. ROS SW
code source code language is compatible with
detection tool.

Post-Condition
The propagation of the vulnerability in the source code
is determined, and the result is not ambiguous and
correctly interpreted

Associated goal UC4_G1
Associated Requirement UC4_FR2

9.5.2.1. Test-case-identifier 2.1

Test Case ID UC4-TC-02-1

Test Case Description
Study vulnerability propagation (e.g., paths and possible
level of risk) within the ROS network of UC4

Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data The propagation graph is shown
Expected Result The vulnerabilities are output
Post Condition The run was all the way to the end
Actual Result

9.5.3. Test scenario identifier 3

Test Scenario ID UC4-TS-03
Test Scenario Name Determine mitigations for the UC4 model

Test Case Description
The model of the UC4 is given as input to SafeTbox and
complemented with mitigations

Actors SafeTbox user, Security Expert

Pre-Conditions
The model of the UC4, together with the risk assessment
results, is imported from ResilBlockly into SafeTbox

Post-Condition
SafeTbox provides mitigations for the identified
vulnerabilities, weaknesses or attack scenarios

Associated goal UC4_G4
Associated Requirement UC4_FR6

9.5.3.1. Test-case-identifier 3.1

Test Case ID UC4-TC-03-1
Test Case Description Determine mitigations for the UC4 model
Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data
Expected Result The mitigations for the UC4 model
Post Condition The run was all the way to the end
Actual Result

Page 67 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.5.4. Test scenario identifier 4
Test Scenario ID UC4-TS-04
Test Scenario Name Perform continuous behaviour analysis

Test Case Description
Use a digital twin detect anomalous behaviour in the
navigation software

Actors Test Case provider (UNI), Tool developer (IESE)
Pre-Conditions A digital twin of the navigation software is created

Post-Condition
Tool provides continuous behaviour detection that will
mitigate possible safety and security issues.

Associated goal UC4_G3
Associated Requirement UC4_FR4

9.5.4.1. Test-case-identifier 4.1

Test Case ID UC4-TC-04-1
Test Case Description Perform continuous behaviour analysis
Pre-Conditions User authenticated
Test Steps The user loads/creates a template and then it runs it
Test Data
Expected Result The analysis of continuous behaviour
Post Condition The run was all the way to the end
Actual Result

9.6. Test Plan for Data collection and pre-processing tool

This tool makes use in BIECO of the following tools:

Data collection tool has two parts:

1. Web Application

a. Client Application

b. Admin Application

2. REST API

REST API tests has been done using Postman and full documentation related to the

syntax and examples are presented in Document D3.2 - Dataset with software

vulnerabilities - final version.docx -3.3 API Specification. Example of using DCT API using

Python and cURL are documented in D3.2 - Dataset with software vulnerabilities - final

version.docx – Annex A. API Code Snippets.

Tool How it is involved

jUnit
Provides tools, classes and methods to ease the task of performing unit
tests. For each component in part a unit test is written.

Postman Platform for testing the REST APIs.

Selenium
Provides the possibility to run automated tests. Used in the integration
phase to test integration between components.

Page 68 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.6.1 Test scenario identifier 1
Test Scenario ID UTC-TS-01

Test Scenario Name
Manual usage of Data Collection and pre-processing
tool for Client Application

Test Case Description
Testing the Data Collection and pre-processing tool
from a user's point of view

Actors End-User
Pre-Conditions An activated and authenticated user

Post-Condition
Actors will have access to Data Collection and pre-
processing tool

Associated goal -
Associated Requirement -

9.6.1.1. Test-case-identifier 1.1

Test Case ID UTC-TC-01-1
Test Case Description Client Application HOME functionality
Pre-Conditions -

Test Steps
Users access the client webpage:

− Click on Home
Test Data -

Expected Result
Should display a statistic of the CVSS score distribution for
all vulnerabilities (number and percentage) as well as a chart
with the score distribution.

Post Condition -
Actual Result

9.6.1.2. Test-case-identifier 1.2

Test Case ID UTC-TC-01-2
Test Case Description Client Application Products- Vendor Search functionality
Pre-Conditions -

Test Steps
Users access the client webpage:

− Click on Public data – Products- Vendor Search
Test Data -

Expected Result
Should display the list of vendors and the number of products
per each vendor and vulnerabilities added. It should also
offer the possibility to search based on a vendor name.

Post Condition -
Actual Result

9.6.1.3. Test-case-identifier 1.3

Test Case ID UTC-TC-01-3
Test Case Description Client Application Products Search functionality
Pre-Conditions -

Test Steps
Users access the client webpage:

− Click on Public data – Products- Version Search
Test Data -

Expected Result
Should display the list of products, the vendor, the number of the
CVE Entries and the Product Type. Should have a search area that
offers the possibility to search for a specific product.

Post Condition -
Actual Result

Page 69 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.6.1.4. Test-case-identifier 1.4
Test Case ID UTC-TC-01-4
Test Case Description Client Application Vulnerabilities by Date functionality
Pre-Conditions -

Test Steps
Users access the client webpage:

− Click on Public Data – Vulnerabilities – By Date
Test Data -

Expected Result

Should display a statistic of all the vulnerabilities per year
and a statistic chart per all years and a table with the
number of vulnerabilities for each year is available, and if
clicking on a specific month from a specific year, the list of
vulnerabilities will be displayed for that year and month with
the possibility to search based on all CVE criteria.

Post Condition -
Actual Result

9.6.1.5. Test-case-identifier 1.5

Test Case ID UTC-TC-01-5

Test Case Description
Client Application Vulnerabilities – Weaknesses
functionality

Pre-Conditions -

Test Steps
Users access the client webpage:

− Click on Public Data – Vulnerabilities – Weaknesses
Test Data -

Expected Result

Should display the list of CWE and the corresponding fields:
CWE Id, Name, Description, Status. Also, it offers the
possibility to do a search based on these fields in the CWE
list.

Post Condition -
Actual Result

9.6.1.6. Test-case-identifier 1.6

Test Case ID UTC-TC-01-6
Test Case Description Client Application Public Data – Exploits functionality
Pre-Conditions -

Test Steps
Users access the client webpage:

− Click on Public Data – Exploits
Test Data -

Expected Result

Should display the records from the Exploits database. The
following fields should be displayed, and it should offer the
possibility to do an advanced search based on them: Name,
Type, CVE, Platform, Author and Date.

Post Condition -
Actual Result

Page 70 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.6.1.7. Test-case-identifier 1.7
Test Case ID UTC-TC-01-7
Test Case Description Client Application Public Data – MUD Files functionality
Pre-Conditions -

Test Steps
Users access the client webpage:

− Click on Public Data – MUD Files
Test Data -

Expected Result

Should display the records from the MUD database. The
following fields should be displayed, and it should offer the
possibility to do an advanced search: Product name,
Manufacturer, ZIP file, MUD file, Signature file and Date.
Also, it should offer the possibility to download the zip file,
JSON MUD file and signature file.

Post Condition -
Actual Result

9.6.1.8. Test-case-identifier 1.8

Test Case ID UTC-TC-01-8

Test Case Description
Client Application Internal Data – Components and
Dependencies functionality

Pre-Conditions -

Test Steps
Users access the client webpage:

− Click on Internal Data – Profile Information -
Components and Dependencies

Test Data -

Expected Result

Should display the Components and Dependencies records.
The page should display the name, type and details for each
component. The possibility to do a search based on all
these fields should also be available.

Post Condition -
Actual Result

9.6.1.9. Test-case-identifier 1.9

Test Case ID UTC-TC-01-9

Test Case Description
Client Application Public Data – Software bugs
functionality

Pre-Conditions -

Test Steps
Users access the client webpage:

− Click on Internal Data – Profile Information –
Software bugs

Test Data -

Expected Result

Should displays the list of bugs from the use cases. The
following fields should be displayed, and the view should
offer the possibility to do an advanced search based on all
these fields: Key, Summary, Issue Type, Status, Priority,
Resolution, Assignee, Reporter, Created.

Post Condition -
Actual Result

Page 71 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.6.2 Test scenario identifier 2
Test Scenario ID UTC-TS-02

Test Scenario Name
Manual usage of Data Collection and pre-processing tool
for Admin Application

Test Case Description
Testing the Data Collection and pre-processing tool from
an admin's usage point of view

Actors Administrator
Pre-Conditions An activated and authenticated account

Post-Condition
Actors will have access to Data Collection and pre-
processing tool

Associated goal -
Associated Requirement -

9.6.2.1 Test-case-identifier 2.1

Test Case ID UTC-TC-02-1
Test Case Description Admin Application - User Authentication functionality
Pre-Conditions Admin user must have an activated account.

Test Steps

- Introduction of valid data into the username and
password fields.

- Introduction of invalid data into the username and
password fields.

- Introduction of empty data for either username or
password

Test Data Both valid and invalid faked user information.

Expected Result

- Platform must allow user to login only if the username
and password entered are valid and actor has an
activated account.

- When the required fields are not entered correctly the
user should not be able to login and an error message
should be displayed

Post Condition Admin is successfully logged in the platform.
Actual Result The user has successfully logged in or not.

9.6.2.2 Test-case-identifier 2.2

Test Case ID UTC-TC-02-2
Test Case Description Admin Application - administrate the CVE/CPE/CWE data

Pre-Conditions
Admin user must be correctly authenticated in the
platform and access the CVE/CPE/CWE Page

Test Steps Click on CVE/CPE/CWE Page
Test Data −

Expected Result

To be able to manage all the CVE/CPE/CWE records and
perform CRUD operations on them. It also provides the
possibility to do an advanced search for each field in part.
The functionality actions menu should be visible in the top
area of the data management table, and the associated
record actions should be displayed in the last column.

Post Condition
Admin should successfully manage all the CVE/CPE/CWE
records.

Actual Result
The admin user has successfully performed the desired
action on the CVE/CPE/CWE records.

Page 72 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.6.2.3. Test-case-identifier 2.3
Test Case ID UTC-TC-02-3

Test Case Description
Admin Application - administrate the Exploits/MUD files/
Software bugs data

Pre-Conditions
Admin user must be correctly authenticated in the
platform and access the Exploits/MUD files/Software
bugs/Components Page

Test Steps
Click on Exploits/MUD files/Software bugs/Components
Page

Test Data −

Expected Result

To be able to manage all the Exploits/MUD files/Software
bugs/Components records and perform CRUD operations
on them. It should also provide the possibility to do an
advanced search for each field in part. The functionality
actions menu should be visible in the top area of the data
management table, and the associated record actions
should be displayed in the last column.

Post Condition
Admin should successfully manage all the Exploits/MUD
files/Software/Components bugs records.

Actual Result
The admin user has successfully performed the desired
action on the Exploits/MUD files/Software
bugs/Components records.

9.7. Test Plan for Vulnerability Detection tool

The objective of the tool is the detection of vulnerabilities that might exist in the ICT GW
(software implementation, used libraries and technologies) which may provoke the
successful execution of attacks. The tool, through static analysis and Machine Learning
algorithms, locates sections of the code which contain vulnerabilities or those that are
more prone to contain one.

This tool makes use in BIECO of the following tools:

Tool How it is involved

jUnit
Provides tools, classes and methods to ease the task of performing unit
tests.

SonarQube
Provides static source code analysis, identifying susceptible points,
such as vulnerabilities and bugs, which will be solved before proceeding
to the next step of development and testing.

Safety
Checks installed dependencies for known security vulnerabilities, using
a proprietary database by default.

9.7.1. Test scenario identifier 1

Test Scenario ID GRAD-TS-01
Test Scenario Name Checking for vulnerabilities in the source code.
Test Case
Description

Checking if the source code has any vulnerability.

Actors End-User, Tool Developer and Platform Administrator.

Pre-Conditions
The language of the source code to be examined must be
compatible with the languages implemented in this tool.

Post-Condition Actors must correctly understand the program’s output.

Page 73 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.7.1.1. Test-case-identifier 1.1
Test Case ID GRAD-TC-01-1
Test Case Description Identifying the existing vulnerabilities in the source code

Pre-Conditions
The language of the code must be compatible with those
implemented in the tool.

Test Steps
Being provided with a source code with an existing
vulnerability, verify if the tool is able to detect it.

Test Data Source code of an existing vulnerability.
Expected Result Identification of all vulnerabilities.
Post Condition The result must be correctly interpreted by the actors.
Actual Result

9.7.1.2. Test-case-identifier 1.2

Test Case ID GRAD-TC-01-2

Test Case Description
If the source code has no vulnerabilities, it does not identify
any.

Pre-Conditions
The language of the code must be compatible with those
implemented in the tool.

Test Steps
Run the tool on a source code with no vulnerabilities and
check that there are no vulnerabilities.

Test Data Source code without any vulnerability.
Expected Result It does not identify any vulnerability.
Post Condition The result must be correctly interpreted by the actors.
Actual Result

9.8. Test Plan for Vulnerability Propagation tool

The objective of the tool is to study vulnerability propagation, such as paths and possible
level of risk, in the source code to the ICT GW components.
This tool makes use in BIECO of the following tools:

Tool How it is involved

jUnit
Provides tools, classes and methods to ease the task of performing
unit tests.

SonarQube
Provides static source code analysis, identifying susceptible points,
such as vulnerabilities and bugs, which will be solved before
proceeding to the next step of development and testing.

Safety
Checks installed dependencies for known security vulnerabilities,
using a proprietary database by default.

9.8.1. Test scenario identifier 1

Test Scenario ID GRAD-TS-02

Test Scenario Name
Detecting the propagation of an already identified
vulnerability.

Test Case Description
Knowing in advance the propagation of a vulnerability in the
source code, check that the tool detects the propagation of
the vulnerability correctly.

Actors End-User, Tool Developer and Platform Administrator.

Pre-Conditions
The language of the source code to be examined must be
compatible with the languages implemented in this tool.

Post-Condition Actors must correctly understand the program’s output.

Page 74 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.8.1.1. Test-case-identifier 1.1
Test Case ID GRAD-TC-02-1

Test Case Description
Identifying the propagation of an existing source code
vulnerability.

Pre-Conditions
The language of the code must be compatible with those
implemented in the tool.

Test Steps
Obtain the source code vulnerability and its identified
propagation path. Execute the tool and verify that the
propagation path is the expected.

Test Data Source code with a vulnerability and its propagation path.
Expected Result Propagation of the vulnerability in the source code.
Post Condition The result is correctly interpreted by the different actors.
Actual Result

9.9. Test Plan for Exploitability forecasting tool

The objective of the tool is the forecasting of the exploitability of vulnerabilities in the

ICT GW. Specifically, the tool, through Machine Learning algorithms, provides an

estimate of the period of time in which a vulnerability could be exploited (e.g., within the

next 12 months).

This tool makes use in BIECO of the following tools:

Tool How it is involved

jUnit
Provides tools, classes and methods to ease the task of performing unit
tests.

SonarQube
Provides static source code analysis, identifying susceptible points,
such as vulnerabilities and bugs, which will be solved before proceeding
to the next step of development and testing.

Safety
Checks installed dependencies for known security vulnerabilities, using
a proprietary database by default.

9.9.1. Test scenario identifier 1

Test Scenario ID GRAD-TS-03

Test Scenario Name
Forecasting exploitability of an already identified
vulnerability.

Test Case Description
Having identified the vulnerability in the source code,
determine its exploitability.

Actors End-User, Tool Developer and Platform Administrator.

Pre-Conditions
The language of the source code must be compatible with
the language of the tool.

Post-Condition Actors must correctly interpret the program’s output.

Page 75 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.9.1.1. Test-case-identifier 1.1
Test Case ID GRAD-TC-03-1

Test Case Description
Identification of the predicted exploitability of an existing
vulnerability in the source code.

Pre-Conditions
The data entered in the model must have all the required
characteristics.

Test Steps

Having the information about when a vulnerability became
public and when it became exploitable, execute the tool on
that vulnerability and verify that the result matches the
predicted exploitability of the vulnerability.

Test Data
Source code of a vulnerability and the time between
publication and exploitation of the vulnerability.

Expected Result
Anticipated exploitability of an already identified
vulnerability.

Post Condition The result must be correctly interpreted by the actors.
Actual Result

9.10. Test Plan for Vulnerabilities forecasting tool

This tool makes use in BIECO of the following tools:

Tool How it is involved

Postman Platform for testing the REST APIs

Data Collection Tool
Provides information regarding the known vulnerabilities.
Provides the use case components and dependencies.
Provides the use cases bug history.

9.10.1. Test scenario identifier 1
Test Scenario ID UTC-TS-03
Test Scenario Name Vulnerabilities forecasting.

Test Case Description
Forecasting the number of vulnerabilities that will be
discovered in certain time frame, for certain use case.

Actors Tool Developer and Platform Administrator.
Pre-Conditions The use case profile must be complete and correct.
Post-Condition Actors must understand and correctly follow the API rules.

9.10.1.1. Test-case-identifier 1.1

Test Case ID UTC-TC-03-1

Test Case Description
Obtaining the time evolution of the use case vulnerabilities
from the Data Collection Tool or NVD.

Pre-Conditions The use case profile is completely specified.

Test Steps
Provide the time frame and verify if the tool correctly delivers
the time evolution of the number of vulnerabilities, bugs, or
both.

Test Data
The vulnerability information in the Data Collection Tool or
National Vulnerability Database and the use case profile.

Expected Result
The time evolution of the use case vulnerabilities, bugs or
both.

Post Condition
Actual Result

Page 76 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.10.1.2. Test-case-identifier 1.2
Test Case ID UTC-TC-03-2
Test Case Description Evaluate the forecasting algorithm accuracy

Pre-Conditions
The use case profile is completely specified, and there is
sufficient vulnerability information in the Data Collection Tool
or NVD.

Test Steps
Provide a past time frame and obtain a forecast for the
number of vulnerabilities, software bugs or both. Compare
the result with the available historical data.

Test Data
A fraction of the available vulnerability information in the
Data Collection Tool or National Vulnerability Database.

Expected Result Good average accuracy for the one step forecasting.
Post Condition
Actual Result

9.11. Test Plan for periodic self-checking of HW/SW failures tool

This tool makes use in BIECO of the following tools:

Tool How it is involved

JUnit Framework used for unit testing
Postman Platform for testing the REST APIs

STL Self-Test Libraries

9.11.1. Test scenario identifier 1

Test Scenario ID RES-TS-01
Test Scenario Name Periodic self-check of failures
Test Case Description Monitoring of data stream and periodic check of failures
Actors Tool developers, end-user
Pre-Conditions
Post-Condition

9.11.1.1. Test-case-identifier 1.1

Test Case ID RES-TC-01-1
Test Case Description Periodic self-check of Hardware failure
Pre-Conditions A Self-test library is available

Test Steps
Relying on STL, perform test instructions of HW features and
components

Test Data

Expected Result
Boolean output on the correct functioning of HW
components

Post Condition The hardware is checked for failures
Actual Result

Page 77 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.11.1.2. Test-case-identifier 1.2
Test Case ID RES-TC-01-2
Test Case Description Periodic self-check of software failures

Pre-Conditions
The data stream to be monitored, and a signature of the SW
execution exist

Test Steps Monitoring of the data stream.
Test Data

Expected Result
Boolean output on the correctness of the Software control
flow

Post Condition
The software is checked for software failures and the
boolean result is available

Actual Result

9.12. Test Plan for Co-Simulation tool

This tool makes use in BIECO of the following tools:
Tool How it is involved

FERAL
FERAL couples different simulation models and executes them for
a given scenario

9.12.1. Test scenario identifier 1

Test Scenario ID IESE-TS-01
Test Scenario Name Input/output Interface Test

Test Case Description
For enabling coupling of simulation models, FERAL will be
tested for being able to read data from the standardized
interface.

Actors FERAL developers

Pre-Conditions
An interface for connecting various simulation models is
specified

Post-Condition
All data from the standardized interface can be read by
FERAL

9.12.1.1. Test-case-identifier 1.1

Test Case ID IESE-TC-01-1
Test Case Description Input Interface test

Pre-Conditions
For enabling coupling of simulation models, FERAL will be
tested for its readiness to read data from the compatible
Interface.

Test Steps
Simulation model is provided in the format compatible with
the BIECO framework.

Test Data Functional Mock-up Unit
Expected Result FERAL reads the data from the FMU
Post Condition

Actual Result
The simulation model is specified in a format readable by
FERAL/ FERAL is ready to execute simulation models
specified in accordance to a well standardized interface.

Page 78 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.12.1.2. Test-case-identifier 1.2
Test Case ID IESE-TC-01-2

Test Case Description
Out Interface test. For enabling coupling of simulation
models, FERAL will be tested for its readiness to write data in
a component compatible with the standard interface.

Pre-Conditions A standard interface is defined (Active MQ/ FMI).
Test Steps Functional Mock-up Unit
Test Data Component executed by FERAL

Expected Result
Data is delivered in a format compatible with the standard
interface.

Post Condition
The simulation model is specified in a format readable by
FERAL/ FERAL is ready to export results in accordance to a
well standardized interface

Actual Result FERAl interoperability with BIECO.

9.13. Test Plan for Forecasting systems failures tool

This tool makes use in BIECO of the following tools:
Tool How it is involved

Postman Platform for testing the REST APIs
Self-checking of vulnerabilities and

failures
Provide information about the running

system

9.13.1. Test scenario identifier 1

Test Scenario ID UTC-TS-02
Test Scenario Name Failure prediction
Test Case Description Predict the probability of an upcoming failure.
Actors Tool Developer and Platform Administrator.

Pre-Conditions
Enough information about the running process is available
(the time evolution of the parameters, sensor data and
failures).

Post-Condition -

9.13.1.1. Test-case-identifier 1.1

Test Case ID UTC-TC-02-1
Test Case Description Evaluate the prediction accuracy

Pre-Conditions
Availability of enough historical data, in order to perform a
good prediction.

Test Steps
Simulate dangerous and safe conditions and test the tool
response.

Test Data
The time evolution of the system parameters, sensor data
and failures.

Expected Result
Ability of the tool to differentiate dangerous from safe
situations.

Post Condition -
Actual Result -

Page 79 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.14. Test Plan for ResilBlockly tool
This tool makes use in BIECO of the following tools:

Tool How it is involved

JUnit Framework used for unit testing of ResilBlockly
Postman Platform for testing the REST APIs of ResilBlockly
Mockito Mocking Framework used for unit testing of ResilBlockly

Spring Framework
(SpringBoot Test)

Framework used for integration testing of ResilBlockly

9.14.1. Test scenario identifier 1

Test Scenario ID RES-TS-02
Test Scenario Name User Authentication

Test Case Description
The user authenticates with the given credentials (email
address and password)

Actors ResilBlockly end-user, Tool Provider

Pre-Conditions
The tool provider has created an account for the user and
the credentials have been communicated

Post-Condition The user is authenticated and signed in

9.14.1.1. Test-case-identifier 1.1

Test Case ID RES-TC-02-1

Test Case Description
The user is not registered or the inserted credentials are not
correct.

Pre-Conditions The user reaches the ResilBlockly login URL
Test Steps The user inserts erroneous credentials.
Test Data

Expected Result
The authentication is not successful. The user cannot
access the tool

Post Condition
Login attempt is not successful. The tool cannot be
accessed.

Actual Result

9.14.1.2. Test-case-identifier 1.2

Test Case ID RES-TC-02-2

Test Case Description
The registered user enters the correct credentials and is
successfully authenticated

Pre-Conditions
The tool provider has created an account for the user and the
credentials have been communicated.
The user reaches the ResilBlockly login URL

Test Steps
The user inserts the correct email address and the
corresponding password

Test Data
Expected Result The authentication is successful
Post Condition The user is authenticated and signed in
Actual Result

Page 80 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.14.2. Test scenario identifier 2
Test Scenario ID RES-TS-03
Test Scenario Name Design of a Profile

Test Case Description
The user designs a ResilBlockly profile by importing an
existing file or creating a new one from scratch

Actors ResilBlockly end-user (profile or domain expert)
Pre-Conditions User is authenticated.

Post-Condition
A profile is available in ResilBlockly and can be modified or
instantiated in a model.

9.14.2.1. Test-case-identifier 2.1

Test Case ID RES-TC-03-1
Test Case Description Import of an existing ecore Profile

Pre-Conditions
User is authenticated. A profile exists in the file system and
is in .ecore UML format

Test Steps

The user selects the import ecore feature.
The ecore file is retrieved from the file system.
Possible validation errors are removed by the user.
The profile is saved with a new name.

Test Data
Expected Result The ecore file is successfully imported and the profile saved

Post Condition
A profile with the same information available in the ecore is
available in ResilBlockly and can be modified or instantiated
in a model.

Actual Result

9.14.2.2. Test-case-identifier 2.2

Test Case ID RES-TC-03-2
Test Case Description Creation of a new Profile
Pre-Conditions User is authenticated.

Test Steps
The user creates a new profile, resolve possible validation
errors, and saves it with a new name.

Test Data
Expected Result The profile is successfully saved

Post Condition
A profile is available in ResilBlockly and can be modified or
instantiated in a model.

Actual Result

9.14.3. Test scenario identifier 3

Test Scenario ID RES-TS-04
Test Scenario Name Design of a Model
Test Case Description The user instantiates a profile in a model
Actors ResilBlockly end-user

Pre-Conditions
User is authenticated. At least one profile exists in
ResilBlockly and has been selected

Post-Condition
A model is available in ResilBlockly for the user, and can be
modified or exported (as ecore or JSON workspace).

Page 81 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.14.3.1. Test-case-identifier 3.1
Test Case ID RES-TC-04-1
Test Case Description Import of an existing ResilBlockly Model

Pre-Conditions
User is authenticated. At least one profile exists in
ResilBlockly and has been selected. A ResilBlockly Model
exists in the file system.

Test Steps
The ResilBlockly model (workspace JSON file) is retrieved
from the file system.
The model is saved with a new name.

Test Data

Expected Result
The existing ResilBlockly model (workspace JSON file) is
successfully imported and the model is saved

Post Condition
A model is available in ResilBlockly for the user, and can be
modified or exported (as ecore or JSON workspace).

Actual Result

9.14.3.2. Test-case-identifier 3.2

Test Case ID RES-TC-04-2
Test Case Description Creation of a new Model

Pre-Conditions
User is authenticated. At least one profile exists in
ResilBlockly and has been selected.

Test Steps The user realizes a model and saves it with a new name.
Test Data
Expected Result The new ResilBlockly model is successfully saved

Post Condition
A model is available in ResilBlockly for the user, and can be
modified or exported (as ecore or JSON workspace).

Actual Result

9.14.4. Test scenario identifier 4

Test Scenario ID RES-TS-05
Test Scenario Name MUD communication rules
Test Case Description
Actors ResilBlockly end-user

Pre-Conditions
User is authenticated. A ResilBlockly Model is available for
the user and it is selected. A MUD JSON related to one of the
model components exists on the file system.

Post-Condition
The model includes the MUD communication rules and can
be exported as extended MUD JSON

Page 82 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.14.4.1. Test-case-identifier 4.1
Test Case ID RES-TC-05-1
Test Case Description Import of an existing MUD JSON

Pre-Conditions
User is authenticated. A ResilBlockly Model is available for
the user and it is selected. A MUD JSON related to one of the
model components exists on the file system.

Test Steps
The user imports the MUD JSON.
The model is updated and saved.

Test Data

Expected Result
The existing MUD JSON is imported and the communication
rules contained are associated to the ResilBlockly model and
the model is saved

Post Condition
A model is available in ResilBlockly for the user, and it
includes the MUD communication rules.

Actual Result

9.14.4.2. Test-case-identifier 4.2

Test Case ID RES-TC-05-2
Test Case Description Specification and export of MUD communication rules

Pre-Conditions
User is authenticated. A ResilBlockly Model is available for
the user and it is selected.

Test Steps

The user selects a component interface.
The user introduces the inputs (e.g., rule name, connection
type, port, MUD-URL, etc.) through the ResilBlockly dedicated
GUI.
The saves the rules and the model.
The user exports the extended MUD JSON.

Test Data

Expected Result

The user introduces the inputs through the ResilBlockly
dedicated GUI. The model is updated and saved.
The user can export and save the obtained, extended MUD
JSON.

Post Condition
A model is available in ResilBlockly for the user, and it
includes the MUD communication rules. The corresponding
extended MUD JSON is exported.

Actual Result

9.14.5. Test scenario identifier 5

Test Scenario ID RES-TS-06

Test Scenario Name
Identification and association of threats with a ResilBlockly
model

Test Case Description
Threats (i.e., Weaknesses and vulnerabilities) are identified
and associated to model elements (e.g., interfaces)

Actors ResilBlockly end-user

Pre-Conditions
User is authenticated. A ResilBlockly model is available for
the user and it is selected.

Post-Condition
The model includes the associated
weakness(es)/vulnerabilities.

Page 83 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.14.5.1. Test-case-identifier 5.1
Test Case ID RES-TC-06-1

Test Case Description
Identification and association of weaknesses with a
ResilBlockly model

Pre-Conditions
User is authenticated. A ResilBlockly model is available for
the user and it is selected.

Test Steps

The user opens the Risk Assessment functionality.
The user selects the Weaknesses tab.
The user selects a block of the model (e.g., an interface)
The user identifies one or more weaknesses (either by
searching into CWE catalogue, or searching into CAPEC and
retrieving CWEs, or defining a custom weakness).

Test Data
Expected Result The identified weakness(es) is associated to the model.

Post Condition
A model is available in ResilBlockly for the user, and it
includes the associated weakness(es). The tool shows the
Attack Tree related to the identified CWE weaknesses.

Actual Result

9.14.5.2. Test-case-identifier 5.2

Test Case ID RES-TC-06-2

Test Case Description
Identification and association of vulnerabilities with a
ResilBlockly model

Pre-Conditions
User is authenticated. A ResilBlockly model is available for
the user and it is selected.

Test Steps

The user opens the Risk Assessment functionality.
The user selects the Vulnerabilities tab.
The user selects a block of the model (e.g., an interface)
The user identifies one or more vulnerabilities (either by
searching into CVE catalogue, or defining a custom
vulnerability).

Test Data
Expected Result The identified vulnerabilities are associated to the model.

Post Condition
A model is available in ResilBlockly for the user, and it
includes the associated weakness(es).

Actual Result -

9.14.6. Test scenario identifier 6

Test Scenario ID RES-TS-07
Test Scenario Name Model-based Risk Assessment with ResilBlockly

Test Case Description
Threats associated with model elements are analysed for
determining the risk

Actors ResilBlockly end-user, security expert

Pre-Conditions
User is authenticated. A ResilBlockly model is available for
the user and it is selected. Weaknesses and Vulnerabilities
have been identified and associated with the model elements

Post-Condition
The model includes the associated
weakness(es)/vulnerabilities and the related risk
assessment.

Page 84 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.14.6.1. Test-case-identifier 6.1
Test Case ID RES-TC-07-1
Test Case Description Risk assessment of model weaknesses

Pre-Conditions
User is authenticated. A ResilBlockly model is available for
the user and it is selected. Weaknesses have been identified
and associated with the model elements.

Test Steps

The user opens the Risk Assessment functionality.
The user selects the Risk tab.
The user selects the Weaknesses inner tab.
The user selects a block of the model (e.g., an interface)
The tool shows the associated weaknesses.
The user determines severity and likelihood of one or more
weaknesses.

Test Data
Expected Result The tool determines the risk for the weaknesses

Post Condition
A model is available in ResilBlockly for the user, and it
includes the associated weakness(es) and the related risk
assessment.

Actual Result -

9.14.6.2. Test-case-identifier 6.2

Test Case ID RES-TC-07-2
Test Case Description Risk assessment of model vulnerabilities

Pre-Conditions
User is authenticated. A ResilBlockly model is available for
the user and it is selected. Vulnerabilities have been
identified and associated with the model elements.

Test Steps

The user opens the Risk Assessment functionality.
The user selects the Risk tab.
The user selects the Vulnerabilities inner tab.
The user selects a version of the CVSS.
The user selects a block of the model (e.g., an interface)
The tool shows the associated vulnerabilities.
The tool retrieves the CVSS base score for the vulnerabilities
of the block.
The user determines the likelihood of one or more
vulnerabilities.

Test Data
Expected Result The tool determines the risk for the vulnerabilities

Post Condition
A model is available in ResilBlockly for the user, and it
includes the associated vulnerabilities and the related risk
assessment.

Actual Result -

Page 85 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.15. Test Plan for safeTBox tool
This tool makes use in BIECO of the following tools:

Tool How it is involved

Resilblockly Provides input to safeTbox in the form of generated models.

9.15.1. Test scenario identifier 1

Test Scenario ID IESE-TS-02
Test Scenario Name Validate safeTbox input

Test Case Description
Validate that the input received (system models and analysis
results) is acceptable for safeTbox.

Actors IESE, RES
Pre-Conditions -
Post-Condition -

9.15.1.1. Test-case-identifier 1.1

Test Case ID IESE-TC-02-1
Test Scenario Name Validate safeTbox output

Test Case Description
Confirm that the output from safeTbox (generated mitigation
strategies) are valid.

Actors IESE
Pre-Condition -
Post-Condition -

9.16. Test Plan for Accountability through Blockchain tool

This tool does not rely on other BIECO tools.

9.16.1. Test scenario identifier 1
Test Scenario ID 7B-TS-01
Test Scenario Name Confidentiality and integrity

Test Case Description
Validate that the communication between the logging host
and the tool is confidential and integral.

Actors

- Logging process/host
- Tool process/host
- Eavesdropping process/host
Injecting process/host

Pre-Conditions Both sides are set up to exchange messages.
Post-Condition Messages are exchanged

9.16.1.1. Test-case-identifier 1.1

Test Case ID 7B-TC-01-1

Test Case Description
Validate that the intercept able stream of data cannot be
deciphered.

Pre-Conditions Communicated data between application and the tool.

Test Steps
- Set up an eavesdropper and collect the stream of data.
Verify the stream of data is encrypted and, despite the
knowledge of the protocol, cannot be easily deciphered.

Test Data n/a
Expected Result The stream could not be deciphered.
Post Condition Encrypted stream.
Actual Result Encrypted stream.

Page 86 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

9.16.1.2. Test-case-identifier 1.2
Test Case ID 7B-TC-01-1

Test Case Description
Validate that an impersonating stream of data is not
accepted by the tool.

Pre-Conditions Communicated data between application and the tool.

Test Steps

- Set up an impersonator and send messages to the
tool claiming it is the logging process/host.

Verify the tool rejects these messages as not being
authentic.

Test Data n/a
Expected Result The false stream is rejected by the tool.
Post Condition Only correct data accepted by tool.
Actual Result Only correct data accepted by tool.

9.16.2. Test scenario identifier 2
Test Scenario ID 7B-TS-02
Test Scenario Name Accountability
Test Case
Description

Validate that the collected data allows to detect changes in
logs.

Actors
- Logging process/host

Tool process/host

Pre-Conditions
Both sides are set up to exchange messages and some logs
metadata has been deposited already.

Post-Condition
Both sides are set up to exchange messages and some logs
metadata has been deposited already.

9.16.2.1. Test-case-identifier 2.1

Test Case ID 7B-TC-02-1

Test Case Description
Validate changes in original data cause accountability
errors.

Pre-Conditions -

Test Steps
- Modify logs on the logging host.
Ask the tool to verify the accountability.

Test Data n/a
Expected Result The tool should report inconsistencies.
Post Condition Reported inconsistencies.
Actual Result Reported inconsistencies.
Post Condition Only correct data accepted by tool.
Actual Result Only correct data accepted by tool.

9.17. Test scenario for the Runtime phase

Referring to the deliverable D2.3 and D 5.1 for more details, in the following a summary

of the activities related to the runtime phase and it the relative testing scenario are

provided.

Auditing Framework Activity

The target of the Auditing Framework is to monitor functional and non-functional

properties when a new device or component is integrated into an existing System of

Page 87 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Systems (SoS), facilities so as to assess and prevent anomalous and dangerous

situations

Therefore, the Auditing Framework will be validated in order to assure that it is able to:

• collect and analyze data coming from the different SoS sources (e.g., sensors,

components or devices);

• assess the run time SoS (components or devices) behavior;

• promptly rise up alarms in case of violations.

The integration and testing of the Auditing Framework inside an SoS environment may

involve the participation of different stakeholders such as end users, tools developers,

and platform administrators (referred as SoS domain experts, device developers and

monitoring experts in D5.1 respectively). In particular, two possible alternatives are

considered:

1. Using Inferred knowledge (UIK): i.e., deriving monitoring knowledge by exploiting

general, available information about the device and the relative SoS or Controlled

Environment (CE). This includes:

1. the formal representation of the knowledge about SoS, Ecosystems and

devices available in literature and in practice (e.g., ontologies, requirements,

guidelines, standards or behavioral models);

2. the formal representation of the knowledge of SoS and Ecosystems derived

from the BIECO ’s Design Phase (e.g., knowledge extracted from the

Blueprints, Security and Privacy Claims or Vulnerabilities and risk analysis).

2. Using Explicit knowledge (UEK): i.e., deriving monitoring knowledge by exploiting an

already available behavioral specification of the device and the relative Controlled

Environment, provided by the BIECO users.

Integration and testing activity target therefore the overall process of the Auditing

Framework as shown in D5.1 Figure 4 reported here below for completeness.

As reported in the picture, the main testing and integration activity will involve different

sub-processes.

Main Scenario

The main test scenario will involve the validation of a request from the BIECO End User.

In this case, the scenario will simulate the interaction with the BIECO framework GUI so

as to start the BIECO Runtime Phase and consequently the setting up of the Auditing

Framework and the Controlled Environment.

As in Error! Reference source not found. below (see Figure 4 of D5.1) each interaction t

hrough the BIECO Framework (GUI) for setting up the Auditing Framework will be verified

with specific test cases taken from the BIECO Use Cases.

Page 88 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Figure 10 Audit framework main behaviour (taken from D5.1 Figure 4).

Page 89 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Specifically, the following sub-processes will be verified with the following scenarios:

Test sub-scenario 1 (UIK)

Attributes selection subprocess is the starting activity of the Using Implicit knowledge

flow (UIK).

• Test sub-sub-scenario 1.1 peculiarities and the requirements of the device and

the Ecosystem specified. This scenario will include the verification of the

management of the ontology-based representation of the different ecosystems

and monitoring knowledge and targets the selection of the attributes (such as

time-duration, number-of-connections) related to the device.

• Test sub-sub-scenario 1.2 verify that after the execution of sub-sub-scenario 1.1

a set of rules called “Abstract Ruleset'' will be generated and correctly stored.

Test sub-scenario 2 (UEK)

“BPM Management” is verified in order to check the starting sub-process of the Using

Explicit knowledge flow (UEK). This scenario enables the user to:

• Test sub-sub-scenario 2.1 verify the generation and the loading of business

process models that represent the behavior of the device and the CE that is going

to be monitored.

• Test sub-sub-scenario 2.2 Verify that the set of activities can be enriched with

parameters.

• Test sub-sub-scenario 2.3 Verify that it is possible to express functional and

non-functional properties about a specific activity.

• Test sub-sub-scenario 2.4 Verify that the properties will be used for generating

the rules that will be monitored at runtime.

Test sub-scenario 3 (RuleSet)

The results of the two alternative flows (Test scenario 1 and 2) starts the sub-process

RuleSet Specification.

• Test sub-sub-scenario 3.1 Verify that the Abstract Ruleset and the Blueprints

generated during the Design Runtime phase execution of the BIECO platform can

be retrieved.

• Test sub-sub-scenario 3.2 Verify that the BIECO Platform allows the user to

detail the Abstract Ruleset with Blueprints.

Test sub-scenario 4 (Instrumentation)

This test scenario is related with Instrumentation process to the probe injection within

the device under test. This activity will provide guidelines to the user for instrumenting

code or for using an automatic instrumentation tool for getting continuous information

about the Device under test through delivery of events. Therefore, the objective is to

verify that the instrumentation will take place.

Page 90 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

Test sub-scenario 5 (Digital Twin)

verify that the subprocess DT&STUBs configuration will take place.

• Test sub-sub-scenario 5.1 verify that the configuration of the Digital Twin

involved within the Conformity Monitoring.

• Test sub-sub-scenario 5.2 verify the configuration of the STUBs that simulates

the external services involved within the device execution

Test sub-scenario 6 (Auditing Framework set up)

Verify the initial setup of the auditing process. It includes the communication channels

creation and setup.

Test sub-scenario 7 (Auditing framework information retrieval)

Verify that the audit framework retrieves the necessary data as well as input data

provided as Blueprints.

Test sub-scenario 8 (Auditing framework execution)

Verify that the Auditing Framework is ready to start its activities.

• Test sub-sub-scenario 8.1 verify that the subprocess called Auditing Process

Startup is invoked from the BIECO Framework GUI (see Start Auditing Process

activity) when all the data is ready for being used for instantiating the Monitoring

and the Predictive Simulation components within the Auditing Framework.

• Test sub-scenario 8.2 After the completion of the startup phase, verify that the

Auditing package Execution process can be executed.

Test sub-scenario 9 (Auditing framework notification)

Verify the notification about violation related to the functionals or non-functionals

properties generated from Blueprints and information gathered in rules are forwarded to

the BIECO Framework GUI.

Page 91 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

10. Conclusions

The present deliverable was prepared in the frame of WP8 Platform Integration and

testing, with the main goal to precisely describe the testing strategy for the foreseen

BIECO platform. Another goal of the present deliverable was to present the main

approach that will be adopted during the development and testing of the BIECO platform,

in order to continuously measure the extent to which the final functional and non-

functional requirements are met.

The detailing methodology regarding the test validation of project results will be

described in D8.2 BIECO Assessment methodology.

Three test levels were identified that specify the process in that particular scope (Figure

11). Generalized overall test implementation principles describe processes that are

applicable to all test levels. Added to those test levels, Non-functional testing is

instructed to aid testing in scope of fulfilment of the non-functional requirements, but

also functional.

Figure 11 Software Testing Pyramid

Continuous integration will be applied in order to have a short and fast feedback loop

and enable the BIECO partners to collaborate together to develop the BIECO platform.

The deliverable defines also the infrastructure to support and facilitate the tests.

The remainder of the deliverable presents the test scenarios and test cases needed to

test and validate:

• BIECO Platform;

• The four Use Cases;

• BIECO Tools.

Page 92 of 92

Deliverable 8.1: BIECO Verification and Testing Strategy

11. References

[1] Gorton, Ian. "Software quality attributes." Essential Software Architecture. Springer,

Berlin, Heidelberg, (2011). 23-38.

[2] M. Felderer and E. Fourneret, “A Systematic Classification of Security Regression

Testing Approaches, ”International Journal on Software Tools for Technology Transfer,

vol. 17, no. 3, pp. 305–319, 2015

[3] Index, T. I. O. B. E. "Tiobe-the software quality company." TIOBE Index| TIOBE–The

Software Quality Company [Electronic resource]. Mode of access: https://www.

tiobe.com/tiobe-index/-Date of access 1 (2018).

[4] Mccabe, Thomas. "Cyclomatic complexity and the year 2000." IEEE Software 13.3

(1996): 115-117.

[5] Fowler, Martin, and Matthew Foemmel. "Continuous integration."

[6] Shahin, Mojtaba, Muhammad Ali Babar, and Liming Zhu. "Continuous integration,

delivery and deployment: a systematic review on approaches, tools, challenges and

practices." IEEE Access 5 (2017): 3909-3943.

[7] Ståhl, Daniel, and Jan Bosch. "Cinders: The continuous integration and delivery

architecture framework." Information and Software Technology 83 (2017): 76-93.

[8] Meyer, Mathias. "Continuous integration and its tools." IEEE software 31.3 (2014): 14-

16.

